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to characterise the fine-tuning argument, since whatever one thinks of that argument, it is 
surely intended to be an argument whose conclusion is either that there is, or that we have 
good reasons to believe that there is, an intelligent designer of the universe. 

Beyond this specific objection to the application of likelihoodism to the fine-tuning 
argument, we have a general objection to likelihoodism. We reject Sober’s likelihoodism 
because we are Bayesians, who hold that theories should be assessed according to their 

By Steve Gardner, Graham Oppy and David L. D

Our paper aims to apply our favourite Bayesian analysis of inference and pr
the fine-tuning data. We argue that, on the Minimum Message Length (MM
inference and prediction, neither the hypothesis of intelligent design nor the
many uni
neither the h
by that data.

Introduction 

The fine-tuning argument is a special case of the argument for Intelligen
Roughly speaking, the argument proceeds from premises about the finely-tu
permitting values of the various constants in the laws of physics to the conclusion that the 
universe is the product of intelligent design. Elliot Sober (2004, p. 119) thi
best way to think about the fine-tuning argument is as an argument about l
also thinks that the fine-tuning argument fails because of an obse
the likelih
designed by an intelligent designer is not greater than the likelihood tha
the constants are right given that the universe arose by chance. The likeliho
each case, for if the constants were not right, it would not be possible 
observations. 

In this paper we will argue again
argument is that even if Sober is right that the fine-tuning argument
as an argument about likelihoods, the presence of the observational selectio
described by Sober does not defeat the argument.  For, as we will show, 
argument depends on something that is not subject to an observational se
namely, the sensitivity of the constants. 

Our second and more ambitious claim is that Sober is wrong that the best w
characterise the fine-tuning argument is as an argument about likelihoods. W
a specific and a general objection. Our specific objection is that since argum
likelihoods don’t tell you what you ought to believe, no argument cou
likelihoods can be an argument with the conclusion that we ought to believ
an intelligent designer of the universe. Therefore, no such argument can b
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However, this attempt to defeat the fine-tuning argument fails. Recall that “the constants 
are right” is an abbreviation for a conjunction of two claims: the physical constants are 
such as to permit life and if they had been even slightly different, life would have been 
impossible. Keeping in mind the second conjunct, it is apparent that (OSE) is false. It is 
certainly true that if we exist, the physical constants much be such as to permit life. But it 
is false that if we exist, the physical constants must be such that if they had been even 

posterior probabilities. Sober’s reasons for what he calls “the retreat to 
essentially negative. According to Sober, we must make do with like
Bayesianism is beset with a host of insoluble problems: the problem of
problem of language variance, the sub-family problem, and the problem of nuisance 
parameters. Against this we will argue that the Bayesian method of inference by 
Minimum Message Length (MML) developed by Chris W
new resources with which to counter these objections. 

Finally, we return to the fine-tuning argument to show how that argument is assessed 
from within the MML framework. In that framework, a weak constraint on
theory counts as an explanation of some data is that the theory allows the da
encoded more concisely than would be possible using background knowledge alone. Our 

fine-tuning data in this sense. It follows from this that the hypothesis
also does not explain the fine-tuning data. 

The Fine-Tuning Argument and Observational Selection 

As Sober notes, the fine-tuning a

different, life would have been impossible. Sober abbreviates th
claim that “the constants are right”, and goes on to represent the fine-
this claim about a likelihood inequality: 

(1) Pr(the constants are right | Design) > Pr(the co

Sober goes on to claim that this likelihood inequality does no
presence of an observational selection effect: 

Given OSE, what we should claim about the relevant likelihoods is this

(2) Pr(the constants are right & OSE | Design) = Pr(the constants are right 
Chance) = 1.0 

Because of the observational selection effect, regardless of whether the un
chance or by design, the likelihood that we observe that the constants are rig
same, namely, unity. 
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subjective probabilities. The likelihood version of the design argument says that the 
observation O should lead you to increase your degree of belief in H1 and reduce your 
degree of belief in H2.” (30) But there is a problem with this suggestion. Even if we 
accept the claim that the likelihood version of the design argument says that the 
observation O should lead you to increase your degree of belief in H1 and reduce your 
degree of belief in H2, it seems that we still don’t have a reason for thinking that what we 
have been given deserves to be counted as a significant

slightly different, life would have been impossible. Our existence does not r
the constants be sensitive in this way; it is possible that we might have disc
physical constants are such that they fall in the middle of a broad range of life-perm
values.2 Nor is the sensitivity of the constants irrelevant to the fine-tuning 
the contrary, the force of that argument is proportional to the sensitivity o
Had we discovered that the values of the constants fall in the middle of a broad range of 

design would be much less attractive. 

