Supporting Information

Type 1 Ring-Opening Reactions of Cyclopropanated 7-Azabenzonorbornadienes with Organocuprates

Emily Carlson and William Tam*

Guelph-Waterloo Centre for Graduate Work in Chemistry and Biochemistry, Department of Chemistry, University of Guelph, Guelph, Ontario, Canada N1G 2W1.

Contents

Part I:	General Information	page S2
Part II:	General Procedure for Type 1 Ring-Opening Reactions	page S3
Part III:	Characterization Data of Products 15a-m	page S4-S7
Part IV:	¹ H and ¹³ C NMR Spectra of Products 15a-m	page S8-S19

Part I: General Information

All experiments were conducted under inert atmosphere of dry argon. Glassware was ovendried overnight. Column chromatography was performed on 230-400 mesh silica gel using flash column chromatography techniques.¹ Infrared samples were prepared as thin films on NaCl discs or acquired as solids on a Nicolet 380 FTIR spectrophotometer or Bruker ALPHA platinum single reflection diamond ATR spectrophotometer. ¹H and ¹³C NMR spectra were recorded on a Bruker Avance 300 or 400 MHz spectrometer equipped with a Cryoplatform[®] Prodigy cryoprobe. Chemical shift (δ) values for ¹H and ¹³C NMR spectra are reported in parts per million (ppm) with the solvent resonance as the internal standard (deuterochloroform; ¹H: δ 7.24 ppm; ¹³C: δ 77.0 ppm). HRMS was performed at the Mass Spectrometry & Proteomics Services Unit of Queen's University, Kingston, Ontario. The samples were ionized by electron impact (EI) or positive electrospray ionization (ESI) and ion detection was performed by time of flight (TOF).

Reagents: Commercial reagents were purchased from Sigma-Aldrich and used without further purification. Organolithium reagents were titrated against (\pm)-menthol using 9H-fluorene as an indicator.² Dried and degassed solvents were obtained from an LC-SPS solvent purification system supplied with dry packed columns containing 3 Å molecular sieves. Cyclopropanated 7-azabenzonorbornadienes³ and higher order cyanocuprate reagents⁴ were prepared according to literature procedures.

¹ Still, W.C.; Kahn, M.; Mitra, A. J. Org. Chem. 1978, 43, 2923.

² (a) Love, B.E.; Jones, E.G. J. Org. Chem. **1999**, 64, 3755. (b) Li, J.J.; Limberakis, C.; Pflum, D.A. Modern Organic Synthesis in the Laboratory; Oxford University Press, Inc.: NY, 2007; Chapter 1.

³ Carlson, E.; Tam, W. Synthesis, in press.

⁴ (a) Lipshutz, B.H.; Wilhelm, R.S.; Kozlowski, J.A.; Parker, D. J. Org. Chem. **1984**, 49, 3922. (b) Lipshutz, B.H.; Wilhelm, R.S.; Kozlowski, J.A. J. Org. Chem. **1984**, 49, 3938.

Part II: General Procedure for Type 1 Ring-Opening Reactions

General procedure for Cu-catalyzed ring-opening reactions with higher order cyanocuprates:

CuCN (0.41 mmol, 3 equiv.) was weighed into an oven-dried Schlenk flask with stir bar, which was evacuated and back-filled with nitrogen or argon three times. Et₂O (4 mL) was added, and the suspension was cooled to -78 °C. To this, an organolithium reagent (0.83 mmol, 6 equiv.) was added dropwise with constant stirring to prepare the corresponding cyanocuprate. Cyclopropanated 7-azabenzonorbornadiene **13** (0.14 mmol, 1 equiv.), weighed into an oven-dried vial and purged with inert gas, was transferred to the organocuprate solution by cannula with rinses of Et₂O (3 × 0.5 mL). The cooling bath was removed and, once at room temperature, the flask was sealed. Upon completion of the reaction, the mixture was cooled in an ice bath and quenched by dropwise addition of 9:1 saturated aqueous NH₄Cl: conc.NH₄OH solution (pH 9-10). The mixture was extracted with CH₂Cl₂ (3 × 20 mL) and dried over anhydrous MgSO₄. The organic extract was concentrated under rotary evaporation and purified by column chromatography (ethyl acetate/methanol mixture).

