Supporting Information for:

Titanium Dioxide (P25) Produces Reactive Oxygen Species in Immortalized Brain Microglia (BV2): Implications for Nanoparticle Neurotoxicity

THOMAS C. LONG,¹ NAVID SALEH,² ROBERT D. TILTON,³ GREGORY V. LOWRY,² AND BELLINA VERONESI ^{*4}

Department of Environmental Sciences and Engineering, School of Public Health, University of North Carolina, Chapel Hill, NC 27599-7431, Department of Civil and Environmental Engineering, Department of Chemical Engineering, and Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA, 15213, Neurotoxicology Division, National Health and Environmental Effects Research Laboratory, US Environmental Protection Agency, Research Triangle Park, NC, 27711

*Corresponding author phone: (919) 541-5780; fax: (919) 541-4849; e-mail:

veronesi.bellina@epa.gov.

¹ University of North Carolina.

² Department of Civil and Environmental Engineering, Carnegie Mellon University.

³ Department of Chemical Engineering and Department of Biomedical Engineering, Carnegie Mellon University.

⁴ US Environmental Protection Agency.

Component	Conc. (g/L)	M.W (g/mol)	Conc. (mM)	l (mM)
HBSS				
INORGANIC SALTS				
CaCl ₂ (anhyd)	0.14	111.0	1.26	3.78
MgSO₄ (anhyd)	0.098	120.4	0.81	3.26
KCI	0.4	74.6	5.37	5.37
KH ₂ PO ₄ (anhyd)	0.06	136.1	0.44	0.44
NaHCO ₃	0.35	84.0	4.17	4.17
NaCl	8.0	58.4	137	137
Na ₂ HPO ₄ (anhydrous)	0.048	142.0	0.34	1.01
OTHER COMPONENTS				
D-Glucose	1.0	180.2	5.55	0.00
Total Ionic Strength				<u>155</u>

Table S1. Composition of HBSS*

* Based on product literature from Mediatech, Inc.

Component	Conc.	M.W	Conc.	I
	(g/L)	(g/mol)	(mM)	(mM)
<u>DMEM</u>				
INORGANIC SALTS				
CaCl ₂ (anhyd.)	0.20	111.0	1.8	5.41
Fe(NO ₃)3-9H ₂ O	0.0001	403.9	0.0002	0.001
KCI	0.40	74.6	5.37	5.37
MgSO₄ (anhyd.)	0.01	120.4	0.08	0.33
NaCl	6.4	58.4	110	110
NaHCO ₃	3.7	84.0	44.0	44.0
NaH ₂ PO ₄ -H ₂ O	0.125	138.0	0.91	0.91
OTHER COMPONENTS				
D-Glucose	4.5	180.2	25	0.00
Phenol Red•Na	0.015	376.4	0.04	0.04
Total Ionic Strength				<u>166</u>
AMINO ACIDS				
L-Arginine-HCI	0.084	210.7	0.4	
L-Cystine-2HCI	0.063	313.2	0.2	
L-Glutamine	0.584	146.2	4.0	
Glycine	0.030	75.1	0.4	
L-Histadine-HCI-H ₂ O	0.042	209.6	0.2	
L-Isoleucine	0.105	131.2	0.8	
L-Leucine	0.105	131.2	0.8	
L-Lysine-HCI	0.146	182.6	0.8	
L-Methionine	0.030	149.2	0.2	
L-Phenylalanine	0.066	165.2	0.4	
L-Serine	0.042	105.1	0.4	
L-Threonine	0.095	119.1	0.8	
L-Tryptophan	0.016	204.2	0.08	
L-Tyrosine-2Na-2H ₂ O	0.104	263.2	0.4	
L-Valine	0.094	117.2	0.8	
Total Amino Acids			10.7	
VITAMINS				
D-Ca pantothenate	0.004	476.5	0.008	
Choline Chloride	0.004	139.6	0.029	
Folic Acid	0.004	441.4	0.009	
i-Inositol	0.0072	180.2	0.040	
Niacinamide	0.004	122.1	0.033	
Pyridoxal-HCl	0.004	203.6	0.012	
Riboflavin	0.0004	376.4	0.001	
Thiamine-HCI	0.004	337.3	0.012	
Total Vitamins			0.15	

Table S2. Composition of DMEM*

* Based on Product literature from Chemicon International.

Figure S1. Particle aggregation over time at various concentrations of Degussa P25 TiO_2 in HBSS (open symbols) and in reduced serum DMEM (closed symbols). The steady state aggregate sizes are reported in Table 1.

Figure S2. Degussa P25 sedimentation over 18 hours in HBSS or reduced serum DMEM at various concentrations. Suspensions were sonicated for 1 minute prior to introduction into a cuvette. Absorbance was linear over the range of concentrations at the wavelengths used (λ =508 nm or 450 nm).

Figure S3. Degussa P25 sedimentation over 2 hours in HBSS at various concentrations. Suspensions were sonicated for 1 minute prior to introduction into a cuvette. Absorbance was linear over the range of concentrations at the wavelengths used (λ =508 nm or 450 nm).

Figure S4, CellTiter-Glo[®] Chemiluminescence. Semi-confluent cultures of BV2 cells (~75%) were exposed to P25 (2.5-120ppm) for 18 hr. Intracellular levels of adenosine triphosphate (ATP) were measured as an index of cell viability using CellTiter-Glo[®] at 1, 6, and 18 hr post-exposure. ATP levels remained stable at all measured time points, indicating that all ROS and TEM measures were collected on viable microglia.