## Supporting information

Total Synthesis and Elucidation of the Absolute Configuration of Clavilactone B

Igor Larrosa, Marianne I. Da Silva, Patricio M. Gómez, Peter Hannen, Eunjung Ko, Steven R. Lenger, Simon R. Linke, Andrew J. P. White, Donna Wilton, Anthony G. M. Barrett*

Department of Chemistry, Imperial College London, Exhibition Road, London SW7 2AZ, England.

AstraZeneca, Process Research and Development, Avlon Works, Severn Road, Hallen, Bristol BS10 7ZE, England

## Index

1. General Methods ..... 3
2. PREPARATION OF (+)-EpoXY-ALDEHYDE 9 ..... 3
1.1. Ethyl 4-(tert-Butyldiphenylsilyloxy)-but-2-ynoate (11) ..... 3
1.2. Ethyl 3-(tert-butyldiphenylsilyloxymethyl)-hepta-2,6-dienoate (12) ..... 4
1.3. 3-(tert-Butyldiphenylsilyloxymethyl)-hepta-2,6-dien-1-ol (13) ..... 5
1.4. Sharpless epoxidation of allylic alcohol 13 ..... 6
1.5. Swern oxidation of epoxy-alcohol 14. ..... 7
3. Three-Component Benzyne Coupling. ..... 7
4. DEPROTECTION OF SILYL ETHER 18A ..... 9
5. DEPROTECTION OF SILYL ETHER 18B. ..... 10
6. LACTONE 5. ..... 10
5.1. Oxidation of diol 6 . ..... 10
5.2. Oxidation of syn diol 6-epi-6. ..... 11
5.3. Epimerization of lactone 19 to 5 . ..... 12
7. RING CLOSING METATHESIS OF 5. ..... 12
8. OXIDATIVE DEPROTECTION OF 20 ..... 13
9. DETERMINATION OF RELATIVE STEREOCHEMISTRY OF 18A AND 18B. ..... 14
10. ${ }^{1} \mathrm{H}$ AND ${ }^{13} \mathrm{C}$ NMR SPECTRA OF ALL NEW COMPOUNDS. ..... 15
11. CRYSTAL AND DATA STRUCTURE ..... 45

## 1. General Methods.

All reactions were carried out in oven-dried glassware under $\mathrm{N}_{2}$ using solvents and reagents as commercially supplied, unless otherwise stated. $\mathrm{Et}_{2} \mathrm{O}, \mathrm{THF}, \mathrm{PhMe}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$, $\mathrm{Et}_{3} \mathrm{~N}$ and MeOH were redistilled from $\mathrm{Na}-\mathrm{Ph}_{2} \mathrm{CO}, \mathrm{Na}-\mathrm{Ph}_{2} \mathrm{CO}, \mathrm{Na}, \mathrm{CaH}_{2}, \mathrm{CaH}_{2}$ and Mg turnings $-I_{2}$, respectively. Column chromatography was carried out on silica gel, particle size 40-63 $\mu \mathrm{m}$, using flash techniques (eluants are given in parenthesis). Analytical thin layer chromatography was performed on pre-coated silica gel $\mathrm{F}_{254}$ glass plates with visualization under UV light or by staining using either acidic vanillin or anisaldehyde spray reagents. Melting points were obtained using a hot-stage apparatus and are uncorrected. IR spectra were recorded as thin films and quoted in $\mathrm{cm}^{-1}$. ${ }^{1} \mathrm{H}$ NMR spectra, recorded at 300,400 or 500 MHz and referenced to the residual solvent peaks at 7.26 ppm $\left(\mathrm{CDCl}_{3}\right)$ or $2.05\left(\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}\right)$ are quoted in ppm to 2 decimal places with coupling constants (J) to the nearest $0.5 \mathrm{~Hz} .{ }^{13} \mathrm{C}$ NMR spectra, recorded at $75 \mathrm{MHz}, 100 \mathrm{MHz}$ or 125 MHz and referenced to solvent at $77.0 \mathrm{ppm}\left(\mathrm{CDCl}_{3}\right)$ or $29.8 \mathrm{ppm}\left(\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}\right)$, are quoted in ppm to 1 decimal place.

