Suppporting Information: Defect Tolerance in

 Monolayer Transition Metal DichalcogenidesMohnish Pandey, ${ }^{\dagger}$ Filip A. Rasmussen, ${ }^{\dagger}$ Korina Kuhar, ${ }^{\dagger}$ Thomas Olsen, ${ }^{\dagger}$ Karsten W. Jacobsen, ${ }^{\dagger}$ and Kristian S. Thygesen ${ }^{*, \dagger, \ddagger}$
Center for Atomic-scale Materials Design, Department of Physics, Technical University of Denmark, DK - 2800 Kongens Lyngby, Denmark, and Center for Nanostructured Graphene (CNG), Department of Physics, Technical University of Denmark, DK - 2800 Kongens
Lyngby, Denmark

E-mail: thygesen@fysik.dtu.dk

[^0]
Calculations without relaxation of the vacancies:

In this section all the band structures correspond to the case of unrelaxed and neutral defects.

Defect tolerant 1T monolayers:

The band structures plotted below correspond to the defect tolerant 1T structures. The left panel in all the plots corresponds to the pristine structure in a 3×3 unit cell. The right panel corresponds to the defect structure in which one chalcogen atom is removed from a 3×3 unit cell. The removal of the chalcogen atom introduces only shallow state(s) in the band gap. Density of states (DOS) is also shown in order to show the nature of the states present in the valence and conduction band.

Figure S1

Figure S2

Figure S3

Figure S4

Defect tolerant 2H monolayers:

The band structures plotted below correspond to the defect tolerant 2 H structures. The left panel in all the plots corresponds to the pristine structure in a 3×3 unit cell. The right panel corresponds to the defect structure in which one chalcogen atom is removed from a 3×3 unit cell. The removal of the chalcogen atom introduces only shallow state(s) in the band gap. Density of states (DOS) is also shown in order to show the nature of the states present in the valence and conduction band.

Figure S5

Figure S6

Figure S7

Figure S8

Figure S9

Figure S10

Figure S11

Figure S12

Figure S13

Defect sensitive 1T monolayers:

The band structures plotted below correspond to the defect sensitive 1T structures. The left panel in all the plots corresponds to the pristine structure in a 3×3 unit cell. The right panel corresponds to the defect structure in which one chalcogen atom is removed from a 3×3 unit cell. The removal of the chalcogen atom introduces deep state(s) in the band gap. Density of states (DOS) is also shown in order to show the nature of the states present in the valence and conduction band.

Figure S14

Figure S15

Figure S16

Figure S17

Figure S18

Figure S19

Figure S20

Figure S21

Defect sensitive 2H monolayers:

The band structures plotted below correspond to the defect sensitive 2 H structures. The left panel in all the plots corresponds to the pristine structure in a 3×3 unit cell. The right panel corresponds to the defect structure in which one chalcogen atom is removed from a 3×3 unit cell. The removal of the chalcogen atom introduces deep state(s) in the band gap. Density of states (DOS) is also shown in order to show the nature of the states present in the valence and conduction band.

Figure S22

Figure S23

Figure S24

Figure S25

Figure S26

Figure S27

Figure S28

Figure S29

Calculation of edge state in non-polar nanoribbons:

1T shallow edge states:

The plots on the left panel correspond to the pristine monolayer metal dichalcogenides. The right panel show the band structure of the nanoribbons cleaved from the monolayer along the non-polar direction. In the defect tolerant 1T monolayers, only shallow edge states are introduced when the monolayer is cleaved along the non-polar direction.

Figure S30

Figure S31

Figure S32

Figure S33

2H shallow edge states:

The plots on the left panel correspond to the pristine monolayer metal dichalcogenides. The right panel show the band structure of the nanoribbons cleaved from the monolayer along the non-polar direction. In the defect tolerant 2 H monolayers, only shallow edge states are introduced when the monolayer is cleaved along the non-polar direction.

Figure S34

Figure S35

Figure S36

Figure S37

Figure S38

Figure S39

Figure S40

Figure S41

Figure S42

1T mid-gap edge states:

The plots on the left panel correspond to the pristine monolayer metal dichalcogenides. The right panel show the band structure of the nanoribbons cleaved from the monolayer along the non-polar direction. In the defect sensitve 1T monolayers, deep gap states are introduced when the monolayer is cleaved along the non-polar direction.

Figure S43

Figure S44

Figure S45

Figure S46

Figure S47

Figure S48

Figure S49

Figure S50

2H mid-gap edge states:

The plots on the left panel correspond to the pristine monolayer metal dichalcogenides. The right panel show the band structure of the nanoribbons cleaved from the monolayer along the non-polar direction. In the defect sensitve 2 H monolayers, deep gap states are introduced when the monolayer is cleaved along the non-polar direction.

Figure S51

Figure S52

Figure S53

Figure S54

Figure S55

Figure S56

Figure S57

Figure S58

Dependence of the descriptor on the energy window:

Figure S59: Descriptor for different energy window used for integration. Compounds have been sorted based on the value of descriptor obtained using an energy window of 1 eV . The increasing size of the circle represent the energy window of $0.5,1.0,1.5$ and 2.0 eV respectively. In some cases the ordering of the compounds is different from the main text because the compounds have the same value of the descriptor thus making the sorting a bit arbitrary.

