Supporting Information ## **Xyloglucan-functional latex particles via RAFT-mediated emulsion** polymerization for the biomimetic modification of cellulose Fiona L. Hatton, a Marcus Ruda, Muriel Lansalot, Franck D'Agosto, Eva Malmström and Anna Carlmark * **Figure S1.** The structure of XXXG-type xyloglucans. Tamarind seed xyloglucan is comprised of XXXG (x = 0, y = 0), XLXG (x = 1, y = 0), XLXG (x = 0, y = 1), and XLLG (x = 1, y = 1). The arrow indicates the reducing chain end. ^aKTH Royal Institute of Technology, School of Chemical Science and Engineering, Department of Fibre and Polymer Technology, Teknikringen 56, SE-100 44 Stockholm, Sweden ^bCelluTech AB, Teknikringen 38, SE-114 28 Stockholm, Sweden ^cUniversité de Lyon, Univ Lyon 1, CPE Lyon, CNRS, UMR 5265, C2P2 (Chemistry, Catalysis, Polymers & Processes), Team LCPP, Bat 308F, 43 Bd du 11 Novembre 1918, 69616 Villeurbanne, France **Figure S2** ¹H NMR (D₂O, 300 MHz) spectra overlay for XG_{17K}, XG_{17K}-NH₂ and XG_{17K}-RAFT. Expansion of the XG_{17K}-RAFT spectrum between 7.8-7.2 ppm shows the aromatic protons from the benzene ring present in the CTP RAFT moiety. Figure S3 FT-IR spectra of XG_{17K}-NH₂ and XG_{17K}-RAFT $\textbf{Figure S4} \; \text{SEC (DMSO} + 0.5 \; \text{w/w\% LiBr) chromatograms for } \; XG_{17\text{K}}, \; XG_{17\text{K}} \text{-} \text{NH}_2 \; \text{and} \; XG_{17\text{K}} \text{-} \text{RAFT}$ Table S1 SEC data for $XG_{17K}, XG_{17K}\text{-}NH_2$ and $XG_{17K}\text{-}RAFT$ | | $M_{\rm n}$ (kg mol ⁻¹) | $M_{\rm w}$ (kg mol ⁻¹) | $D_{ m M}$ | |-------------------------|-------------------------------------|-------------------------------------|------------| | XG_{17K} | 9.9 | 28.6 | 2.9 | | XG_{17K} - NH_2 | 12.0 | 33.0 | 2.8 | | XG _{17K} -RAFT | 11.4 | 32.5 | 2.9 | Mobile phase of DMSO + 0.5 w/w% LiBr using conventional calibration with pullulan standards Figure S5 UV-visible spectrum of XG_{17K}-RAFT at 5 mg mL⁻¹ in deionized water **Figure S6** Photograph of samples conducted with the same experiment conditions as the $5\text{-}XG_{17K}\text{-}PMMA_{175}$ sample: A) blank experiment with XG_{17K} , B) blank experiment with $XG_{17K}\text{-}NH_2$ and C) with $XG_{17K}\text{-}RAFT$. 3 mL of each sample was added to a vial and the image was taken after standing for 24 hours at ambient temperature. Figure S7 UV-Visible absorbance measured at 283 nm over time of the XG_{17K} -RAFT dissolved in deionized water (at a concentration of 5 mg mL⁻¹) at pH 6 and heated to 70 °C for 4 hours. **Figure S8** Kinetic evaluation of the RAFT-mediated surfactant-free emulsion polymerizations as conversion *vs.* time plots for samples 10-XG_{17K}-PMMA₅₀, 10-XG_{17K}-PMMA₁₇₅, 5-XG_{17K}-PMMA₃₇₅ and 5-XG_{17K}-PMMA₅₀₀. **Figure S9** DLS measurements over time for samples $10\text{-XG}_{17\text{K}}\text{-PMMA}_{50}$, $10\text{-XG}_{17\text{K}}\text{-PMMA}_{175}$, $5\text{-XG}_{17\text{K}}\text{-PMMA}_{375}$ and $5\text{-XG}_{17\text{K}}\text{-PMMA}_{500}$. Closed symbols represent the z-average diameter (D_z) and open symbols the polydispersity index (PdI). Figure S10 SEC data for the kinetic evaluation of A) $10\text{-XG}_{17\text{K}}\text{-PMMA}_{100}$ and B) $5\text{-XG}_{17\text{K}}\text{-PMMA}_{100}$. M_n (closed circles), M_w (open circles) and D_M (triangles). **Table S2** DLS measurements for the XG_{17K} -PMMA_x latexes prepared *via* aqueous RAFT emulsion polymerization | Sample name $(\tau$ -XG-PMMA _x) | MMA
