

A new approach for annual flood frequency estimation: Hybrid Causative Event Method

Jing Li, Mark Thyer, Martin Lambert, George Kuczera, Andrew Metcalfe

School of Civil, Environmental & Mining Engineering, University of Adelaide School of Engineering, University of Newcastle School of Mathematical Sciences, University of Adelaide

Contact: mark.thyer@adelaide.edu.au
Researcher Profile: http://goo.gl/wmSLxy

Life Impact The University of Adelaide

- Motivation
 - Why a new approach for flood estimation?
- Innovations and Methodology
 - What is the hybrid causative event based approach?
 - How do we incorporate seasonality?
- Case studies
- Summary

- Motivation
 - Why a new approach for flood estimation?
- Innovations and Methodology
 - What is the hybrid causative event based approach?
 - How do we incorporate seasonality?
- Case studies
- Summary

Why do we need a new approach for flood estimation?

1. Flood frequency analysis

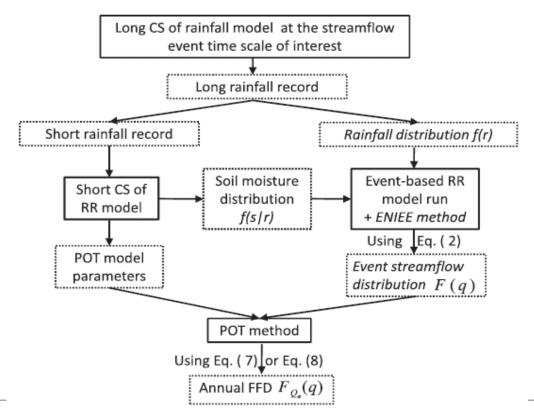
- Requires long stream flow data
- Issue: Unreliable for predictions of climate and land-use changes

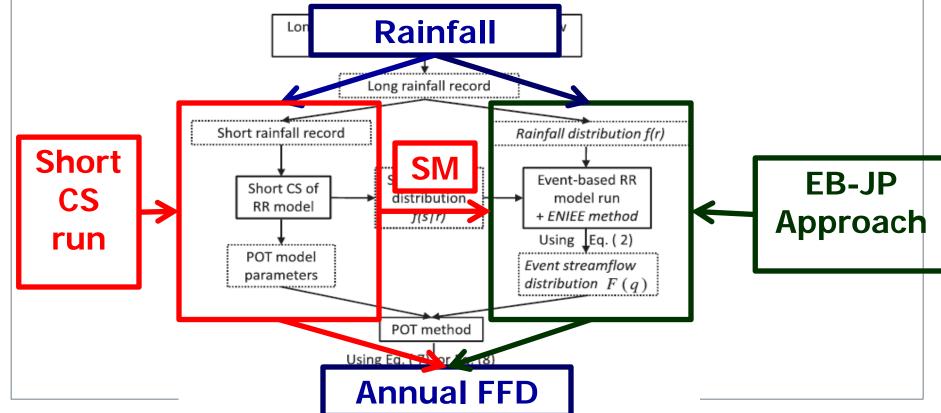
2. Derived Flood Frequency Methods

- Based on model simulations
- Rainfall Model => Hydrological Model => Flood Frequency Distribution
- Potential to provide predictions for climate change and land-use changes

