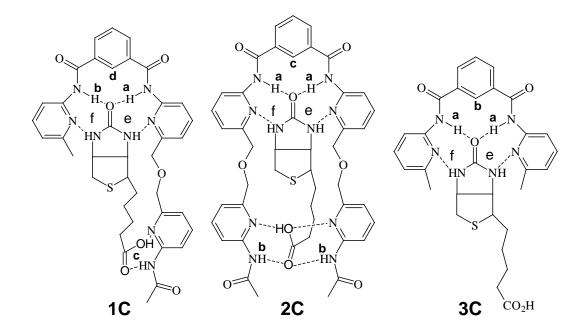
Supplementary Information of

Directed Molecular Recognition: Design and Synthesis of Neutral Receptors for Biotin to bind both its functional groups

Shyamaprosad Goswami^{*} and Swapan Dey

Department of Chemistry, Bengal Engineering and Science University, Shibpur, Howrah-711 103, INDIA. Fax: +91 33 2668 2916; Tel: +91 33 2668 4561-3; E-mail: spgoswamical@yahoo.com

Contents:


Page No

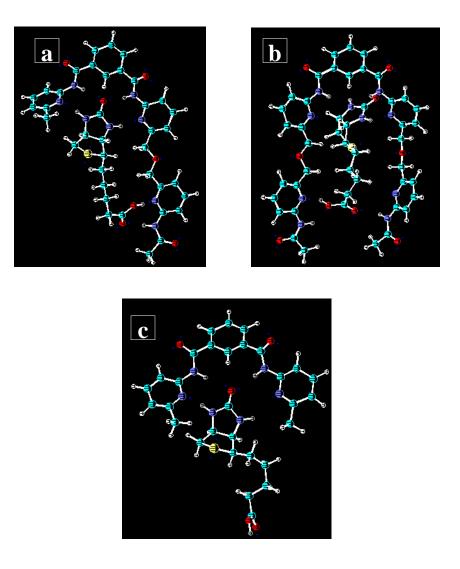
1		60
	General Experimental Method	S2
2.	Complex structure of receptors 1, 2 and 3.	S2
3.		S 3
	biotin;(b) receptor 2 with biotin (c) receptor 3 with biotin.	~ (
4.	Table Chemical shifts of different protons of receptors,	S 4
	and their changes on complexation with biotin and ethyl	
	ester of biotin.	
5.	(a) NMR titration curve; (b) Job's plot of complexes	S5
	1C , 2C and 3C in 2% d_6 -DMSO in CDCl ₃ .(c) NMR titration	
	curve of receptors 1, 2 and 3 with biotin ethyl ester in $CDCl_3$	
6.	Association constant (K _a) calculation curve of receptor	S6
	1 , 2 and 3 with biotin (a) in 2% d ₆ -DMSO-CDCl ₃ by NMR;	
	(b) in CHCl ₃ by UV-vis.	
7.	TABLE 2: Association constants (K_a) of receptors 1, 2, and 3	S 7
	respectively with biotin and biotin ethyl ester (compound 4).	
8.	UV-vis titration spectra; (a) receptors 1, (b) receptor 2;	S 8
	(c) receptor 3 with biotin in $CHCl_3$.	
9.	(A) NMR spectra of (i) receptor 1 , (ii) (1:1) complex between	S 9
	biotin and receptor 1 in 2% d ₆ -DMSO- CDCl ₃ (iii) (1:1) complex	
	between ethyl ester of biotin and receptor 1 in CDCl ₃ .	
10	. (B) NMR spectra of (i) receptor 2, (ii) (1:1) complex between	S10
	biotin and receptor 2 in 2% d ₆ -DMSO- CDCl ₃ . (iii) (1:1) complex	
	between ethyl ester of biotin and receptor 2 in CDCl ₃ .	
11	. (C) NMR spectra of (i) receptor 3 , (ii) 1:1 complex between	S11
	biotin and receptor 3 in 2% d ₆ -DMSO- CDCl ₃ (iii) 1:1 complex	
	between ethyl ester of biotin and receptor 3 in CDCl ₃ .	
12	. FTIR-spectra of biotin (black), receptor 1 (gray) and complex	S12
	of receptor 1 with biotin (green).	
13	. FTIR-spectra of biotin (black), receptor 2(gray) and complex	S12
	of receptor 2 with biotin (green).	
14	. FTIR-spectra of biotin (gray), receptor 3 (black) and complex	S13
	of receptor 3 with biotin (green).	