## 1. Preparation of (+)-Epoxy-Aldehyde 9.

### 1.1. Ethyl 4-(tert-Butyldiphenylsilyloxy)-but-2-ynoate (11).



Propargyl alcohol (10) (10.0 g, 178 mmol$), t-\mathrm{BuPh}_{2} \mathrm{SiCl}(53.9 \mathrm{~g}, 196 \mathrm{mmol})$ and imidazole ( $13.4 \mathrm{~g}, 196 \mathrm{mmol}$ ) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(100 \mathrm{~mL})$ were stirred at room temperature 14 h. After this time, the reaction mixture was diluted with $\mathrm{Et}_{2} \mathrm{O}(100 \mathrm{~mL})$ and washed with saturated aqueous $\mathrm{NaCl}(2 \times 50 \mathrm{~mL})$. The organic layer was dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and rotary evaporated. The resulting white solid was recrystallized from hexane and $\mathrm{Et}_{2} \mathrm{O}$ to afford 3-tert-butyldimethylsilyloxy-1-propyne ( $50.7 \mathrm{~g}, 96 \%$ ) as a white solid: m.p. 58-60 ${ }^{\circ} \mathrm{C}\left(\mathrm{MeOH}\right.$, lit. ${ }^{1} 62{ }^{\circ} \mathrm{C}$ ); $\mathrm{R}_{f} 0.43$ (hexanes:EtOAc 95:5); IR (KBr) 3309, 1587, 1426, 1370,

1110, 1078. ${ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 7.81-7.78(\mathrm{~m}, 4 \mathrm{H}), 7.53-7.44(\mathrm{~m}, 6 \mathrm{H}), 4.42$ $(\mathrm{s}, 2 \mathrm{H}), 2.40(\mathrm{~s}, 1 \mathrm{H}), 1.11(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 135.7,133.0,129.9$, 127.8, 82.1, 73.2, 52.6, 26.8, 19.3; MS (CI, $\left.\mathrm{NH}_{3}\right) \mathrm{m} / \mathrm{z} 312\left(\mathrm{M}+\mathrm{NH}_{4}\right)^{+}, 295(\mathrm{M}+\mathrm{H})^{+}$; HRMS (CI) calcd. $\mathrm{C}_{19} \mathrm{H}_{23} \mathrm{OSi}:(\mathrm{M}+\mathrm{H})^{+}$, 295.1518; found: $(\mathrm{M}+\mathrm{H})^{+}, 295.1528$.
$n$-BuLi solution in hexanes ( $2.5 \mathrm{M} ; 41.2 \mathrm{~mL}, 103 \mathrm{mmol}$ ) was added dropwise to 3-tert-butyldiphenylsilyloxy-1-propyne ( $27.5 \mathrm{~g}, 93 \mathrm{mmol}$ ) in THF ( 412 mL ) at $-78{ }^{\circ} \mathrm{C}$. The reaction mixture was stirred at this temperature for 1 h after which $\mathrm{EtOCOCl}(9.9 \mathrm{~mL}, 103$ mmol ) was added. The solution was warmed to room temperature and stirred for 2 h . The mixture was quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(60 \mathrm{~mL})$ and extracted with EtOAc (3 x 60 mL$)$. The organic layer was separated, dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and rotary evaporated. The crude mixture was chromatographed $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$ :hexanes $20: 80$ to $\left.40: 60\right)$ to give ethyl ester $10(32.7 \mathrm{~g}, 96 \%)$ as a pale yellow oil: $\mathrm{R}_{\mathrm{f}} 0.60\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$ :pentane 80:20); IR (film) 2238, 1715, 1251, 1112, 1054, 997; ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 7.76-7.71(\mathrm{~m}, 4 \mathrm{H}), 7.47$ $7.40(\mathrm{~m}, 6 \mathrm{H}), 4.42(\mathrm{~s}, 2 \mathrm{H}), 4.25(\mathrm{q}, 2 \mathrm{H}, J=7.0 \mathrm{~Hz}), 1.34(\mathrm{t}, 3 \mathrm{H}, J=7.0 \mathrm{~Hz}), 1.08(\mathrm{~s}, 9 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ( $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 153.3,135.6,132.3,130.0,127.8,85.3,76.6,62.0,52.2$, 26.6, 19.1, 14.0; MS (CI, $\left.\mathrm{NH}_{3}\right) \mathrm{m} / \mathrm{z} 384\left(\mathrm{M}+\mathrm{NH}_{4}\right)^{+}$; HRMS (CI) calcd. $\mathrm{C}_{22} \mathrm{H}_{30} \mathrm{O}_{3} \mathrm{SiN}$ : (M $\left.+\mathrm{NH}_{4}\right)^{+}, 384.1994$; found: $\left(\mathrm{M}+\mathrm{NH}_{4}\right)^{+}, 384.1996$. Anal. calcd for $\mathrm{C}_{22} \mathrm{H}_{26} \mathrm{O}_{3} \mathrm{Si}: \mathrm{C}, 72.09 ; \mathrm{H}$, 7.15. Found: C, 71.96; H, 7.15.

