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Crystal Characterization
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Figure S1: X-Ray Diffraction was first carried out on the same face of the single crystal as
was used for the transient reflection tests. There is one prominent peak with its maximum
at 20 = 33.3°, which corresponds to a d-spacing of 2.689 A. Using the lattice parameter from
Liu of @ = 5.417 A, this corresponds to h? +k? 412 = 4 and is assigned to be from the {200}
plane.!
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Figure S2: Powder diffraction was also performed using a small portion of the same crystal
ground by mortar and pestle. All of the peaks are in agreement with literature values.!
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Figure S3: The Raman spectrum was obtained using a 532 nm excitation laser with no
polarizer on the scattered light. The peak maxima are at 343.5, 379 and 433 cm ™! and are
in excellent agreement with literature values for phase pure iron pyrite.? No marcasite peaks
are detected.

Transformation Derivation Details

Including the effects of the incidence angle in the derivation is quite straight forward. First,
note that the full expression for reflectance depends on polarization, such that there are two

expressions (maintaining the assumption that one of the media is air):

B A— (n+ir)B|?
RS_’A—}—(TL—{—M)B ’ (1)
and
B— (n+ir) Al
= |t A 2

B+ (n+ik)A

Here, A = cosf;, B=4/1— (% sin Hi) and 0; is the angle with respect to the surface nor-
mal of the incident beam. Expressing the change in reflectance as a Taylor series expansion

can still be done, giving:
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Where now (%)n and (‘?)—ff),‘i have a different, slightly more complicated form when the
angle dependent factors are included. Whether to include the factors dependent on incidence
angle or not depends on the system studied (ranges of n and x and the magnitude of the
measured transients AR/R) as well as the incidence angles used; either way, however, the
necessary derivatives can be computed analytically and the overall transformation remains
tractable. For the measurements reported throughout this publication, the incidence angle of
the probe beam was about 3.6°, and the polarization was parallel with the plane of incidence

(P). To assess the validity of neglecting the deviation from normal incidence we compute the

necessary multiplicative factors as follows:

1 0R 8nkB3A
—— | (n, Kk;theta) = 5 (4)
R Ok (A2 +n2B2 + x2B2)* — 4n2B2 A2

and

AB3A (n? — k2 - A
1 2
( 8R) (n, k; theta) = ( b ) (5)

Ron (A2 + n2B2 + £2B2) — 4n2B2A?”

Using these expressions in the transformation derived in the text, allows for any inci-
dence angle without approximation. Each of these factors in eqs. 4 and 5 are parameterized
by the incidence angle # via A and B. A simple, albeit brute force, test of validity of our
neglect of incidence angle dependence would be to calculate these quantities throughout the
range of n and k values relevant to pyrite at both # = 0 and 8 = 0.0625 and examine the
difference. Figure S4 shows this difference as a percentage of the actual value of the factor
(ie. [(£28) (n,5;0) — (£%E) (n,£;0.0625)] / (£2E) (n, £;0.0625)). For our experiment, it
is clear that the corrections to the terms in the transformation arising from the small devia-

tion from normal incidence are three orders of magnitude smaller than the terms themselves

and therefore safely neglected.
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Figure S4: The difference between the multiplicative terms involved in the transformation
((£%2) on the left and (£2E) on the right), calculated at @ = 0 and 6 = 0.0625. The
differences are divided by the factors calculated at § = 0.0625 to inform us of their relative
contribution to the transformation and expressed as a percentage. In each case we see that
the relative correction introduced by the deviation from normal incidence is on the order of

10~ and can be safely neglected.
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Fourier Analysis
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Figure S5: The Fourier amplitude of the 2.64 eV pump data at a single probe wavelength
(1.43 €V) is shown as a representative slice of the oscillations present in the low energy probe
region. The peak at 4.5 cm™! corresponds to a period of 7.3 ps, and has been measured in
pyrite before.® The peak at 11.08 cm™! is present only in the 2.64 eV pump data and may
be a noise component of the pump laser itself.
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Figure S6: Fourier transform of the full two dimensional 2.64 eV pump data. Fourier analysis
can be applied to every probe wavelength. Doing so allows us to see dispersion of the
acoustic phonon - a slight change in the phonon frequency as a function of probe wavelength.
Attempts at extracting the complex index of refraction from the fitted frequency and damping
constant of the acoustic phonon, based on Kasami’s et. al analysis were unsuccessful. We
believe that our signal to noise ratio is not good enough to determine the damping constant
to the needed precision.
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Figure S7: In the case of the 1.55 eV pump data, only the feature around 4.5 cm™~! appears.
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Figure S8: The full Fourier transform of the 1.55 eV pump data.
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Details on the Transformation from Reflection to Ab-