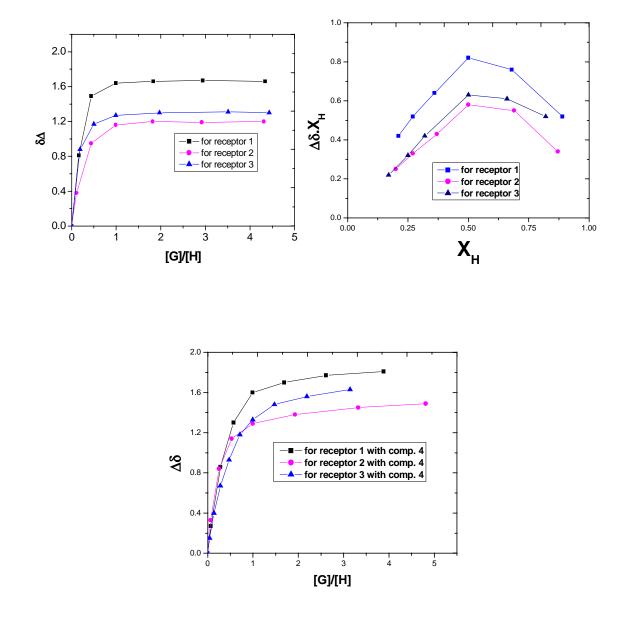
General Experimental Methods:

¹H NMR spectra were recorded either on 300 MHz and 500 MHz spectrometers. ¹³C NMR spectra were recorded on 125 MHz spectrometer. Chemical shifts (δ in ppm) are given from internal solvent CDCl₃ (7.26 for 1H and 77.0 for 13C). Unless otherwise mentioned TMS is used as internal standard. UV-VIS spectra were recorded using spectroscopic grade CHCl₃.

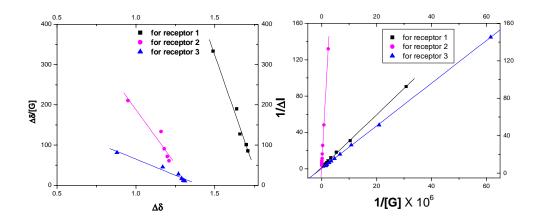
1. Figure 1: Complex structure of receptors 1, 2 and 3.

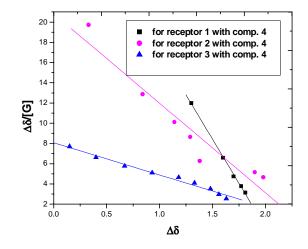
2. Figure 2: Energy minimized complex structure; (a) receptor 1 with biotin; (b) receptor 2 (c) receptor 3 with biotin.




Table 1: Energy values (kJ/mol) of docking complexes of receptors 1, 2 and 3 with biotin.

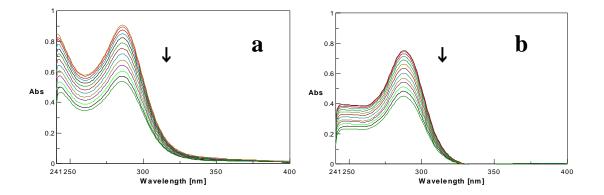
Receptors	Stabilization Energy of complexes	
	(Receptor with biotin; kJ/mol)	
Receptors 1	-3.03	
Receptors 2	17.04	
Receptors 3	14.16	


4. Table 2. Chemical shifts of different amide and peri protons of receptors 1, 2, 3 and their changes on complexation with biotin and ethyl ester of biotin.


	Complex 1C			Complex 2C			Complex 3C		
	a	b	c	Peri(d)	a	b	Peri(c)	a	Peri(b)
Receptor	8.94	8.94	8.11	8.56	9.16	8.33	8.61	8.81	8.56
Itself									
With Biotin	10.24	10.45	9.20	8.70	10.24	9.30	8.66	10.08	8.67
With Biotin	10.12	10.18	8.33	8.68	9.94	8.37	8.67	9.99	8.66
Ethyl Ester									

4. Figure 3. (a) NMR titration curve; (b) Job's plot of receptors 1, 2 and 3 with biotin from NMR titration in 2% d_6 -DMSO in CDCl₃. (c) NMR titration curve of receptors 1, 2 and 3 with biotin ethyl ester in CDCl₃.