Design Arguments and the Likelihood Principle 

Sober’s characterisation of the fine-tuning argument as an argument about l
follows from his treatment of design arguments generally. Sober (2003:28
“the best version of the design argument … uses … the likelihood prin
that observation O supports hypothesis H1 more than it supports hyp
Pr(O/H1)>Pr(O/H2)]”. What Sober calls “the likelihood version of the 
for the existence of God” (29) can be set out as follows: Let O be the claim 
vertebrate eye has features F1, …, F ; H  be the claim that the vertebrate eye was 

2
produced by a mindless chance process. Since it is plainly the case that 
Pr(O/H2), we can conclude, by way of the likelihood principle, that O supp
H1 more than it supports hypothesis H2.  

An obvious objection to this formulation of “the design argument for the ex
God” is that the formulated argument does not have the right kind o
as an argument for the existence of God. Sober notes that, in general, “[L]i
arguments have rather modest pretensions. They don’t tell you which hyp
believe; in fact, they don’t even tell you which hypotheses are
evaluate how the observations at hand discriminate among the hypotheses 
consideration.” (31) So, in the case at hand, Sober concedes straight off tha
conclusion of his design argument is not that God exists, nor even that it
God exists. But, if his argument has neither of these claims as its conclusion
right does it have to claim to be an “argument for the existence of God”?

Sober does suggest one way to meet this line of objection. “Since I wo
the design argument as much as possible to matters that are objective, I w
it as an argument concerning which hypothesis is more probable. However,
have prior degrees of belief in H1 and H2 may use the likelihood argument to

 argument for the existence of God. 
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e think, is that 
 program of 

ld be a very 
attractive one, if it could be carried out. It’s just that, in Sober’s view, this program turns 
out, sadly, to be impossible. So we must retreat to a more modest epistemology. 

As we argue in Dowe, Gardner, & Oppy (2007), we think this retreat is premature. In that 
paper, we show how Wallace’s principle of Minimum Message Length makes available 
to Bayesians new theoretical resources, and we show how these resources can be 
deployed to solve the problem of language variance, the sub-family problem and, in 

Let O be the observation that my car won’t start and H be the hypothesis 
powerful and malicious green gremlins in the engine whose purpose it is to 
car from starting. It is true that the observation O should lead me to increa
belief in H. What has happened is that the extremely low probability I initi
H will have increased a tiny bit. It might even have doubled, from one in a billion, let u
say, to two in a billion. But this doubling does not constitute a significant argum
the existence of powerful and malicious green gremlins in my engine.

When Sober claims that the best version of the design argument uses the 
principle, it is not entirely clear what he means here by “best”. His further
wishes to find “the soundest formulation that the argument can be given” (2
advance matters at all. Indeed, on its strictest philosophical interpretation, t
gloss is retrograde, since it only makes sense if we help ourselves to a theor
of truth. Plainly enough, on the assumption that validity is an all or no
only make sense of the idea that argume
can make sense of the idea that premises are more or less true. Not good.
can bypass these worries without trying to establish precisely what it takes
version of an argument to be better than another. 

We will argue in the next section that there are good reasons for t
Bayesian formulations of arguments for design that are more deser
the likelihood formulation that Sober champions. In particular, we prop
the reasons that Sober gives—both in his paper on the design arg
for dismissing Bayesianism, and hen

investigate the proper formulation of arguments for design in the pa
setting that is provided by the theory of minimum message length inferenc