### 1.2. Ethyl 3-(tert-butyldiphenylsilyloxymethyl)-hepta-2,6-dienoate (12).



A small crystal of $\mathrm{I}_{2}$ was added to a suspension of Mg turnings ( $17.3 \mathrm{~g}, 712 \mathrm{mmol}$ ) in THF ( 100 mL ) under $\mathrm{N}_{2}$. The reaction mixture was heated sporadically until the solution was clear, at which point, a small portion ( $10 \%$ ) of 4-bromo-1-butene ( $13.5 \mathrm{~mL}, 133 \mathrm{mmol}$ ) in THF ( 100 ml ) was added. The remainder of the bromide was added dropwise over a 1 h period. After stirring for 1 h , the Grignard solution was cooled to $0^{\circ} \mathrm{C}$ and the supernatant layer was transferred via canula to a suspension of $\mathrm{CuBr} \cdot \mathrm{Me}_{2} \mathrm{~S}(27.3 \mathrm{~g}, 133 \mathrm{mmol})$ in THF
( 50 mL ) under $\mathrm{N}_{2}$ at $-40^{\circ} \mathrm{C}$. The resulting suspension was stirred for 40 min . After this time, the mixture was cooled to $-78{ }^{\circ} \mathrm{C}$ and a solution of alkyne $11(31.2 \mathrm{~g}, 85 \mathrm{mmol})$ in THF ( 50 mL ) was added dropwise. The resulting mixture was stirred at $-78{ }^{\circ} \mathrm{C}$ for 1 h and then quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(400 \mathrm{~mL})$. The aqueous phase was extracted with $\mathrm{Et}_{2} \mathrm{O}$ ( $3 \times 300 \mathrm{~mL}$ ), the combined organic layers were dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and rotary evaporated leaving the $\alpha, \beta$-unsaturated ester $12(35.0 \mathrm{~g}, 97 \%)$, which was used in the next step without further purification: $\mathrm{R}_{\mathrm{f}} 0.60$ (pentane: $\mathrm{Et}_{2} \mathrm{O} 90: 10$ ); IR (film) 1712, 1641, 1471, 1427, 1222, 1147, 1110, 1041, 821; ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 7.73-7.68$ (m, $4 \mathrm{H}), 7.46-7.36(\mathrm{~m}, 6 \mathrm{H}), 5.87(\mathrm{ddt}, 1 \mathrm{H}, J=16.8,10.2,6.6 \mathrm{~Hz}), 5.63(\mathrm{~s}, 1 \mathrm{H}), 5.13-5.01$ $(\mathrm{m}, 2 \mathrm{H}), 4.95(\mathrm{~s}, 2 \mathrm{H}), 4.03(\mathrm{q}, 2 \mathrm{H}, J=7.0 \mathrm{~Hz}), 2.63-2.55(\mathrm{~m}, 2 \mathrm{H}), 2.40-2.31(\mathrm{~m}, 2 \mathrm{H})$, $1.19(\mathrm{t}, 3 \mathrm{H}, J=7.0 \mathrm{~Hz}), 1.09(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 165.9,162.1,137.6$, 135.5, 133.3, 129.7, 127.7, 115.1, 115.0, 62.7, 59.7, 33.9, 32.3, 26.9, 19.3, 14.2. HRMS (CI) calcd. $\mathrm{C}_{26} \mathrm{H}_{35} \mathrm{O}_{3} \mathrm{Si}:(\mathrm{M}+\mathrm{H})^{+}, 423.2355$; found: $(\mathrm{M}+\mathrm{H})^{+}, 423.2344$. Anal. calcd for $\mathrm{C}_{26} \mathrm{H}_{34} \mathrm{O}_{3} \mathrm{Si}: \mathrm{C}, 73.89 ; \mathrm{H}, 8.11$. Found: C, 73.91 ; H, 8.12.