5. Figure 4: Association constant (K_a) calculation curve of receptor 1, 2 and 3 with biotin (a) in 2% d₆-DMSO-CDCl₃ by NMR; (b) in CHCl₃ by UV-vis. (c) receptors 1, 2 and 3 with biotin ethyl ester in CDCl₃.



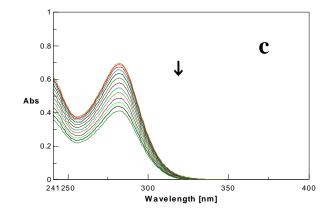
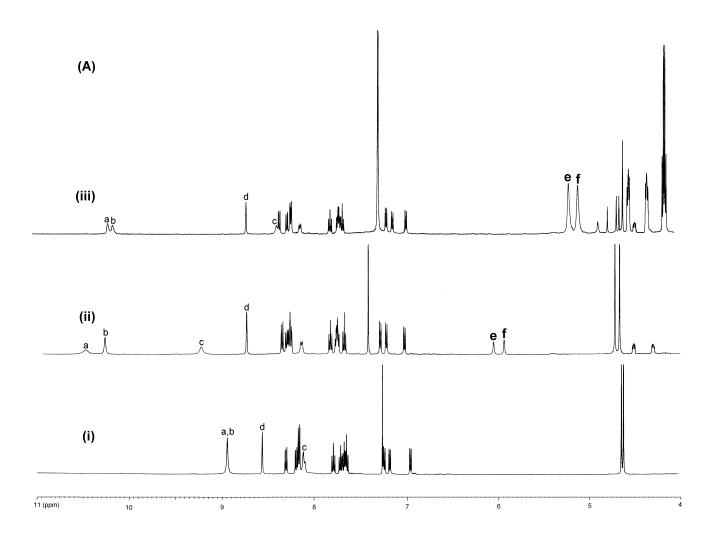
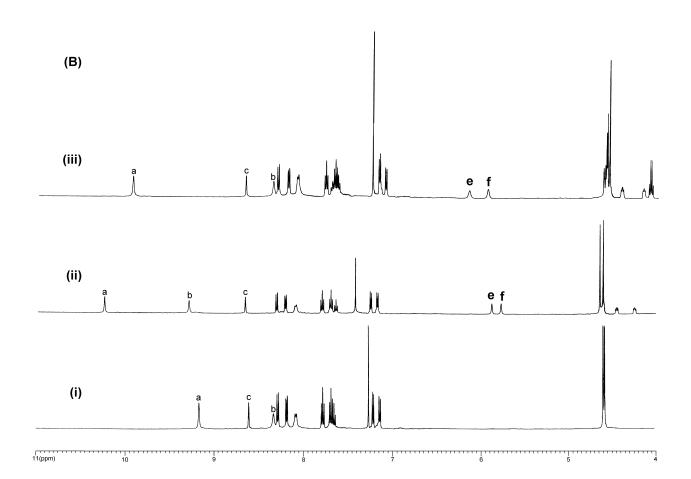
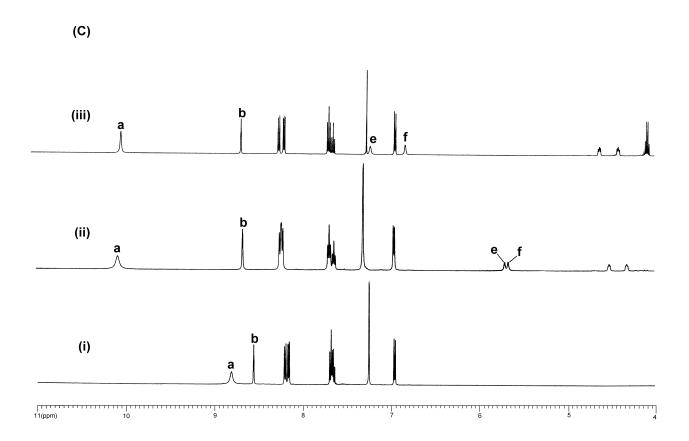