Sober’s Anti-Bayesian Arguments 

Sober has for many years and in many different papers, advanced several re
objections to Bayesianism.4 These are: (1) the problem of priors; (2
language variance; (3) the sub-family problem (a.k.a. the problem of 
the problem of nuisance parameters. The point of the objections is to show
Bayesianism is beset by insoluble problems at its foundations. In lig
Sober recommends a “retreat to likelihoodism” Sober (2004). It’s worth ask
Sober characterise the move to likelihoodism as a “retreat”? The answer, w
even a critic of Bayesianism such as Sober can see that the Bayesian
analysing all genuine epistemic concepts in terms of probabilities wou
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ameters. But we do not address there in detail the 
problem of priors. We propose to do so here. 

 for Bayesian 
philosophy of science. We should begin by getting clear about exactly what the problem 

Recall that Bayesians assess theories by their posterior probabilities in light of the 
evidence, where these are calculated according to ayes’s Theorem: 

passing, the problem of nuisance par

The Problem of Priors 

We think it fair to say that the problem of priors is the most serious problem

is. We shall see that it is really two related problems. 

 B

)Pr(
)|Pr()Pr()|Pr(

E
HEHEH ×

=  

How does this work in practice? Imagine you are Isaac Newton, investigating the 
(E) by 

masses 
. 

 posterior 
ability that you assign 

 that H is true, and the unconditional 
probability of observing E. The last two of these terms are not especially problematic. 
While it is difficult to know how to calculate the unconditional probability of observing E, 
the need to do so can be avoided if we restrict ourselves to comparing different 

relationship between force, mass and acceleration. You collect evidence 
conducting experiments in which you measure the accelerations of known 
subjected to known forces. You form the hypothesis (H) that F = ma

What should you believe about this hypothesis? According to Bayesians, the
probability you assign to H depends on three things: the prior prob
to H, the likelihood that you observe E given

hypotheses. For it follows from Bayes’s Theorem that 
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son to believe H1 
you to know 
r is there any 
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argues that Bayesians are caught on the horns of an insoluble dilemma. For, he argues, 
the probability in question must be understood either as an objective or a subjective 
probability. If it is an objective probability, then the claim that Pr(F=ma) = 0.3 must be 
given a frequentist interpretation, akin to the claim that Pr(coin lands heads) = 0.5. And 
this seems an implausible account of scientific theories—we do not think that these are 
the outcomes of chance processes!5 On the other hand, if the claim that Pr(F=ma) = 0.3 is 
interpreted as a claim about subjective probabilities, i.e., about degrees of belief, then two 

If this ratio of posteriors is greater than one, then E gives you more rea
than H2, and we can see that the calculation of this ratio does not require 
Pr(E). When comparing theories we need only priors and likelihoods. No
problem in calculating the likelihood of observing E for some given H. 

The problem comes in trying to make sense of the idea of the prior probabil
assign to H. What can it mean to say, for example, that Pr(F=ma) = 0.3? He
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further objections arise. Firstly, Sober denies that beliefs are the kinds of th
in degrees. He proposes that for any proposition, either we believe it, w
we are agnostic about it.6 Secondly, even allowing that there is a coherent
degrees of belief, Sober objects that subjective probabilities ought to be irr
assessment of the truth of a given scientific theory. Subjective probabilitie
an arbitrary extent between agents. Therefore scientific disagreements sho
settled by pointing to the fact that 
dilemma illustrates the first problem of priors: that Bayesians can give no
account of what prior probabilities are. 

A possible Bayesian response to this dilemma leads to the second problem 
you might have thought that even if you can’t assign an objective prior
claim that F=ma, or come to some agreement about its subjective probab
possible to make use of a Principle of Indifference. The idea of such a
assign a uniform prior probability to every different possible theory in the 
theories you are considering. You concede that you don’t know what the 
that F=ma, but you at least assert than it is no more or less than the p
F=ma2, or F = m + a, or amF −= , or any of other infinitely many othe
that are possible between force, mass and acceleration.