sorption
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Figure S9: The measured transient reflection spectrum in the case of 1.55 eV pump and at
a delay of 2 ps. The low energy end of the transient spectrum was extrapolated using three
different schemes. The blue shows the constant extrapolation, where the spectrum extended
at a constant value found by averaging 10 points at the edge of the measured spectrum. The
green trace shows the zero extrapolation, where all extrapolated points were zero. The red
shows an exponential extrapolation, where the data increased exponentially starting from
the value at the edge of the measured spectrum - the goal here was to simulate a worst case
scenario. Each of these was then transformed according to the procedure described in the
text and the results are shown in the next figure.
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Figure S10: The results of the transformation of the various extrapolations. The vertical
black line shows the limit of the experimentally measured data. You can see that the values
of the transient reflection spectrum outside of our measurement window affect the spectrum
quantitavely as far as 0.2 eV from the edge in the so-called worst case scenario of the
exponential extrapolation. Qualitatively however, the transformed spectrum of the worst
case scenario is fairly good as close as 0.1 eV from the edge. Notice that a similar situation
exists at the high energy end of the probe. Though it looks like the transient spectrum
smoothly goes to zero this is actually an artifact of the probe intensity dying there - in
reality we have terminated the transient spectrum around 2.7 eV and so our spectra should
only be interpreted between 1.35 and 2.6 eV.
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Figure S11: The same transformation procedure using the three extrapolations was per-
formed at every probe wavelength and the the sum of the squares of all the possible dif-
ferences between the resulting transformed spectra was computed for each point of the two
dimensional data. For example, if the two dimensional data for each extrapolation was trans-
formed to absorption and stored as a matrix (R®*?°, R**"* and R®"*). The matrix shown
here is: devy; = (R;™ — RiF™°)* + (R — Ri7™)* + (R?™ — R{;™)*. As you can see the
differences introduced by the extrapolations outside of our experimental window are limited
mainly to within 0.05-0.1 eV from the edge.
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Fluence Dependence
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Figure S12: Pump fluence dependence of transient reflection intensity for the 2.64 eV pumped
data at various probe energies and delays. Compared to the other pump energies these
curves appear much noisier and are fit poorly by lines passing through zero. We suspect
that this is because the pump itself is quite noisy having been generated through a series of
nonlinear processes. For this reason we have shown the SVD components in the manuscript
to demonstrate that throughout the range of pump fluences used in our measurements the
dynamics are consistent.

S12



0.01
0.005— —
0 e |
2 |-
<
-0.005— —
— 1.38 eV Probe/0.10 ps Delay
—001 __ 1.38 eV Probe/2.14 ps Delay N
2.38 eV Probe/0.04 ps Delay
— 0.58 eV Pump/2.14 ps Del
~0.015 il ke ' ' ' '
0 2 4 6 8 10 12 14 16 18

Pump Fluence (MJ/cmz)

Figure S13: Pump fluence dependence of transient reflection intensity for the 1.55 eV pumped
data at the same probe energies and delays as above. In all cases the trend is linear through-
out the range.
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Figure S14: Same as above for the 0.89 eV pumped data. Where signal is appreciable, the
trend appears to be linear throughout this range of fluences.
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Figure S15: Same as above for the 0.58 eV pumped data. Again where signal is appreciable,
the trend appears to be linear throughout this range of fluences.
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Figure S16: Where our white light fluence was quite large we found it prudent to also conduct
probe fluence dependence of our signal. These dependencies are shown at the same probe
wavelengths and delays as above. Only a very slight linear dependence is observed showing
that the probe does not interact nonlinearly with the sample to any large degree.
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Additional Transient Reflection Data
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Figure S17: Two dimensional summary of the transient reflection data for each of the pump
energies. The top row from left to right shows the 2.59 eV pump and the 1.58 eV pump
data, while the bottom row shows the 0.91 eV pump data on the left and the 0.58 pump
data on the right.
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Figure S18: Transient reflection measurements were also done with each of the pump wave-
lengths near time zero with a much smaller time step (10 fs). Here the chirp of the white
light can be seen as well as the temporal distortion of the white light near its seed energy

(1.58 eV).
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Figure S19: Two dimensional summary of the transient absorption data obtained from
transforming the data in Fig. S18 according to the method presented in the Data Analysis
section of the manuscript.
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Data Transformation Code

b
h
b
b
o
b

’data’ is a two-dimensional matrix containing the transient reflection
data and having dimension (# of probe energies) x (# of delays). Some
the steps involved in this transformation are quite computationally

demanding (especially creation of the hilbert transform operator). To
illustrate this: on a macbook from ca. 2007 this file took "3 minutes

run with length(probeWL) = 3236.

data = delR;

probeWL = lambda;

delay = t;

A
o
b
h

As explained in the text the transformation is non-local and can be

of

to

improved slightly by extrapolating the edges of the data. ’extrapLength’

indicates the number of data points you wish to add to EACH edge. Enter

’0’ if no extrapolation is desired.

extrapLength = 20;

%» The transformation should be done in units of energy.

data = flipud(data);

probeEnergy = f1liplr(1240./probeWl);
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b

epl

The steady state complex material response must be known and entered here

as the complex dielectric function (epsilon).

epreal;

ep2 = epimag;

epEnergy = epeV;

b
b
b
o
b
b
b

The transformation relies upon a matrix inversion. A particularly
convenient method to accomplish this is to first perform a singular value
decomposition on the matrix to be inverted. If said matrix is
ill-conditioned (i.e. nearly singular) the component vectors
corresponding to singular values below the specified threshold can be
neglected. In our case there was no problem with the condition of the

matrix, however, in principle one should always check.