Part III: Characterization Data of Products

(3a*R**,9b*S**)-5-Butyl-1,3,3a,9b-tetrahydro-2*H*-benzo[*g*]indol-2one, 15a (Table 1, entry 1): (30.8 mg, 92% yield). White solid; mp: 141-143 °C; *R_f* (EtOAc): 0.14; IR (ν , cm⁻¹): 3194, 2943, 2923, 1683, 1425, 1373; ¹H NMR (400 MHz, CDCl₃): δ 7.36-7.30 (m, 2H), 7.23-7.19 (m, 2H), 6.08 (br s 1H), 5.44 (d, *J*=2.8 Hz, 1H), 4.77 (d, *J*=7.2 Hz, 1H), 3.33 (br dd *J*=8.2 Hz, 7.3 Hz, 1H), 2.76 (m, 1H), 2.47-2.34 (m, 2H), 2.30 (dd, *J*=16.5 Hz, 3.0 Hz, 1H), 1.53 (m, 2H), 1.39-1.33 (m, 2H), 0.93 (t, *J*=7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 176.7, 135.0, 132.7, 131.4, 129.0, 128.9, 127.7, 125.4, 123.8, 55.2, 37.9, 35.0, 32.3, 30.5, 22.6, 14.0; HRMS: Calculated for C₁₆H₁₉NO [M]⁺: 241.1467. Found: 241.1471.

(3a*R**,9b*S**)-5-Ethyl-1,3,3a,9b-tetrahydro-2*H*-benzo[*g*]indol-2one, 15b (Table 1, entry 3): (20.5 mg, 90% yield). White solid; mp: 163-164 °C; *R_f* (EtOAc): 0.14; IR (v, cm⁻¹): 3182, 3077, 2996, 2905, 1686, 1455, 1371; ¹H NMR (400 MHz, CDCl₃): δ 7.35-7.29 (m, 2H), 7.24-7.17 (m, 2H), 6.11 (br s 1H), 5.43 (d, *J*=1.2 Hz, 1H), 4.77 (d, *J*=7.3 Hz, 1H), 3.32 (dd *J*=7.9 Hz, 7.7 Hz, 1H), 2.75 (m, 1H), 2.47-2.41 (m, 2H), 2.31 (dd, *J*=16.5 Hz, 2.9 Hz, 1H), 1.14 (t, *J*=7.4 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 176.9, 136.3, 132.7, 131.3, 129.0, 128.8, 127.7, 124.4, 123.6, 55.2, 37.9, 34.9, 25.2, 12.8; HRMS: Calculated for C₁₄H₁₅NO [M]⁺: 213.1154. Found: 213.1151.

(3a*R**,9b*S**)-5-Hexyl-1,3,3a,9b-tetrahydro-2*H*-benzo[*g*]indol-2one, 15c (Table 1, entry 4): (34.8 mg, 87% yield). Beige solid; mp: 147-149 °C; *R_f* (EtOAc): 0.15; IR (v, cm⁻¹): 3433, 3201, 2928, 2859, 1690, 1454, 1377; ¹H NMR (400 MHz, CDCl₃): δ 7.37-7.32 (m, 2H), 7.26-7.22 (m, 2H), 6.46 (br s 1H), 5.47 (d, *J*=2.8 Hz, 1H), 4.80 (d, *J*=7.3 Hz, 1H), 3.34 (br dd *J*=7.7 Hz, 7.7 Hz, 1H), 2.78 (m, 1H), 2.51-2.38 (m, 2H), 2.34 (dd, *J*=16.4 Hz, 3.1 Hz, 1H), 1.58-1.51 (m, 2H), 1.42-1.30 (m, 6H), 0.91 (t, *J*=6.8 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 176.9, 135.1, 132.7, 131.5, 128.89, 128.86, 127.7, 125.4, 123.8, 55.2, 37.9, 34.9, 32.6, 31.7, 29.3, 28.3, 22.7, 14.1; HRMS: Calculated for C₁₈H₂₃NO [M]⁺: 269.1780. Found: 269.1785.

(3a*R**,9b*S**)-5-Methyl-1,3,3a,9b-tetrahydro-2*H*-benzo[*g*]indol-2one, 15d (Table 1, entry 7): (17.0 mg, 75% yield). White solid; dec 152 °C; R_f (EtOAc): 0.13; IR (v, cm⁻¹): 3161, 3065, 1695, 1493, 1440, 1373; ¹H NMR (300 MHz, CDCl₃): δ 7.30-7.06 (m, 4H), 6.12 (br s 1H), 5.40 (d, *J*=1.2 Hz, 1H), 4.74 (d, *J*=7.3 Hz, 1H), 3.27 (dd *J*=7.9 Hz, 7.7 Hz, 1H), 2.71 (m, 1H), 2.29 (dd, *J*=16.5 Hz, 2.9 Hz, 1H), 2.00 (s, 3H); ¹³C NMR (75 MHz, CDCl₃): δ 176.8, 133.3, 130.9, 130.8, 129.0, 128.5, 127.8, 126.3, 123.9, 55.2, 37.7, 34.9, 19.3; HRMS: Calculated for C₁₃H₁₃NO [M]⁺: 199.0997. Found: 199.0995.