r relationships 
that there is no 
eories in a 

s a different 
e garden is between 

e that every 
es it seem 
n 3m and 4m 
rden is 

t the 
However, this 

ity is a half that my garden is between 3m and 

7 The problem is 
unique or privileged way of describing what all the different possible th
domain are, and that different choices lead to different results. Sober give
example which makes this point nicely.8 Say I tell you that my squar
3m and 5m on a side. Applying the Principle of Indifference, you conclud
length between 3m and 5m has the same probability. This description mak
natural to say that the probability is a half that my square garden is betwee
on a side. But what I told you is equivalent to saying that the area of my ga
between 9m2 and 25m2, and this description makes it seem natural to say tha
probability is a half that the area of my garden is between 9m2 and 17m2. 
entails that the probabil 17 = 4.12m on a 

e of 
ng the Principle to 

e can 
o satisfactory 

age Length and 
ces that 

that Sober 
makes a crucial misstep in his argument when he assumes that objective prior 
probabilities must be given a frequentist interpretation. In fact there is another possible 
interpretation of these probabilities, in terms of algorithmic complexity. This 
interpretation relies on objective facts about Turing machines, and does not rely on 
arbitrary choices of parameterisation. So it is in an important sense objective. Yet the 
algorithmic complexity interpretation is also connected in important ways with the notion 
of subjective probabilities. We argue that the algorithmic complexity (AC) interpretation 

side. So the prior probability distribution you get from applying a Principl
Indifference to lengths contradicts the distribution you get from applyi
areas. There’s no non-arbitrary way to choose between the two parameterisations. W
restate the second problem of priors this way: that Bayesians can give n
account of prior ignorance. 

In next section we shall briefly describe the principle of Minimum Mess
argue that the principle makes available to Bayesians new theoretical resour
enable them to solve both problems of priors. In particular, we shall argue 
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 gives Bayesians satisfactory accounts both of prior probabilities and of 
prior ignorance.  

r account of 
the Principle of Minimum Message Length (MML) by stating it in the briefest possible 
way, as a slogan: 

s (i.e., of some 
e of Minimum 
ata in the 

theory, and the 
e theory is true. 

e notions of shortness and simplicity, the Principle 
 Razor. What, 

in two big 
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The first big idea comes from Shannon (1948): given a proposition E with probability 
ssage optimally 

of probability

The Principle of Minimum Message Length 

If the reader will permit us a little self-referential joke, then we’ll begin ou

Explanation is compression. 

Unpacking this slogan, what it says is that the best explanation of the fact
data) is the shortest. Given some data that you want to explain, the Principl
Message Length tells you to infer the theory which can be stated with the d
shortest two-part message, where the first part of the message states the 
second part of the message encodes the data under the assumption that th
Granting some connection between th
of Minimum Message Length comes out as a generalization of Occam’s
then, is new in the Principle? We shall see that the Principle brings in its tra
new ideas of great importance for Bay

Pr(E), the Shannon information gained on learning E is the length of a me
encoding E. This message length is given by: 

)Pr(log)( EEI S −=  

This establishes that the Principle of Minimum Message Length is a Bayesi
For the higher the probability that E is true, the shorter will be the length of
optimally encoding E.  Bayesians believe that the theory that best expl
is the theory with the highest posterior probability. This theory will be the t
lowest Shannon information and the shortest message length. 

It is important to note that the probabilities involved here are subjective prob
that the Shannon information gained on learning that an event E has occurre
subjective measure of information. The optimal encoding of an event is re
receiver with a specific set of prior expectations, and will differ from rece
An event which is a great surprise to me has high 

an principle. 
 the message 

ains some evidence 
heory with the 

abilities, and 
d is a 

lative to a 
iver to receiver. 

Shannon information and a long 
optimal encoding for me. Yet the very same event may be just what you were expecting, 
and if so, it will have low Shannon information and a brief optimal encoding for you. One 
way of restating the problem of priors is to point out that there is no bound on the ratio of 
the prior probabilities that different agents assign to the same event. In the worst case, I 
may deem an event E to be impossible, thus having infinite Shannon information, while 
you may deem the same event to be necessary (that is, logically implied by what you 
already know), and so as having zero Shannon information. 
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Nevertheless, it remains true that agents can disagree sharply in their subjective 
probabilities. As Bayesians, we think this is an ineliminable feature of scientific 
investigation. But, as we shall argue in the next section, we also think that the framework 
of inference by Minimum Message Length provides a solution to the second problem of 
priors, by giving an account of prior ignorance which is objective in an important sense. 
If this argument is successful, much of the sting of the first problem of priors is drawn. 

