Supporting Information

Xyloglucan-functional latex particles via RAFT-mediated emulsion polymerization for the biomimetic modification of cellulose

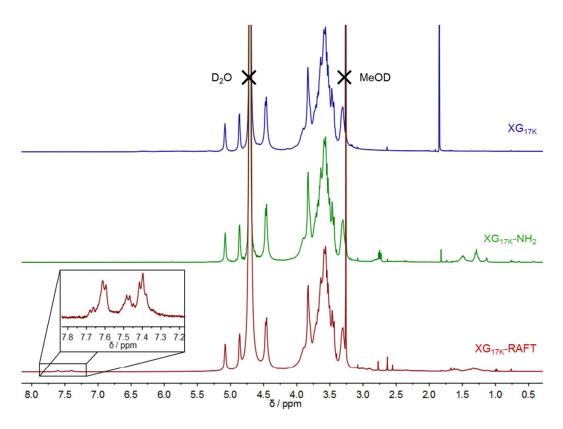

Fiona L. Hatton, a Marcus Ruda, Muriel Lansalot, Franck D'Agosto, Eva Malmström and Anna Carlmark *

Figure S1. The structure of XXXG-type xyloglucans. Tamarind seed xyloglucan is comprised of XXXG (x = 0, y = 0), XLXG (x = 1, y = 0), XLXG (x = 0, y = 1), and XLLG (x = 1, y = 1). The arrow indicates the reducing chain end.

^aKTH Royal Institute of Technology, School of Chemical Science and Engineering, Department of Fibre and Polymer Technology, Teknikringen 56, SE-100 44 Stockholm, Sweden

^bCelluTech AB, Teknikringen 38, SE-114 28 Stockholm, Sweden

^cUniversité de Lyon, Univ Lyon 1, CPE Lyon, CNRS, UMR 5265, C2P2 (Chemistry, Catalysis, Polymers & Processes), Team LCPP, Bat 308F, 43 Bd du 11 Novembre 1918, 69616 Villeurbanne, France

Figure S2 ¹H NMR (D₂O, 300 MHz) spectra overlay for XG_{17K}, XG_{17K}-NH₂ and XG_{17K}-RAFT. Expansion of the XG_{17K}-RAFT spectrum between 7.8-7.2 ppm shows the aromatic protons from the benzene ring present in the CTP RAFT moiety.

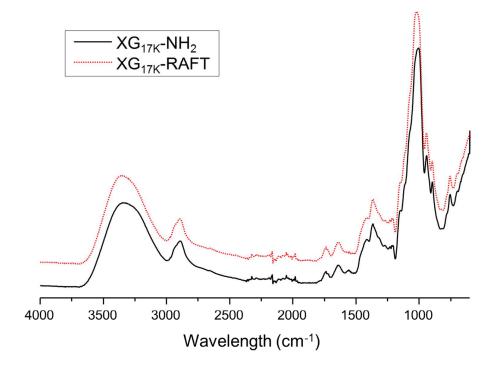
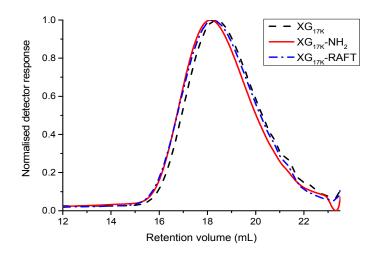



Figure S3 FT-IR spectra of XG_{17K}-NH₂ and XG_{17K}-RAFT

 $\textbf{Figure S4} \; \text{SEC (DMSO} + 0.5 \; \text{w/w\% LiBr) chromatograms for } \; XG_{17\text{K}}, \; XG_{17\text{K}} \text{-} \text{NH}_2 \; \text{and} \; XG_{17\text{K}} \text{-} \text{RAFT}$

Table S1 SEC data for $XG_{17K}, XG_{17K}\text{-}NH_2$ and $XG_{17K}\text{-}RAFT$