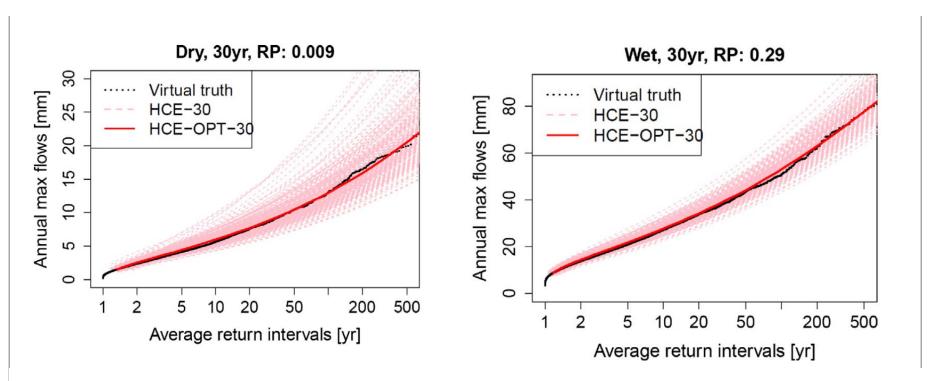
Derived flood frequency methods

Rainfall Model => Hydrological Model => Flood Frequency


- 1. Event-based approaches
 - Joint probability approach (JP) (e.g. RORB)
 - Efficient => focus on extreme events of interest
 - Requires distribution of extreme rainfall and catchment wetness (losses)
 - Issues: Losses estimated based on observed events
 How will identify losses under climate change?
- 2. Continuous simulation => Saviour?
 - No need for rainfall/loss distribution or AEP neutrality
 - Issues: Computational intensive
 - e.g. ~ 20% accuracy in 1% AEP flood requires 10,000 years simulation!!
 - Not feasible for anything but simplest models

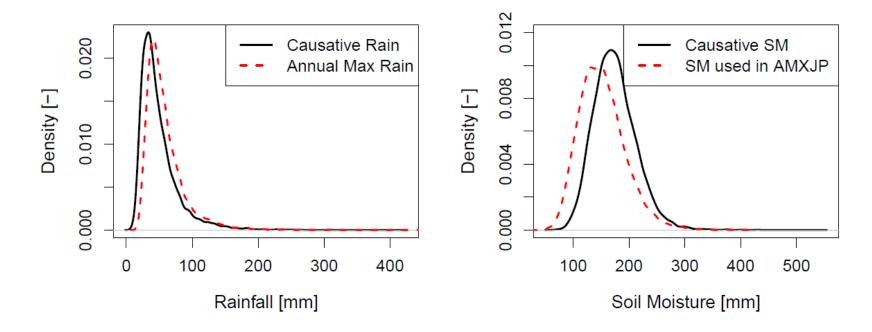

- Motivation
 - Why a new approach for flood estimation?
- Innovations and Methodology
 - What is the hybrid causative event based approach?
 - How do we incorporate seasonality?
- Case studies
- Summary

- THE UNIVERSITY
 OF ADELAIDE
 AUSTRALIA
- Combines **accuracy** of continuous simulation (CS) with **efficiency** of event based joint probability (ES-JB) approach
- Incorporates joint probability of flood generation processes but without AEP neutrality assumptions
- Uses causative events of streamflow to estimate annual FFD


- THE UNIVERSITY
 OF ADELAIDE
 AUSTRALIA
- Combines **accuracy** of continuous simulation (CS) with **efficiency** of event based joint probability (ES-JB) approach
- Incorporates joint probability of flood generation processes but without AEP neutrality assumptions

- Uses causative events of streamflow to estimate annual FFD

- Evaluated "Virtual Laboratory" Approach (Li et al, 2014)
 - Stochastic rainfall (no seasonality) and simple rainfall-runoff model
- Robust: Using only 30 years of data HCE accurately reproduce flood frequency distribution from 10,000 year CS
- Efficient: HCE is 100-1000 times faster then continuous simulation



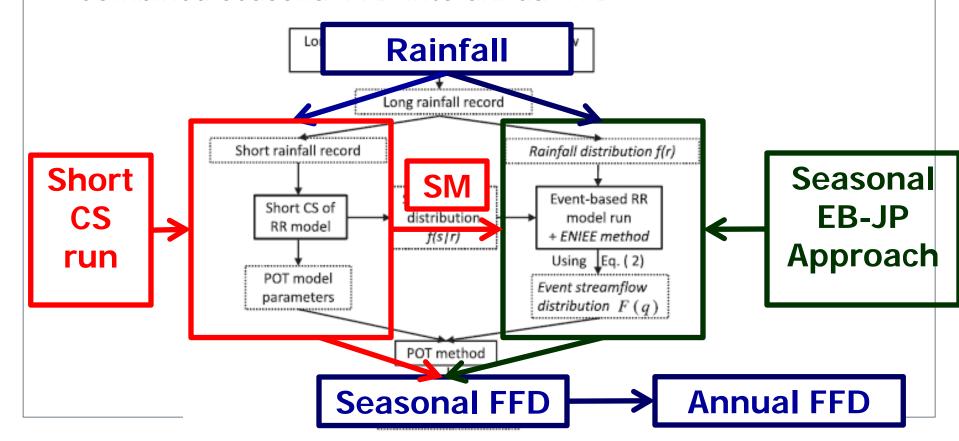
Li, J., M. Thyer, M. Lambert, G. Kuczera, and A. Metcalfe (2014), An efficient causative event-based approach for deriving the annual flood frequency distribution, *J Hydrol http://dx.doi.org/10.1016/j.jhydrol.2013.12.035*