To find a way out of this impasse, we will need the help of the seco
comes from Kolmogorov: given a finite string S written in some alphabet, a
Universal Turing machine T, the Kolmogorov complexity (also known as th
complexity) of the string S is the length L of the shortest program which, wh
as its input, causes T to output S and halt. Since the Turing machine is Univ
guaranteed to be such a program for any finite string. We can regard the sh
that produces S as an optimal encoding of S relative to T, thus equating the 
Kolmogorov measures of information. Since the Shannon measure of 
equivalent to the negative log of a probability, it follows that the Kolmogorov m
information is also equivalent to the negative log of a probability. We can t
regard every Universal Turing machine (U
distribution over all finite strings: for a given UTM T and any finite 
asserts that S occurs with probability 2-L. 

All data has to be written down, so there is no problem in regarding the d
explained as a finite string written in some alphabet. We now observ
an asserti
theory tells us what data is more or less likely to be observed if it is tru
UTM is therefore equivalent to the choice of theory, or choice of prior pro
distribution. 

So far, this has not advanced us much. The problem we encountered bef
different agents can have prior probability distributions that differ to an arb
and that there seemed to be no principled way to choose between them. Usi
of Kolmogorov complexity, we have translated the problem of the choice o
probability distribution into a problem of the choice of UTM. But how do

Universal Turing Machines have an important property: given any two UTM
program of finite length (called an interpreter) to make one precisely imit
the other. This means that, in contrast to the situation considered from the perspectiv
Shannon information, for any pair of UTMs, there is an upper bound
probabilities of a string implicit

The existence of this bound overcomes a significant objection to th
probabilities as subjective probabilities: while different agents may disagree
subjective prior probability assignments, to the extent that we are prepared
agents as analogous to UTMs, algorithmic complexity theory guarantees t
difference between agents is bounded. 
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Prior ignorance and simplest possible Universal Turing Machines 
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 goes into 

 a description 
n is a state table: 
lumn for each 
ctions. The 

elow shows the state table for a TM that adds two numbers together: given a tape 
with two strings of o a  ze  on it, the TM outputs a tape with a 
single string of ones on it that is the length of the two strings added together. The 
instruction in each cell a trip  ‘R, 1 move right, write a 1, go to state 
2’. 

St Read Read ‘1’ 

A Turing Machine is a logical description of a computer. It has a clock wh
in discrete units called clock cycles. It has a finite number of internal states
determine what the machine does during each clock cycle. It has a tape of i
with a read/write head that can read input from the tape, and write output
inputs which are read and the outputs which are written are symbols in
alphabet. For our purposes we can assume the alphabet consists of the sym
‘1’. The symbols are written on the tape in cells, one symbol to a cell. Ther
blanks cells on the tape. The TM can perform a small number of actions: i
read/write head left or right one cell along the tape, and it can write a symb
The TM also has a finite number of instructions: these describe what the T
in any of the possible situations it can be in. There are only two different p
situations for each internal state of the TM, corresponding to the possibil
‘0’ or a ‘1’. An ins
situation. At each tick of the clock, the TM reads the symbol under the rea
and depending on what state it is in, performs one of the possible actions and
the indicated next state. 

From this brief description, it is easy to see that every Turing machine has
of finite length that completely characterises its behaviour. The descriptio
the table has a row for each internal state of the Turing machine, and a co
symbol in the alphabet the machine uses. The entries in the table are instru
table b

nes sep rated by a ro written

 is le, e.g. , 2’ means ‘

ate  ‘0’ 

1 R,1 R, 1, 1 , 2 

2 L, 0, 3 R, 1, 2 

3 L, 0, 3 L, 0, 4 

4 R, 0, HALT L, 1, 4 

Table 1: Turing Machine state table for a simple adder 

Turing machines vary in complexity. Simple TMs such as the one above can perform 
simple tasks. Of course this TM is not universal. To create a Universal Turing Machine 
(UTM), that is, a TM capable of emulating any other TM, a certain minimum level of 
complexity is required. This invites the question: what would the simplest possible UTM 
be like? Recall the point we made earlier that the choice of any UTM expresses the prior 
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The arguments in the previous two sections introduced some fairly elaborate theoretical 
machinery (Universal Turing machines, Kolmogorov complexity) to show how 
Bayesians can meet Sober’s general objections to Bayesianism. Before we return to the 
fine-tuning argument, and the assessment of that argument from within the MML 
framework, we provide a brief discussion of the application of MML to one well-known 
case of theory choice, namely the choice between the Ptolemaic and Copernican theories 

expectations we have about the data—data (that is, finite strings) with
can be thought as being expected, or more probable, relative to that U
expectations about the data are implied the choice of the simplest possible