	$M_{\rm n}$ (kg mol ⁻¹)	$M_{\rm w}$ (kg mol ⁻¹)	$D_{ m M}$
XG_{17K}	9.9	28.6	2.9
XG_{17K} - NH_2	12.0	33.0	2.8
XG _{17K} -RAFT	11.4	32.5	2.9

Mobile phase of DMSO + 0.5 w/w% LiBr using conventional calibration with pullulan standards

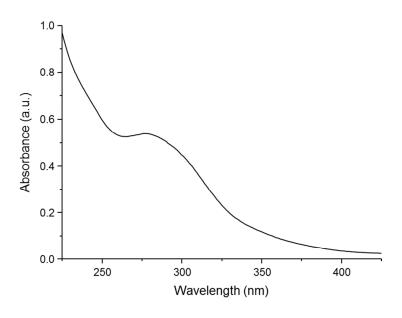
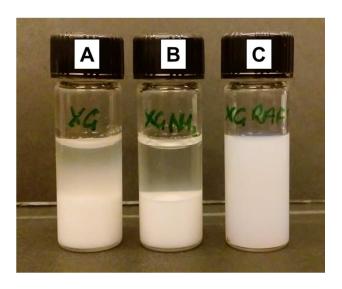



Figure S5 UV-visible spectrum of XG_{17K}-RAFT at 5 mg mL⁻¹ in deionized water

Figure S6 Photograph of samples conducted with the same experiment conditions as the $5\text{-}XG_{17K}\text{-}PMMA_{175}$ sample: A) blank experiment with XG_{17K} , B) blank experiment with $XG_{17K}\text{-}NH_2$ and C) with $XG_{17K}\text{-}RAFT$. 3 mL of each sample was added to a vial and the image was taken after standing for 24 hours at ambient temperature.

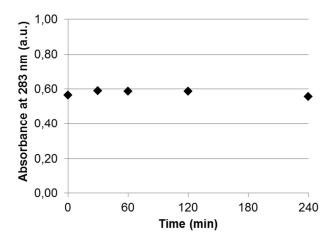
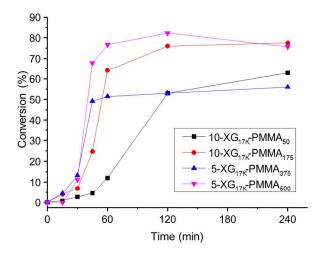
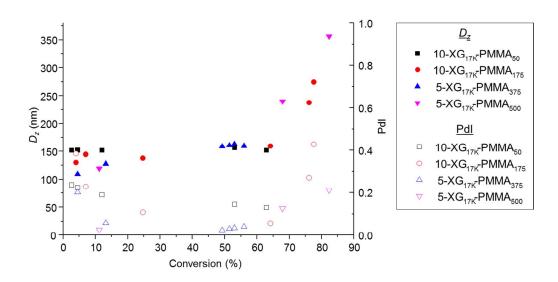




Figure S7 UV-Visible absorbance measured at 283 nm over time of the XG_{17K} -RAFT dissolved in deionized water (at a concentration of 5 mg mL⁻¹) at pH 6 and heated to 70 °C for 4 hours.

Figure S8 Kinetic evaluation of the RAFT-mediated surfactant-free emulsion polymerizations as conversion *vs.* time plots for samples 10-XG_{17K}-PMMA₅₀, 10-XG_{17K}-PMMA₁₇₅, 5-XG_{17K}-PMMA₃₇₅ and 5-XG_{17K}-PMMA₅₀₀.

Figure S9 DLS measurements over time for samples $10\text{-XG}_{17\text{K}}\text{-PMMA}_{50}$, $10\text{-XG}_{17\text{K}}\text{-PMMA}_{175}$, $5\text{-XG}_{17\text{K}}\text{-PMMA}_{375}$ and $5\text{-XG}_{17\text{K}}\text{-PMMA}_{500}$. Closed symbols represent the z-average diameter (D_z) and open symbols the polydispersity index (PdI).