(3a*R**,9b*S**)-5-*iso*Propyl-1,3,3a,9b-tetrahydro-2*H*-benzo[*g*]indol-2one, 15e (Table 1, entry 8): (19.8 mg, 73% yield). White solid; mp: 146-148 °C; R_f (EtOAc): 0.17; IR (v, cm⁻¹): 3173, 3070, 2958, 1689, 1493, 1452, 1369; ¹H NMR (400 MHz, CDCl₃): δ 7.39 (d, *J*=7.7 Hz, 1H), 7.35-7.31 (m, 1H), 7.22-7.16 (m, 2H), 5.70 (br s 1H), 5.43 (d, *J*=2.9 Hz, 1H), 4.74 (d, *J*=7.2 Hz, 1H), 3.33 (dd *J*=8.2 Hz, 7.3 Hz, 1H), 2.96-2.89 (m, 1H), 2.81-2.75 (m, 1H), 2.32 (dd, *J*=16.5 Hz, 3.0 Hz, 1H), 1.16 (d, *J*=6.7 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 176.9, 140.9, 132.5, 131.5, 129.0, 128.9, 127.5, 123.6, 122.2, 55.1, 38.0, 34.8, 28.0, 22.3, 22.0; HRMS: Calculated for C₁₅H₁₇NO [M]⁺: 227.1310. Found: 227.1315.

(3a*R**,9b*S**)-5-*tert*Butyl-1,3,3a,9b-tetrahydro-2*H*-benzo[*g*]indol-2one, 15f (Table 1, entry 11): (20.6 mg, 69% yield). White solid; mp: 156-158 °C; *R_f* (EtOAc): 0.15; IR (v, cm⁻¹): 3214, 3073, 2958, 2905, 1691, 1488, 1367; ¹H NMR (400 MHz, CDCl₃): δ 7.72 (d, *J*= 8.0 Hz, 1H), 7.32-7.27 (m, 1H), 7.18 (d, *J*= 4.2 Hz, 2H), 5.92 (br s 1H), 5.55 (d, *J*=2.8 Hz, 1H), 4.68 (d, *J*=7.0 Hz, 1H), 3.25 (dd *J*=7.6 Hz, 7.6 Hz, 1H), 2.76 (m, 1H), 2.31 (dd, *J*=16.4 Hz, 2.4 Hz, 1H), 1.33 (s, 9H); ¹³C NMR (100 MHz, CDCl₃): δ 176.8, 143.0, 132.4, 132.3, 129.7, 128.2, 127.2, 127.0, 124.8, 55.5, 38.3, 35.1, 35.0, 30.9; HRMS: Calculated for C₁₆H₁₉NO [M]⁺: 241.1467. Found: 241.1461.

(3a*R**,9b*S**)-5-Phenyl-1,3,3a,9b-tetrahydro-2*H*-benzo[*g*]indol-2one, 15g (Table 1, entry 12): (19.2 mg, 62% yield). Beige solid; mp: dec 175 °C; R_f (EtOAc): 0.14; IR (v, cm⁻¹) 3289, 2915, 1683, 1670, 1292, 1262; ¹H NMR (300 MHz, CDCl₃): δ 7.38-7.19 (m, 8H), 7.03 (d, *J*=1.4 Hz, 1H), 6.39 (br s 1H), 5.60 (d, *J*=3.0 Hz, 1H), 4.87 (d, *J*=7.3 Hz, 1H), 3.50-3.43 (m, 1H), 2.87-2.78 (m, 1H), 2.39 (dd, *J*=16.5 Hz, 3.2 Hz, 1H); ¹³C NMR (75 MHz, CDCl₃): δ 176.7, 139.6, 138.6, 132.7, 131.3, 128.9, 128.4, 128.2, 127.5, 126.5, 55.2, 37.6, 35.3; HRMS: Calculated for C₁₈H₁₅NO [M]⁺: 261.1154. Found: 261.1161.

(3a*R**,9b*S**)-5-Butyl-7,8-dimethyl-1,3,3a,9b-tetrahydro-2*H*-benzo[*g*]indol-2one, 15h (Table 2, entry 2): (18.1 mg, 87% yield); beige solid; mp: 164-165 °C; R_f (EtOAc): 0.24; IR (v, cm⁻¹): 3165, 3078, 2963, 2923, 2860, 1693, 1505, 1470, 1372, 790; ¹H NMR (400 MHz, CDCl₃): δ 7.11 (s, 1H), 6.94 (s, 1H), 5.56 (br s, 1H), 5.36 (d, *J*=2.4 Hz, 1H), 4.70 (d, *J*=7.1 Hz, 1H), 3.29 (br dd *J*=7.6 Hz, 7.5 Hz, 1H), 2.76 (m, 1H), 2.45-2.39 (m, 2H), 2.38 (dd, *J*=16.4 Hz, 2.6 Hz, 1H), 2.27 (s, 3H), 2.25 (s, 3H), 1.53 (m, 2H), 1.49-1.35 (m, 2H), 0.93 (t, *J*=7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 176.6, 137.1, 136.0, 135.0, 130.4, 130.3, 128.7, 125.2, 124.6, 55.0, 38.0, 35.1, 32.2, 30.5, 22.6, 19.9, 19.4, 14.0; HRMS: Calculated for C₁₈H₂₃NO [M]⁺: 269.1780. Found: 269.1785.