Now we come to the crux of our argument in this section.10 The simples
can be regarded as one that has not been programmed to do anything els
emulate other TMs. It therefore expresses the most complete ignoranc
future data; in effect, the only assumption about the data reflected in the choice of
simplest possible UTM is the very weak assumption that the data is the
computable function. Recalling that every UTM defines a probability di
finite strings, and tha
UTM defines a probability distribution over

The Characterisation of Prior Knowledge 

With t
how prior knowledge ought to be characterised. In particular, we can answ
raised earlier: how should a Bayesian interpret claims about the prior 
theories? 

The answer is that for a Bayesian the assertion of a theory in the first part
implicitly asserts a prior probability for that theory. On the algorithmic co
interpretation of probability, message lengths and (negative logs of) probabi
interchangeable (take another look at Shannon’s Law). More generally, the choice of a 
language in which to describe the space of possible theories implicitl
probability distribution over the theories being considered. Recall our earlie
of the possible relationships between force, mass and acceleration. There
number of different ways in which these three quantities might be mathem
But physicists investigating this problem in Newton’s time, and physicists t
investigating other problems, share a commitment to the idea that the langu

language, assertions like ‘F=ma’ or ‘F=m+a’
Length Principle attaches a specific significance to this fact: the fact that t
are briefly assertable in the language chosen as the most appropriate one i
describe possible theories indicates that these theories are regarded as hav
probabilities than those whose assertions in that language are longer.

Applying MML to a Case of Theory Choice 
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Ptolemaic theory. 

In the preceding discussion, we supposed that it is appropriate to think of the 
incorporation of the ad hoc hypotheses into the Ptolemaic theory as a matter of fixing the 
values of further parameters in order to make calculations of the relative observed 
positions of the planets (i.e. calculations that yield claims of the form planet x is in 
position y at time t relative to the fixed stars). However, at a more impressionistic level, 
we might think about matters in the following way. The ‘data’ with which we work 
includes the fact that the inferior planets are always observed in the same part of the sky 

of the relative motions of the sun, the moon, and the six innermost
system (henceforth ‘planets’). We note in passing that, although the theoretic
machinery introduced above was needed to provide a gene
it is not needed in assessing the theories that we are about to consider. 

It is well-known—see, for example, Hoyle (1973)—that we can think
and Copernican theories as expansions of the terms of a series approximati
correct theory: addition of epicycles and so forth can make each theory a
arbitrarily close to the truth. Furthermore, at any level of approximation, 
to choose between the two theories in terms of their fit to the data concer
planetary positions, on the best formulation of each of the theories at the g
approximation. Thus, under the MML approach, we see that, at any level of
approximation, on the best formulations of th

only relevant data concerns observed planetary positions relative to the f
x was in position y relative to the fixed stars at time t.  

Despite this, it does not follow that, on the MML approach, there is not
between the two theories. For it is also well-known that there are facts co
relative observed positions of the planets—i.e. the positions of the plane
another—that are consequences of the geometry of the Copernican system
require further ad hoc postulates in the Ptolemaic system. For instance, it is sim
consequence of the geometry of the Copernican system that the inferior pla
remain close to the Sun, and that the superior planets only retrogress when
opposition to the Sun. On the Ptolemaic theory, however, it is only the furt
that the centres of the major epicycles of the inferior planets always lie on
between the Earth and the Sun that ensures that the inferior planets remain c
Sun (and there is a similar postulate that ensures that the superior planets o
when they are in opposition to the Sun). Consequently, we see that the first
message—the statement of the theory—is longer in the case of the Ptolemaic theory than 
it is in the case of the Copernican theory: there are further parameters that