### 1.3. 3-(tert-Butyldiphenylsilyloxymethyl)-hepta-2,6-dien-1-ol (13).



DIBAl-H in hexane ( 1 M ; $289 \mathrm{~mL}, 289 \mathrm{mmol}$ ) was added slowly to $\alpha, \beta$-unsaturated ester $\mathbf{1 2}(34.9 \mathrm{~g}, 80.7 \mathrm{mmol})$ in $\mathrm{PhMe}(800 \mathrm{~mL})$ at $-78{ }^{\circ} \mathrm{C}$, and the resulting mixture was stirred at this temperature for 1.5 h . The reaction mixture was carefully quenched with $\mathrm{MeOH}(10 \mathrm{~mL})$ and left to warm up to room temperature. Saturated aqueous Rochelle's salt $(350 \mathrm{~mL})$ was added and the resulting suspension was stirred vigorously 14 h . The reaction mixture was filtered and the two layers separated. The aqueous layer was further extracted with EtOAc $(3 \times 150 \mathrm{~mL})$, the combined organic layers were dried $\left(\mathrm{MgSO}_{4}\right)$ and rotary evaporated. The resulting dark orange oil was filtered through a short pad of $\mathrm{SiO}_{2}$ using $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ to yield allylic alcohol $\mathbf{1 3}$ ( $29.7 \mathrm{~g}, 96 \%$ ) as a colorless oil: $\mathrm{R}_{\mathrm{f}} 0.36$ (hexane:EtOAc 80:20); IR (film) 3500-3100, 1640, 1428, 1112, 823; ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 7.74$ $7.69(\mathrm{~m}, 4 \mathrm{H}), 7.50-7.40(\mathrm{~m}, 6 \mathrm{H}), 5.83(\mathrm{ddt}, 1 \mathrm{H}, J=16.4,10.2,6.3 \mathrm{~Hz}), 5.47(\mathrm{t}, 1 \mathrm{H}, J=$ $7.0 \mathrm{~Hz}), 5.07-4.95(\mathrm{~m}, 2 \mathrm{H}), 4.19(\mathrm{~s}, 2 \mathrm{H}), 3.96(\mathrm{bs}, 2 \mathrm{H}), 2.33-2.16(\mathrm{~m}, 4 \mathrm{H}), 1.04(\mathrm{~s}, 9 \mathrm{H})$;
${ }^{13} \mathrm{C}$ NMR (100 MHz, $\mathrm{CDCl}_{3}$ ) $\delta 141.4,138.3,135.6,133.3,129.8,127.7,125.9,114.6,61.5$, 58.6, 34.1, 32.2, 26.8, 19.2; MS (CI, $\left.\mathrm{NH}_{3}\right) \mathrm{m} / \mathrm{z} 363\left(\mathrm{M}+\mathrm{H}-\mathrm{H}_{2} \mathrm{O}\right)^{+}$; HRMS (CI) calcd. for $\mathrm{C}_{24} \mathrm{H}_{31} \mathrm{OSi}:\left(\mathrm{M}+\mathrm{H}-\mathrm{H}_{2} \mathrm{O}\right)^{+}, 398.2515$; found: $\left(\mathrm{M}+\mathrm{H}-\mathrm{H}_{2} \mathrm{O}\right)^{+}, 398.2513$. Anal. calcd. for $\mathrm{C}_{24} \mathrm{H}_{32} \mathrm{O}_{2} \mathrm{Si}: \mathrm{C}, 75.74 ; \mathrm{H}, 8.47$. Found: C, $75.62 ; \mathrm{H}, 8.32$.