DP _{theor} | Before dialysis | | After dialysis | | | |---|----------------------------|-----------------|-------|------------------|-------|--------------| | | | D_z (nm) | PdI | $D_z(\text{nm})$ | PdI | ζ (mV) | | 10-XG _{17K} -PMMA ₅₀ | 31 | 152 | 0.13 | 135 | 0.13 | -7.1 | | $10\text{-}XG_{17K}\text{-}PMMA_{100}$ | 82 | 152 | 0.09 | 143 | 0.07 | -3.6 | | 10-XG _{17K} -PMMA ₁₇₅ | 136 | 275 | 0.43 | 396* | 0.75* | -1.4 | | 5-XG _{17K} -PMMA ₁₀₀ | 64 | 125 | 0.05 | 120 | 0.07 | -5.6 | | 5-XG _{17K} -PMMA ₁₇₅ | 114 | 145 | 0.06 | 144 | 0.03 | -5.9 | | 5-XG _{17K} -PMMA ₂₅₀ | 163 | 154 | 0.03 | 155 | 0.04 | -7.2 | | 5-XG _{17K} -PMMA ₃₇₅ | 210 | 160 | 0.04 | 157 | 0.04 | +3.1 | | 5-XG _{17K} -PMMA ₅₀₀ | 378 | 545* | 0.49* | 320 | 0.57 | +2.5 | ^{*}These samples failed on the DLS criteria, therefore they are too disperse for an accurate measurement. **Figure S11** 1 H NMR (400 MHz, d_{6} -DMSO) spectra for the 5-XG_{17K}-PMMA_x samples Figure S12 FT-IR spectra for 5-XG_{17K}-PMMA_x dried latexes **Table S3** Thermal properties of the XG_{17K} -PMMA latex particles; thermal stability as assessed by the temperature at which 50 %wt loss was observed and the T_g of the samples | Sample name (τ-XG-PMMA _x) | MMA
DP _{theor} | Temperature at 50 %wt loss (°C) | $T_g(^{\circ}\mathrm{C})$ | |---|----------------------------|---------------------------------|---------------------------| | PMMA ₅₀₀ ^b | 500 | 366.2 | 122.9 | | XG _{17K} -RAFT | - | 318.8 | - | | 10 - XG_{17K} - $PMMA_{50}$ | 31 | 324.0 | 123.4 | | $10\text{-}\mathrm{XG}_{17\mathrm{K}}\text{-}\mathrm{PMMA}_{100}$ | 82 | 337.6 | 125.3 | | $10\text{-}\mathrm{XG}_{17\mathrm{K}}\text{-}\mathrm{PMMA}_{175}$ | 136 | 347.7 | 126.9 | | $5\text{-}\mathrm{XG}_{17\mathrm{K}}\text{-}\mathrm{PMMA}_{100}$ | 64 | 328.9 | 123.8 | | $5-XG_{17K}-PMMA_{175}$ | 114 | 339.5 | 127.5 | | $5\text{-}\mathrm{XG}_{17\mathrm{K}}\text{-}\mathrm{PMMA}_{250}$ | 163 | 348.3 | 127.6 | | $5-XG_{17K}-PMMA_{375}$ | 210 | 354.4 | 127.7 | | $5-XG_{17K}-PMMA_{500}$ | 378 | 371.9 | 127.2 | $^{a}\tau$ = solids content, x = targeted DP. b PMMA $_{500}$ sample prepared by RAFT polymerization conducted in THF utilizing 4-cyano-4-(phenylcarbonothioylthio)pentanoic acid (CTP) as the RAFT agent. **Figure S13** Full FT-IR spectra for filter papers after adsorption of the XG_{17K} -PMMA_x latexes: A) the FP-10- XG_{17K} -PMMA_x samples and B) the FP-5- XG_{17K} -PMMA_x samples, corresponding to Fig. 3A and B in the main text. Figure S14 SEM images of the reference filter paper A) before and B) after annealing (160 °C, 1 h) Figure S15 AFM height image of a cellulose model surface, R_q value of 7.8 \pm 0.3 nm. Figure S16 AFM height images of XG_{17K} -RAFT adsorbed onto a cellulose model surface; A) after adsorption and B) after annealing (160 °C, 1 h). Figure S17 AFM height images of latex sample $5\text{-}XG_{17K}\text{-}PMMA_{175}(Q3)$ adsorbed onto a cellulose model surface; A) after adsorption and B) after annealing at $160\,^{\circ}\text{C}$ for 1 hour. 1. Zhou, Q.; Rutland, M. W.; Teeri, T. T.; Brumer, H., Cellulose 2007, 14, 625-641.