Existing Event-Based Joint Probability Methods

- Evaluated "Virtual Laboratory" Approach (Li et al, 2014)
- Uses annual maximum rainfall and soil moisture conditioned on a rainfall POT series => not causative events

 Accurate reproduction of flood frequency distributions relies on compensation of errors => rather then causative events

Li, J., M. Thyer, M. Lambert, G. Kuczera, and A. Metcalfe (2014), An efficient causative event-based approach for deriving the annual flood frequency distribution, *J Hydrol http://dx.doi.org/10.1016/j.jhydrol.2013.12.035*

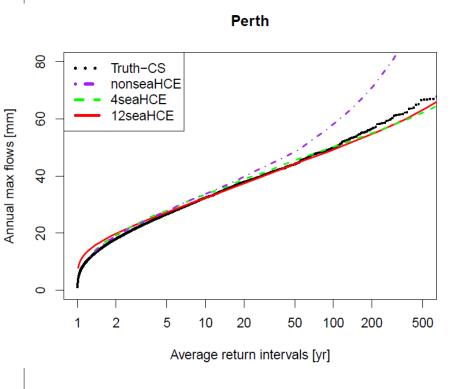


- Motivation
 - Why a new approach for flood estimation?
- Innovations and Methodology
 - What is the hybrid causative event based approach?
 - How do we incorporate seasonality?
- Case studies
- Summary

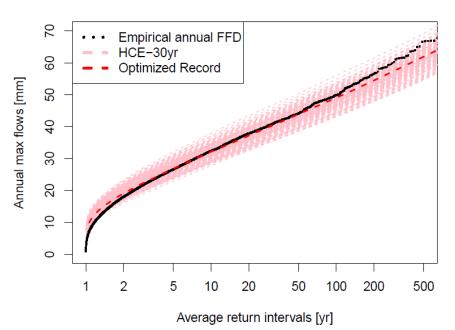
- Incorporating Seasonality
- Use short CS Run
- Inform event-based JP approach for different seasons
- Combined seasonal FFD into annual FFD

- Motivation
 - Why a new approach for flood estimation?
- Innovations and Methodology
 - What is the hybrid causative event based approach?
 - How do we incorporate seasonality?
- Case studies
 - Evaluating seasonal HCE on wide range of climatology's
- Summary

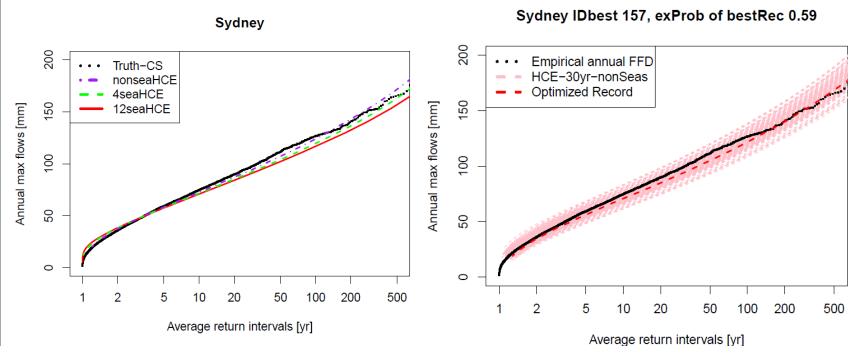
Seasonal HCE Evaluation: Case Studies


- Evaluated using Virtual Laboratory Approach (Li et al, 2016)
- Realistic Rainfall: DRIP Stochastic sub-daily rainfall (storm durations, inter-events, seasonality) aggregated to daily
- Realistic ET: Evaporation data are extracted from BOM areal potential ET maps
- **Realistic Rainfall-runoff model**: Simplified GR4J model (only production store)
- Evaluated on wide range of climatology's using data from 6 locations:
 Perth, Adelaide, Melbourne Sydney, Brisbane, Alice Springs
- Virtual data is available online (Thyer et al, 2015)

