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Supporting Information 

S1. The memetic algorithm. 

Optimal and suboptimal diffusion pathways can be reconstructed by minimizing some particular free-

energy functional which describes the most important interactions between the protein and ligand. 

This methodology has been recently proposed by application of memetic algorithms (MA) in 

searching for the ligand optimal pathways in proteins like the M2 muscarinic receptor, nitrile 

hydratase and P50cam cytochrome
1
. In Ref. 1, we proposed an algorithm which minimizes the 

interaction free-energy ∆G between the ligand and protein on-the-fly during MD simulations. Position 

of the ligand is optimized to minimize ∆G, starting from the initial docking position of the ligand, for 

each of subsequent ligand intermediates, ending at a state which corresponds to the dissociated ligand-

protein complex. The ligand is constraint to the optimal path by the steered MD
2
 scheme. The free-

energy interaction can be sampled and minimized by many techniques. Out of many scoring-based 

metaheuristics suitable for minimizing ∆G, we exploited immune algorithm (IA) with additional 

learning procedures to enhance sampling of ligand positions in a protein. IA is a computational system 

inspired by the principles of the vertebrate immune system.  

Let us consider a set of ligand and protein positions �	 ≡ 	 (��|�	 = 	0, . . . , �) consisting of the 

initial docking position of the ligand �� and ligand intermediates ���, which altogether reconstruct the 

diffusion path. IA finds the optimal direction of pulling force from ���� towards the next position �� 

by involving an iterative process of mimicking evolution of ith ligand decoys �	 ≡ 	 (��|�	 =

	1, . . . , �). Each ligand is coded by its position in a protein and orientation. The detailed algorithm for 

finding the optimal (in terms of the interaction free-energy ∆G) position of ith ligand-protein 

conformation �� is described below.  

(i) Initially, the N-size population of ligand decoys � is approximated by sampling inside a 

sphere positioned at the center of mass of a ligand from ���� of the sampling radius ��.  

(ii) The iteraction free-energy ∆G of the protein and each decoy ligand is calculated by using 

relation given in the manuscript (Eq. 6).  

(iii) The ligand decoys from � with the lowest ∆G have higher probability of being 

promoted to the population. Selection is performed via roulette scheme. 



(iv) The selected decoys are used in the mating and Cauchy deviation procedures3. 

Mating and deviation are performed on randomly picked ligand decoys, according 

to user-defined probabilities. 

(v) An additional local search called hypermutation is applied to all ligand decoys with 

a defined probability, to decrease ∆G. Random hill mutation climbing (RMHC) was used4. In 

RMHC, a ligand decoy is accepted only if the stochastic Cauchy perturbation leads to a ligand 

decoy with lower ∆G.  

(vi) Steps (ii-v) are repeated until required precision is met, that is, if |min�� �min����| � �, 

where � is the current iteration. Next, the ith optimal ligand 

position on the lowest interaction free-energy path is �� 	= min 	�
�. Then, SMD is 

used to pull ���� in the direction of ��.  

The optimal diffusion path is reconstructed once all the subsequent ligand intermediates ��� are 

found. The final ligand position must correspond to the state �  in which the ligand and protein are 

dissociated. Thus, the ligand diffusion trajectory consists of all the optimal ligand-protein 

conformations � found by MA. 

 

S2. The list of atom indices from cytochrome P450cam (PDB ID: 2CPP) used to calculate 

the collective variables 

3768, 2963, 2381, 4320, 758, 353, 6446, 6444, 6412, 6443, 6448, 6368 

 

The root-mean-square distance RMSD and the interaction free-energy ∆G mapped on 

LDCS. 

 

Figure S1: The low-dimensional configuration space of the camphor diffusion from P450cam 

calculated by t-SNE. (a) The root-mean-square distance RMSD and (b) the interaction free-energy ∆G 

are mapped instead of !. 

 

 

 



Results of agglomerative clustering 

 

Figure S2: The clusters of ligand diffusion pathways automatically grouped by agglomerative 

clustering. All 30 enhanced MD trajectories are shown. The Pearson product-moment correlation 

coefficient � shows total positive correlation (� = 1) between the ligand diffusion pathways (PW1-4) 

observed on graphics and grouped by the agglomerative clustering. Camphor diffusion trajectories 

were clustered using their topological similarity as calculated by the Fréchet measure (including the 

last 15 frames from trajectories). Each color corresponds to a particular cluster: PW1 – green, PW2 – 

pink, PW3 – , PW4 – yellow, interior - turquoise. The edges and numbers between subsequent 

trajectories depict the Frechet distance between them. Note, that only 15 last structures are taken into 

account in each trajectory, and to cluster automatically all LDCS trajectories all distances between 

pairs of trajectories were necessary, not only subsequent, which are shown in this figure. 
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