data as is achieved by the Copernican theory. (Make poor choices of value
motions of the centres of the major epicycles of the inferior planets, and yo
for the positions of those planets will go though the roof.) So, the two
the Copernican theory is shorter than the two-part message for the Ptolem
hence MML recommends that we prefer the Copernican theory to the 
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particular, it is clear that neither intelligent design theories nor many universe theories 
compress this data: in any cases of this kind, the first part of the message—the statement 
of the theory—is longer than a one-part message in which the data is transmitted neat. 
For example, if we construct an intelligent design theory according to which an 
intelligent designer desires that the physical constants C1, C2, …, Cn have values V1, 
V2, …, Vn, that lie with the bounds B1, B2, …, Bn, then the first part of our message is 
longer than the neat message that the physical constants C1, C2, …, Cn have values V1, 

as the sun (and the fact that the superior planets only retrogress when in opp
sun). While this ‘data’ is entailed by the geometry of the Copernican theory, it effectively 
has to be ‘written in by hand’ into the Ptolemaic theory. So, while both the
effective compression of the general data involving the relative observ
planets, the two theories differ in their ability to compress the ‘data’ con
example, the relative positions of the Sun and the inferior planets. Since th
difference between the two theories except for their ability to compress 
‘data’, we can think of this ‘data’ as the critical divide which speaks decisively in favour 
of the Copernican theory. Moreover, we can say that, whereas the Cop
provides an explanation of this ‘data’
explained only insofar as it is compressed
compress the ‘data’ that we have highlighted. 

Applying MML to the Fine-Tuning Data 

Given the discussion in the preceding section, we have a model for our 
relative merits of the treatment of ‘the fine-tuning data’ on the approaches o
design theories and many universe theories. 

We recall from our earlier discussion that the primary ‘data’ that is appea
fine-tuning argument is this: the values of various physical constants are 
life, and if they had been even slightly different, life would have been im
we can begin to assess how intelligent design theories and many univers
their treatments of ‘the fine-tuning data’, we need to decide exactly what that ‘data’ is.
Since our aim is to transmit our data by transmitting the shortest two-part m
first part of which is a theory that compresses our data, and the second pa
our data as compressed by that theory, it is obvious that we cannot make any
towards our aim until we know exactly what data we are proposing to transm

Suppose we think that there are two parts to the data that we aim to transm
aim to transmit the data about the life-permitting ranges: for each physical cons
give the variation beyond which life would be impossible. Second, we aim 
actual values of the physical constants. Given that we transmit both of these kinds of data, 
then we shall certainly have transmitted the information that the constants all lie in the
life-permitting regions, and we will have transmitted the information that, had the va
differed a little, then they would not have fallen within the life-permittin

If this is how we are thinking about the data that we aim to transmit, the
that we simply aren’t going to come up with any theories that can compress this d
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If we set aside worries about whether the fine-tuning data is merely an artifact of current 
parameterisations—i.e. if we suppose that the fine-tuning data is something that could 
have an explanation—then it seems to us that it is pretty clear that there is no currently 
acceptable explanation of that data. It’s not merely that intelligent design theories and 
many universe theories fail to explain the data: there is no theory constructed thus far that 
has the capacity to explain this data. We think—though admittedly this is speculation, 
and not required by our argument to this point—that if there is an acceptable explanation 

V2, …, Vn, that lie with the bounds B1, B2, …, Bn; and likewise, if we c
universe theory according to which there is one amongst an ensemble of u
which the physical constants C1, C2, …, Cn have values V1, V2, …, Vn, that lie with th
bounds B1, B2, …, Bn, then, again, the first part of our message is longer tha
message that the physical constants C
the bounds B1, B2, …, Bn.  

How else, then, might we think about the data that we aim to transmit, and a
theories that we might hope to use to compress that data? Well, we might b
it could turn out that there are theories that compress a large range of oth
the particular data in which we have an interest. Think here about the di
the Copernican theory of the motions of the planets, and the Newtonia
motions of the planets. Newton’s physical theory compresses a vast range o
data that simply doesn’t fall under the Copernican theory: thus, not only
Newtonian theory of elliptical orbits provide a shorter two-part message of the data 
concerning relative observed positions of the sun. moon, and six innermost 
solar system than does any particular version of the Copernican theory, but 
theory of Newtonian mechanics provides a shorter two-part message of the
concerning the motion of physical objects in general than does any of the c
theories of the time. Moreover, the Newtonian theory of ell
wider theory of Newtonian mechanics: that is, the wider theory of Newtonian m
explains the Newtonian theory of elliptical orbits because (a) the wider theo
Newtonian mechanics compresses a wide range of other data, and (b) the wider th
Newtonian mechanics entails the Newtonian theory of elliptical orbits.