Effect of structural relaxation and charging of the supercell:

In this section we show how structural relaxation and changing the charge state of the defects influence the band structure and projected density of states for a representative set of TMDs comprised by two materials form each of the three classes shown in the abstract graphics.

Defect levels with of the neutral systems and the systems with added fractional charge:

All the plots in the left panel show the band structure of the pristine systems with 3×3 unit cell. The plots in the right panel corresponding to (a) represent systems with neutral vacancy without relaxation, (b) represent systems with neutral vacancy with relaxation, (c) represent systems with vacancy with $0.5 \mathrm{e}^{-}$added to the system and relaxed afterwards and (d) represent systems with vacancy with $1 \mathrm{e}^{-}$added to the system and relaxed afterwards.

Figure S60: Effect of relaxation on the band structure of HfS_{2}. Left panel in all the subplots corresponds to the pristine structure. (a) No relaxation. (b) Relaxation of the of the neutral vacancy (c) Relaxation with $0.5 \mathrm{e}^{-}$added to the system. (d) Relaxation with $1 \mathrm{e}^{-}$added to the system.

Figure S61: Effect of relaxation on the band structure of ZrS_{2}. Left panel in all the subplots corresponds to the pristine structure. (a) No relaxation. (b) Relaxation of the of the neutral vacancy (c) Relaxation with $0.5 \mathrm{e}^{-}$added to the system. (d) Relaxation with $1 \mathrm{e}^{-}$added to the system.

Figure S62: Effect of relaxation on the band structure of MoS_{2}. Left panel in all the subplots corresponds to the pristine structure. (a) No relaxation. (b) Relaxation of the of the neutral vacancy (c) Relaxation with $0.5 \mathrm{e}^{-}$added to the system. (d) Relaxation with $1 \mathrm{e}^{-}$added to the system.

Figure S63: Effect of relaxation on the band structure of WS_{2}. Left panel in all the subplots corresponds to the pristine structure. (a) No relaxation. (b) Relaxation of the of the neutral vacancy (c) Relaxation with $0.5 \mathrm{e}^{-}$added to the system. (d) Relaxation with $1 \mathrm{e}^{-}$added to the system.

Figure S64: Effect of relaxation on the band structure of PdS_{2}. Left panel in all the subplots corresponds to the pristine structure. (a) No relaxation. (b) Relaxation of the of the neutral vacancy (c) Relaxation with $0.5 \mathrm{e}^{-}$added to the system. (d) Relaxation with $1 \mathrm{e}^{-}$added to the system.

Figure S65: Effect of relaxation on the band structure of PtS_{2}. Left panel in all the subplots corresponds to the pristine structure. (a) No relaxation. (b) Relaxation of the of the neutral vacancy (c) Relaxation with $0.5 \mathrm{e}^{-}$added to the system. (d) Relaxation with $1 \mathrm{e}^{-}$added to the system.

Defect levels with removal of fractional charge:

The plots below show the comparison of the density of states of the representative systems with chalcogen vacancy in neutral supercell and with $0.5 \mathrm{e}^{-}$removed and relaxed afterwards.

Figure S66: The left panel shows the DOS of the neutral HfS_{2} with sulfur vacancy and right panel correponds to the same system when $0.5 \mathrm{e}^{-}$is removed from the super cell. The nature of the DOS changes only slightly.

Figure S67: The left panel shows the DOS of the neutral ZrS_{2} with sulfur vacancy and right panel correponds to the same system when $0.5 \mathrm{e}^{-}$is removed from the super cell. The nature of the DOS changes only slightly.

Figure S68: The left panel shows the DOS of the neutral MoS_{2} with sulfur vacancy and right panel correponds to the same system when $0.5 \mathrm{e}^{-}$is removed from the super cell. The nature of the DOS changes only slightly.

Figure S69: The left panel shows the DOS of the neutral WS_{2} with sulfur vacancy and right panel correponds to the same system when $0.5 \mathrm{e}^{-}$is removed from the super cell. The nature of the DOS changes only slightly.

Figure S70: The left panel shows the DOS of the neutral PdS_{2} with sulfur vacancy and right panel correponds to the same system when $0.5 \mathrm{e}^{-}$is removed from the super cell. The nature of the DOS changes only slightly.

Figure S71: The left panel shows the DOS of the neutral PtS_{2} with sulfur vacancy and right panel correponds to the same system when $0.5 \mathrm{e}^{-}$is removed from the super cell. The nature of the DOS changes only slightly.

[^0]: *To whom correspondence should be addressed
 ${ }^{\dagger}$ Center for Atomic-scale Materials Design, Department of Physics, Technical University of Denmark, DK - 2800 Kongens Lyngby, Denmark
 ${ }^{\ddagger}$ Center for Nanostructured Graphene (CNG), Department of Physics, Technical University of Denmark, DK - 2800 Kongens Lyngby, Denmark