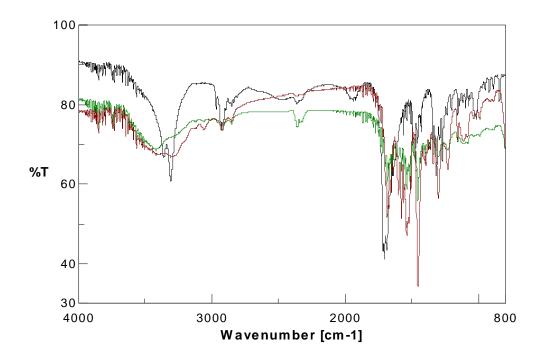
TABLE 2: Association constants (K _a) of receptors 1, 2, and 3 respectively with biotin
and biotin ethyl ester (compound 4).

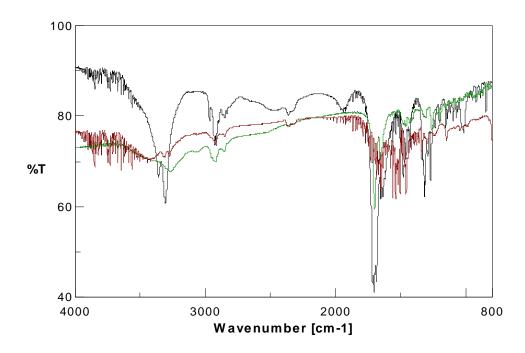

Receptors	ceptors UV-VIS method		NMR-method	Free energy		
	$K_a (M^{-1}) (CHCl_3)$		DMSO	change ΔG (Kcal		
				mol^{-1})		
	with biotin with biotin		with biotin with biotin		with	with
		ethyl ester		ethyl ester	biotin	biotin
						ethyl
						ester
Receptor	ceptor 4.51 (±0.01) 3.33 (±0.01)		1.3 (± 0.01) X	1.74 (± 0.01)	-5.60	-4.41
1	X 10 ⁴	X 10 ⁴	10^{4}	X 10 ³		
Receptor	ptor 2.23 (±0.01) 2.24 (±0.01)		9.0 (±0.1) X 8.84 (±0.1) X		-5.39	-4.01
2	X 10 ⁴	X 10 ³	10 ³	10 ²		
Receptor	5.23 (±0.01)	1.95 (±0.01)	2.4 (±0.2) X	3.18 (±0.2) X	-4.60	-3.41
3	3 X 10 ³ X 10 ³		10 ³	10 ²		

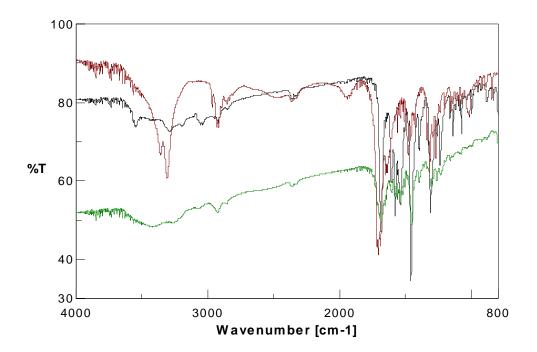
6. Figure 4: UV-vis titration spectra; (a) receptors 1, (b) receptor 2; (c) receptor 3 with biotin in CHCl₃.




7. (A) NMR spectra of (i) receptor 1, (ii) (1:1) complex between biotin and receptor 1 in 2% d_6 -DMSO- CDCl₃ (iii) (1:1) complex between ethyl ester of biotin and receptor 1 in CDCl₃:


8. (B) NMR spectra of (i) receptor 2, (ii) (1:1) complex between biotin and receptor 2 in $2\% d_6$ -DMSO- CDCl₃. (iii) (1:1) complex between ethyl ester of biotin and receptor 2 in CDCl₃:


9. (C) NMR spectra of (i) receptor 3, (ii) 1:1 complex between biotin and receptor 3 in $2\% d_6$ -DMSO- CDCl₃ (iii) 1:1 complex between ethyl ester of biotin and receptor 3 in CDCl₃.


10. FTIR-spectra of biotin (black), receptor 1(gray) and complex of receptor 1 with biotin (green).

11. FTIR-spectra of biotin (black), receptor 2(gray) and complex of receptor 2 with biotin (green).

12. FTIR-spectra of biotin (gray), receptor 3(black) and complex of receptor 3 with biotin (green).