If we try to apply this model to the case of the fine-tuning data, then we 
that there are wider theories—intelligent design theory and many universe
compress a wide range of other data and which entail that the physical cons
C2, …, Cn have values V1, V2, …, Vn, that lie with the bounds B1, B2, …, B
things now stand, we don’t have any reason to believe that there are wider
these kinds that satisfy the first of the constraints: as far as we know, the

were to turn out that there is other data that is compressed by an intelligent design the
or a many universe theory that also entails that the physical constants C1, C
values V1, V2, …, Vn, that lie with the bounds B1, B2, …, Bn, then we wo
to reassess: but, unless that happens, we have good reason to say that neithe
design theory nor many universe theory affords an explanation of the fin
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1 The first published statement of the Principle of Minimum Message Length occurs in W
(1968). The best and most complete development of the Principle, its applications and im

he authors would 
. Needless to say, any 

allace & Boulton 
plications, is in 

Wallace (2005). 

2 Indeed, it is possible that we might yet discover that the physical constants are such that they actually do 
fall in the middle of a broad range of life-permitting values, that is, that the apparent sensitivity of the 
constants is only apparent.  There are two different ways in which this could happen. What is meant by the 
claim that some particular physical constant is sensitive is that if one varies the value of that constant while 
holding everything else fixed, then the result is a universe in which life is not possible. The general claim 
that “the constants are sensitive” is a conjunction of individual claims of this kind made about some set of 
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that's by the by: we agree with Sober that it's bad news for Bayesians if it turns out that Bayesianism alone 
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 simplest UTM, 
 some related 

ints to note are 
ate table method 
y of any TM or 

ells in the state table. 
ystems of Post (1943), and 

tion of complexity. Although it is known 
vice versa, the equivalence does not 

necessarily preserve the complexity ordering; (2) different UTMs can have the same state-symbol product, 
for example, a 2-state, 3-symbol machine, and a 3-state, 2-symbol machine; (3) for a given machine, you 
also have to specify the permissible initial states of the tape. The recent controversy between Vaughan Pratt 
and Alex Smith over whether Smith has or has not proved the existence of a 2-state, 3-symbol Universal 
Turing Machine (for which Smith was awarded the Wolfram Prize) turns on this question.  

10 This argument is presented in more detail in Wallace (2005, pp. 133-135). 

the physical constants. But now, firstly, it is possible that the apparent sensitivity of the co
artefact of our parameterisation, and that in some different parameterisation of the physica
constants are not sensitive in this way. And secondly, regardless of parameterisation

constants could be made that would again make life permissible in the universe. 

3 As Sober notes (p.31), there are difficulties involved in the supposition that design arg
arguments for the existence of God rather than merely arguments for the existence of so
intelligent designer. However, these difficulties do not bear on the point that is cu
focus instead on the claim that there is an intelligent design

4 See for example Forster & Sober (1994), Sober (2002), Sober (2004). 

5Actually, some pe

commits them to anything so metaphysically extravagant. 
6 Sober (2004, p. 121) 

7 It might be thought that some of these relationships should a priori be ruled out as impos
grounds that the quantity on the LHS of th

dimensionless constant: express the quantity as a fraction o
same dimension. So, the size of an electrical charge can be expressed as a fraction or m
of an electron, length can be expressed as a fraction or multiple of the Planck length, tim
in terms of the Planck time, and so on. 

8 Sober (2004, p. 119). The example is a variant of Bertrand’s Paradox. 

9 The use of the phrase “the simplest possible UTM”, implying the existence of a unique
masks complications that are fascinating in their own right, and which have a bearing on
questions of interest, but which are not strictly relevant to our purposes here. The main po
these: (1) in this paper, both for the sake of clarity and for historical reasons, we use the st
of characterising TMs, which was Turing’s own method. Given this method, the complexit
UTM can be characterised in terms of the state-symbol product, that is, the number of c
But there are other ways of characterising UTMs, for example, the Post tag s
each of these has associated with it a corresponding characterisa
that every Post tag system is equivalent to a Turing machine and 
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