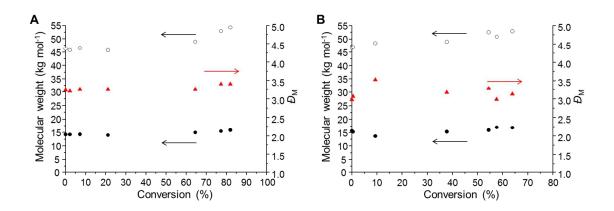
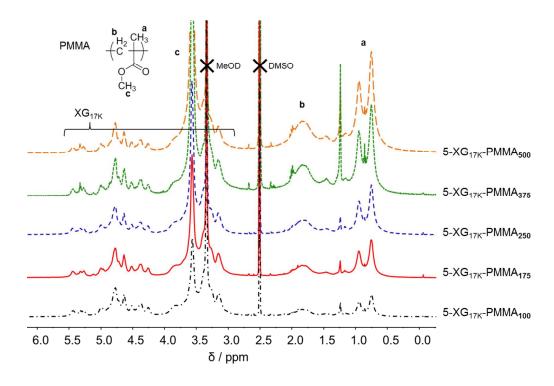



Figure S10 SEC data for the kinetic evaluation of A) $10\text{-XG}_{17\text{K}}\text{-PMMA}_{100}$ and B) $5\text{-XG}_{17\text{K}}\text{-PMMA}_{100}$. M_n (closed circles), M_w (open circles) and D_M (triangles).

Table S2 DLS measurements for the XG_{17K} -PMMA_x latexes prepared *via* aqueous RAFT emulsion polymerization

Sample name $(\tau$ -XG-PMMA _x)	MMA DP _{theor}	Before dialysis		After dialysis		
		D_z (nm)	PdI	$D_z(\text{nm})$	PdI	ζ (mV)
10-XG _{17K} -PMMA ₅₀	31	152	0.13	135	0.13	-7.1
$10\text{-}XG_{17K}\text{-}PMMA_{100}$	82	152	0.09	143	0.07	-3.6
10-XG _{17K} -PMMA ₁₇₅	136	275	0.43	396*	0.75*	-1.4
5-XG _{17K} -PMMA ₁₀₀	64	125	0.05	120	0.07	-5.6
5-XG _{17K} -PMMA ₁₇₅	114	145	0.06	144	0.03	-5.9
5-XG _{17K} -PMMA ₂₅₀	163	154	0.03	155	0.04	-7.2
5-XG _{17K} -PMMA ₃₇₅	210	160	0.04	157	0.04	+3.1
5-XG _{17K} -PMMA ₅₀₀	378	545*	0.49*	320	0.57	+2.5

^{*}These samples failed on the DLS criteria, therefore they are too disperse for an accurate measurement.

Figure S11 1 H NMR (400 MHz, d_{6} -DMSO) spectra for the 5-XG_{17K}-PMMA_x samples

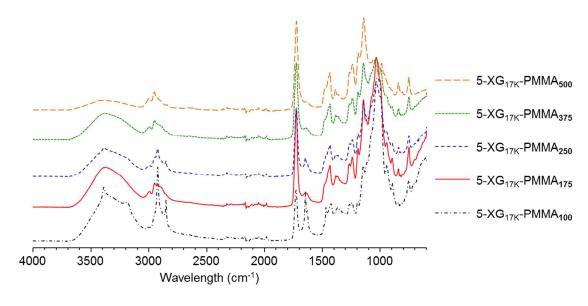
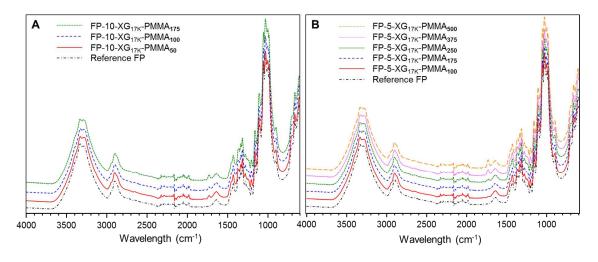



Figure S12 FT-IR spectra for 5-XG_{17K}-PMMA_x dried latexes

Table S3 Thermal properties of the XG_{17K} -PMMA latex particles; thermal stability as assessed by the temperature at which 50 %wt loss was observed and the T_g of the samples