Li, J., M. Thyer, M. Lambert, G. Kuczera, and A. Metcalfe (2016), Incorporating seasonality into event-based joint probability methods for predicting flood frequency: A hybrid causative event approach, J Hydrol, 533, 40-52, http://dx.doi.org/10.1016/j.jhydrol.2015.11.038


Seasonal HCE Case Studies

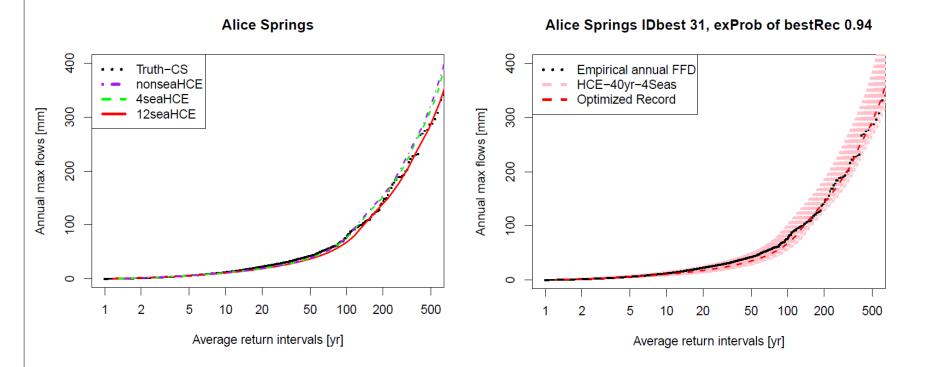
- Compared different approaches to seasonality
 - No seasonality, four seasons, 12 seasons



- Similar results for Adelaide and Melbourne
- Mediterranean Climate (winter rainfall, hot, dry summer)
 - => strong seasonality in soil moisture
 - => need seasonal event-based approach

Seasonal HCE Case Studies

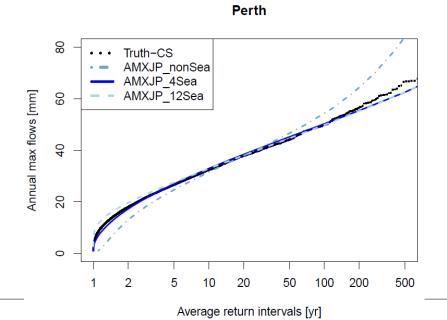
- Compared different approaches to seasonality
 - No seasonality, four seasons, 12 seasons



- Similar results for Brisbane
- Sub-tropical climate
- => reduced seasonality in soil moisture (cf Mediterranean)
- => no need for seasonal event-based approach

Seasonal HCE Case Studies

- Compared different approaches to seasonality
 - No seasonality, four seasons, 12 seasons



- Steep FFD, Floods dominated by extreme rainfall, soil moisture less important
- => no need for seasonal event-based approach

Case Studies - Results

- Existing event-based joint probability approaches (e.g. RORB)
- Similar results as HCE
- Locations with strong seasonal in SM, needed seasonal approach for accurate predictions.
- Implications for event-based approaches, eg. RORB

Future Development: HCE

- Current approach predicts annual maximum daily volumes
- Need to predict sub-daily flood hydrograph
 - Sub-daily rainfall generation
 - Temporal patterns etc.
- Current approach uses simplified single-store lumped rainfall-runoff models
 - need to handle multiple stores
 - Distributed models

Summary

- New approach for flood frequency estimation
 - Hybrid Causative Event (HCE) method
- Combines accuracy of continuous simulation with efficiency of event-based approaches
 - 100-1000 faster than CS
- Captures joint probability of flood generation processes using causative events without need for AEP neutrality
- Need for seasonality depends on climatology
 - Strong seasonality in soil moisture => need seasonality
- Future work to extend HCE to full hydrograph

Li, J., M. Thyer, M. Lambert, G. Kuczera, and A. Metcalfe (2014), An efficient causative event-based approach for deriving the annual flood frequency distribution, *J. Hydrol.* http://dx.doi.org/10.1016/j.jhydrol.2013.12.035

Li, J., M. Thyer, M. Lambert, G. Kuczera, and A. Metcalfe (2016), Incorporating seasonality into event-based joint probability methods for predicting flood frequency: A hybrid causative event approach, *J Hydrol*, 533, 40-52, http://dx.doi.org/10.1016/j.jhydrol.2015.11.038