(3a*R**,9b*S**)-5-Butyl-7,8-dimethoxy-1,3,3a,9b-tetrahydro-2*H*-benzo[*g*]indol-2one, 15i (Table 2, entry 3): (13.3 mg, 68% yield); white solid; dec 188 °C; R_f (EtOAc): 0.09; IR (v, cm⁻¹): 3174, 3075, 2950, 2927, 2865, 2834, 1678, 1518, 1231, 1181, 879; ¹H NMR (400 MHz, CDCl₃): δ 6.88 (s, 1H), 6.72 (s, 1H), 5.88 (br s, 1H), 5.34 (d, *J*=3.8 Hz, 1H), 4.71 (d, *J*=7.3 Hz, 1H), 3.90 (s, 3H), 3.89 (s, 3H), 3.32 (br dd *J*=7.6 Hz, 7.5 Hz, 1H), 2.76 (m, 1H), 2.44-2.36 (m, 2H), 2.31 (dd, *J*=12.6 Hz, 3.0 Hz, 1H), 1.55-1.50 (m, 2H), 1.48-1.32 (m, 2H), 0.93 (t, *J*=7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 176.7, 148.9, 148.1, 134.6, 126.0, 124.0, 123.7, 112.1, 107.7, 56.1, 55.2, 37.9, 35.2, 32.4, 30.5, 22.6, 14.0; HRMS: Calculated for C₁₈H₂₃NO₃ [M]⁺: 301.1678. Found: 301.1671.

(3a*R**,11b*S**)-5-Butyl-1,3,3a,11b-tetrahydro-2*H*-naphtho[2,3-*g*]indol-2-one, 15j (Table 2, entry 4): (20.1 mg, 98% yield); white solid; dec 167 °C; R_f (EtOAc): 0.19; IR (v, cm⁻¹): 3200, 2956, 2922, 1674, 1501, 1426, 1365, 1303, 1254, 1207, 1125, 965, 758, 735; ¹H NMR (400 MHz, CDCl₃): δ 7.83-7.78 (m, 1H), 7.76 (s, 2H), 7.63 (s, 1H), 7.49-7.43 (m, 2H), 6.00 (br s, 1H), 5.52 (d, *J*=1.8 Hz, 1H), 4.90 (d, *J*=6.6 Hz, 1H), 3.35 (br dd, *J*=7.6 Hz, 7.6 Hz, 1H), 2.80 (m, 1H), 2.64-2.47 (m, 2H), 2.33 (dd, *J*=16.4 Hz, 2.5 Hz, 1H), 1.64-1.56 (m, 2H), 1.47-1.41 (m, 2H), 0.97 (t, *J*=7.3 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 176.6, 135.4, 133.8, 132.5, 130.3, 130.1, 128.2, 127.4, 126.6, 126.3, 126.2, 122.7, 55.6, 38.2, 35.2, 32.4, 30.5, 22.7, 14.1; HRMS: Calculated for C₂₀H₂₁NO [M]⁺: 291.1623. Found: 291.1620.

(3a*R**,9b*S**)-5-Butyl-1,3,3a,9b-tetrahydro-2*H*-benzo[*g*]indol-2one, 15l (Table 2, entry 6): (26.3 mg, 87 % yield). The characterization data for this compound was identical to that of compound 15a.

(3a*R**,9b*S**)-5-Butyl-1,3,3a,9b-tetrahydro-2*H*-benzo[*g*]indol-2one, 15m (Table 2, entry 7): (27.2 mg, 86 % yield). The characterization data for this compound was identical to that of compound 15a.

Part IV: ¹H and ¹³C NMR Spectra of Products

100 MHz ¹³C NMR spectrum of **15a** in CDCl₃

100 MHz 13 C NMR spectrum of **15b** in CDCl₃

100 MHz ^{13}C NMR spectrum of 15c in CDCl_3

75 MHz ^{13}C NMR spectrum of 15d in CDCl_3

100 MHz ¹³C NMR spectrum of **15e** in CDCl₃

75 MHz 13 C NMR spectrum of 15g in CDCl₃

100 MHz 13 C NMR spectrum of **15h** in CDCl₃

100 MHz 13 C NMR spectrum of **15i** in CDCl₃

100 MHz ¹³C NMR spectrum of **15j** in CDCl₃

100 MHz ¹³C NMR spectrum of **15l** in CDCl₃

100 MHz ^{13}C NMR spectrum of 15m in CDCl_3