SVDthresh = 0.0000001;

h
b

If the inversion has been performed before the matrices U, S, and V

should be kept on the workspace and ’makehill’ should be set to ’no’.
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% This will save time you the time and computational power necessary to

% perform some of the more demanding and time consuming calculations.

makehill = ’yes’;

% A new wavelength axis is created that includes the number of extrapolated

% points indicated by extrapLength on each side.

delta = probeWL(2) - probeWL(1);
leftExtrap = probeWL(1)-delta*extrapLength:delta:probeWL(1)-delta;
rightExtrap = probeWL(end)+delta:delta:probeWL (end)+delta*xextraplength;

extrapWL = [leftExtrap probeWL rightExtrap];

% The wavelength axis is converted to energy since the transformation

% should be done in the energy (frequency really) domain.

extrapEnergy = fliplr(1240./extrapWlL);

% The data is extrapolated either as constant values or as zeros. Switch
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% which lines are commented to toggle between the two. If constant values
% are chosen, ’n’ indicates the number of data points to consider at the

% edge in determining the constant value to use for the extrapolation.

data = [kron(ones(extrapLength,1),(1/n)*sum(data(l:n,:),1)); datal; %constants

hdata = [zeros(extrapLength,size(data,2)); datal; %zeros

data = flipud(data);

data [kron(ones (extrapLength,1), (1/n)*sum(data(l:n,:),1)); datal; J%constants
%idata = [zeros(extrapLength,size(data,2)); datal; J%zeros

data = flipud(data);

% The complex material response needs to have the same energy axis as the
% data. This is done by interpolating the known data onto the newly
% created energy axis. Switch the commented out code if data was

% originally entered as n and k.

epl interpl(epEnergy,epl,extrapEnergy, ’pchip’);

ep2 = interpl(epEnergy,ep2,extrapEnergy, ’pchip’);

% Index of refraction and extinction coefficient are calculated from the
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T

digitized susceptibilities if necessary.

sqrt ((epl+sqrt(epl. ~2+ep2.72))/2);

sqrt ((sqrt(epl. 2+ep2.72)-epl)/2);

figure (1); plot(extrapEnergy, [k; n])

% If calculations are to be repeated for various sets of data on the same

% axis then U, S, and V should be left on the workspace and repetition

% of the following computationally intensive steps can be avoided

if strcmp(makehill,’yes’)

% A hilbert matrix of the correct dimension is constructed if indicated.

% This process is computationally intensive and should not be

% necessary inversion matrices are already on your workspace.

hill = zeros(length(extrapEnergy),length(extrapEnergy));
j = 0:1:1length(extrapEnergy)-1;

dumb = 1./j;

for i = 1:length(extrapEnergy)
dumb2 = circshift(dumb, [0 i-1]);
hill(i,:) = dumb2;

end
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hill = -1/pix(triu(hill,1) - tril(hill’,-1));

% The various terms involved in the transform are calculated here

A= ((1+%k.72)."2 + 2.%x(-1 + k.”2).%*n."2 + n."4;

T1 = diag( (8*k.*n)./ A);

T2

diag( (-4*(1 + k.2 - n.72)) ./ A );

B =T1 + T2 x hill;

% As mentioned above, an especially efficient and convenient way to

% invert a matrix is using the SVD method

[U,S,V] = svd(B);

end

% The matrix inversion can be performed using the more straightforward
%» method, mitigation of the problems associated with inversion of

% ill-conditioned matrices will not be an option
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%deltaKappa = B\data;

% The inversion is performed using the SVD method (this allows for

% rejecting nearly singular values in the case that the transformation

% operator is ill-conditioned - as mentioned this was not a problem for us
% and the ’SVDthresh’ was set to be lower than the smallest sing. value.)
ind = S < SVDthresh;

Sinv = 1./S;

Sinv(ind) = 0;

% Deltakappa is the actual quantity calculated here. It is converted to

% Deltaalpha using the relationship alpha = kappa*4*pi/lambda

deltaKappa = V*Sinv*U’x*data;

deltaAlpha = deltaKappa*4*pi./kron(ones(1l,size(data,2)),(1240E-7./extrapEnergy’));

% The extrapolated data is put out to pasture as its purpose has now been

% served.

deltaKappa = deltaKappa(21:end-20,:);

deltaAlpha = deltaAlpha(21:end-20,:);
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figure (2); imagesc(probeEnergy,delay,deltaAlpha’)

% Everybody likes a clean workspace

clear extraplLength epl ep2 epEnergy SVDthresh makehill A T1 T2 B ind Sinv
clear dumb dumb2 i j delta leftExtrap rightExtrap extrapEnergy delay

clear extrapWL probeWL
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