Sample name (τ-XG-PMMA _x)	MMA DP _{theor}	Temperature at 50 %wt loss (°C)	$T_g(^{\circ}\mathrm{C})$
PMMA ₅₀₀ ^b	500	366.2	122.9
XG _{17K} -RAFT	-	318.8	-
10 - XG_{17K} - $PMMA_{50}$	31	324.0	123.4
$10\text{-}\mathrm{XG}_{17\mathrm{K}}\text{-}\mathrm{PMMA}_{100}$	82	337.6	125.3
$10\text{-}\mathrm{XG}_{17\mathrm{K}}\text{-}\mathrm{PMMA}_{175}$	136	347.7	126.9
$5\text{-}\mathrm{XG}_{17\mathrm{K}}\text{-}\mathrm{PMMA}_{100}$	64	328.9	123.8
$5-XG_{17K}-PMMA_{175}$	114	339.5	127.5
$5\text{-}\mathrm{XG}_{17\mathrm{K}}\text{-}\mathrm{PMMA}_{250}$	163	348.3	127.6
$5-XG_{17K}-PMMA_{375}$	210	354.4	127.7
$5-XG_{17K}-PMMA_{500}$	378	371.9	127.2

 $^{a}\tau$ = solids content, x = targeted DP. b PMMA $_{500}$ sample prepared by RAFT polymerization conducted in THF utilizing 4-cyano-4-(phenylcarbonothioylthio)pentanoic acid (CTP) as the RAFT agent.

Figure S13 Full FT-IR spectra for filter papers after adsorption of the XG_{17K} -PMMA_x latexes: A) the FP-10- XG_{17K} -PMMA_x samples and B) the FP-5- XG_{17K} -PMMA_x samples, corresponding to Fig. 3A and B in the main text.

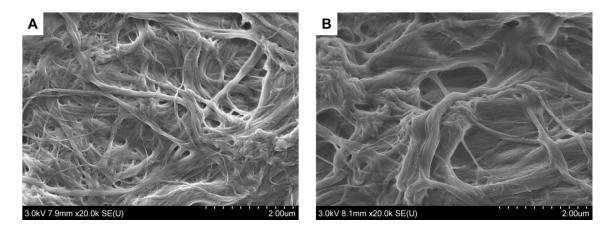


Figure S14 SEM images of the reference filter paper A) before and B) after annealing (160 °C, 1 h)

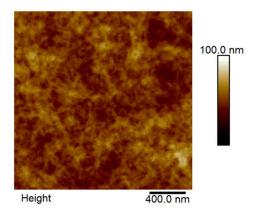


Figure S15 AFM height image of a cellulose model surface, R_q value of 7.8 \pm 0.3 nm.

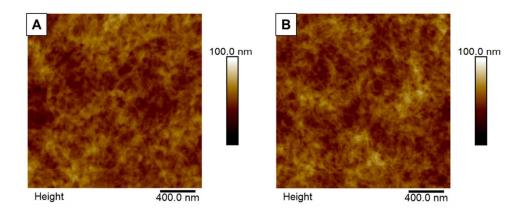


Figure S16 AFM height images of XG_{17K} -RAFT adsorbed onto a cellulose model surface; A) after adsorption and B) after annealing (160 °C, 1 h).

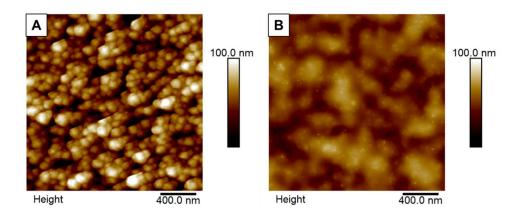


Figure S17 AFM height images of latex sample $5\text{-}XG_{17K}\text{-}PMMA_{175}(Q3)$ adsorbed onto a cellulose model surface; A) after adsorption and B) after annealing at $160\,^{\circ}\text{C}$ for 1 hour.

1. Zhou, Q.; Rutland, M. W.; Teeri, T. T.; Brumer, H., Cellulose 2007, 14, 625-641.