### 1.4. Sharpless epoxidation of allylic alcohol 13.


$\mathrm{Ti}\left(\mathrm{O}^{i}{ }^{i} \mathrm{Pr}\right)_{4}(4.33 \mathrm{~mL}, 14.6 \mathrm{mmol})$ was added to a suspension of $4 \AA$ Á molecular sieves ( $1.67 \mathrm{~g}, 30 \% \mathrm{w} / \mathrm{w}$ based on substrate) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{~mL})$. The mixture was cooled to $-30^{\circ}$ C and L-(+)-diethyl tartrate ( $3.61 \mathrm{~g}, 17.5 \mathrm{mmol}$ ) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ was added followed by alkene $\mathbf{1 3}(5.56 \mathrm{~g}, 14.6 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ and the resulting suspension was stirred for 40 min . After this time anhydrous tert-butyl hydroperoxide in decane $(5.5 \mathrm{M} ; 8.00 \mathrm{~mL}$, 43.8 mmol ) was added dropwise and stirring was continued for two days at $-30^{\circ} \mathrm{C}$. After warming up to $0^{\circ} \mathrm{C}, \mathrm{H}_{2} \mathrm{O}(90 \mathrm{~mL})$ was added and the mixture was stirred for $1 \mathrm{~h} .30 \%$ aqueous NaOH saturated with $\mathrm{NaCl}(17 \mathrm{~mL})$ was added and stirring continued for 1.5 h during which the slurry changed color from yellow to white. The white slurry was filtered through a plug of Celite ${ }^{\circledR}$ which was rinsed thoroughly with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The filtrate was washed with saturated aqueous NaCl , dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and rotary evaporated. The resulting oil was chromatographed $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$ :hexanes $80: 20$ to EtOAc :hexanes $\left.20: 80\right)$ to give epoxyalcohol $14(5.33 \mathrm{~g}, 92 \%)$ as a slightly yellow oil: $\mathrm{R}_{\mathrm{f}} 0.15\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$ :hexanes $\left.80: 20\right)$; $[\alpha]_{\mathrm{D}}-$ 9.6 ( c 1.0, $\mathrm{CHCl}_{3}$ ); Chiral HPLC (Chiralpak OJ-H; $i$-hexane:EtOH:TFA 95:5:0.1): $\mathbf{1 4}(\mathrm{Rt}=$ $8.9 \mathrm{~min}):$ ent-14 $(\mathrm{Rt}=12.0 \mathrm{~min}) 98.5: 1.5$; IR (film) 3600-3250, 1472, 1428, 1112, 1029, 913; ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta=7.69-7.64(\mathrm{~m}, 4 \mathrm{H}), 7.48-7.39(\mathrm{~m}, 6 \mathrm{H}), 5.77(\mathrm{ddt}$, $1 \mathrm{H}, J=16.9,10.2,6.6 \mathrm{~Hz}), 5.01-4.95(\mathrm{~m}, 2 \mathrm{H}), 3.83(\mathrm{~d}, 1 \mathrm{H}, J=11.2 \mathrm{~Hz}), 3.65(\mathrm{~d}, 2 \mathrm{H}, J=$ $5.8 \mathrm{~Hz}), 3.63(\mathrm{~d}, 1 \mathrm{H}, J=11.2 \mathrm{~Hz}), 3.08(\mathrm{t}, 1 \mathrm{H}, J=5.8 \mathrm{~Hz}), 2.16-2.02(\mathrm{~m}, 3 \mathrm{H}), 1.90-1.75$ $(\mathrm{m}, 2 \mathrm{H}), 1.08(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 137.9,135.7,135.6,132.8,132.6$, $130.1,127.9,114.9,64.0,63.2,62.2,61.1,32.8,28.7,26.9,19.3$; MS (CI, NH3 $) ~ m / z 414$ (M $\left.+\mathrm{NH}_{4}\right)^{+}, 383(\mathrm{M}+\mathrm{H})^{+} ;$HRMS $(\mathrm{CI})$ calcd. $\mathrm{C}_{24} \mathrm{H}_{35} \mathrm{O}_{3} \mathrm{SiN}:\left(\mathrm{M}+\mathrm{NH}_{4}\right)^{+}, 414.2464$; found:

### 1.5. Swern oxidation of epoxy-alcohol 14.



DMSO ( $1.96 \mathrm{~mL}, 27.5 \mathrm{mmol}$ ) was added to $(\mathrm{COCl})_{2}(1.75 \mathrm{~mL}, 13.8 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(60 \mathrm{~mL})$ at $-78{ }^{\circ} \mathrm{C}$. After stirring for 15 min , alcohol $14(4.94 \mathrm{~g}, 12.5 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL}+5 \mathrm{~mL})$ was added and the reaction mixture was stirred for 30 min at -78 ${ }^{\circ} \mathrm{C} . \mathrm{Et}_{3} \mathrm{~N}(8.73 \mathrm{~mL}, 63 \mathrm{mmol})$ was added slowly, the resulting solution was stirred for further 10 min and allowed to warm up to room temperature. The reaction was quenched by addition of saturated aqueous $\mathrm{NaHCO}_{3}(30 \mathrm{~mL})$. The organic layer was washed with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(20 \mathrm{~mL})$ and brine ( 20 mL ), dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and rotary evaporated to yield epoxy-aldehyde 9 ( $4.63 \mathrm{~g}, 94 \%$ ) as a yellow oil, which was used in the next stage without further purification: $\mathrm{R}_{\mathrm{f}} 0.50\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$ :hexanes $\left.80: 20\right)$; IR (film) 1731, 1427, 1112; ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 9.48(\mathrm{~d}, 1 \mathrm{H}, J=4.5 \mathrm{~Hz}), 7.72-7.64(\mathrm{~m}, 4 \mathrm{H})$, $7.48-7.39(\mathrm{~m}, 6 \mathrm{H}), 5.75(\mathrm{ddt}, 1 \mathrm{H}, J=16.9,10.3,6.6 \mathrm{~Hz}), 5.02-4.96(\mathrm{~m}, 2 \mathrm{H}), 3.87(\mathrm{~d}, 1 \mathrm{H}$, $J=11.9 \mathrm{~Hz}), 3.81(\mathrm{~d}, 1 \mathrm{H}, J=11.9 \mathrm{~Hz}), 3.2(\mathrm{~d}, 1 \mathrm{H}, J=5.0 \mathrm{~Hz}), 2.13-1.70(\mathrm{~m}, 4 \mathrm{H}), 1.05$ (s, 9H). ${ }^{13} \mathrm{C}$ NMR ( $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta$ 198.3, 137.0, 135.6, 132.3, 130.0, 127.9, 115.5, 68.0, 63.1, 62.7, 32.4, 28.6, 26.7, 19.2; MS (CI, NH3 $) ~ m / z 412\left(\mathrm{M}+\mathrm{NH}_{4}\right)^{+}$; HRMS (CI) calcd. $\mathrm{C}_{24} \mathrm{H}_{34} \mathrm{O}_{3} \mathrm{SiN}:\left(\mathrm{M}+\mathrm{NH}_{4}\right)^{+}, 412.2307$; found: $\left(\mathrm{M}+\mathrm{NH}_{4}\right)^{+}, 412.2312$. Anal. calcd. for $\mathrm{C}_{24} \mathrm{H}_{30} \mathrm{O}_{2} \mathrm{Si}$ : C, 76.14; H, 7.99. Found: C, 76.17; H, 7.99.

## 2. Three-Component Benzyne Coupling.


$n-\mathrm{BuLi}$ in hexanes $(1.54 \mathrm{M} ; 3.1 \mathrm{~mL}, 4.7 \mathrm{mmol})$ was added dropwise to fluoroarene $14(0.65 \mathrm{~mL}, 4.7 \mathrm{mmol})$ in dry THF ( 45 mL ), under $\mathrm{N}_{2}$ at $-78^{\circ} \mathrm{C}$, and the resulting mixture was stirred for 30 min at that temperature. After this time, $\mathbf{1 6}$ in THF ( $0.5 \mathrm{M} ; 9.0 \mathrm{~mL}, 4.5$ mmol ) was added dropwise and the resulting solution was stirred for 15 min at $-78^{\circ} \mathrm{C}$, allowed to warm up to room temperature and stirred for further 1.5 h . After this time, the pink colored solution of aryl Grignard $\mathbf{1 7}$ was cooled to $-78^{\circ} \mathrm{C}$ and epoxy-aldehyde 9 (1.50 $\mathrm{g}, 3.8 \mathrm{mmol}$ ) was added slowly. After 20 min , the mixture was allowed to warm up to -35 ${ }^{\circ} \mathrm{C}$ and quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(20 \mathrm{~mL})$. The resulting mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 40 \mathrm{~mL})$, the combined organic layers were dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and rotary evaporated. The resulting oil was chromatographed $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$ :hexanes 70:30 to hexanes:EtOAc 80:20) to give 18a ( $0.55 \mathrm{~g}, 25 \%$ ) as a colorless oil and $\mathbf{1 8 b}(0.88 \mathrm{~g}, 40 \%)$ as a white solid: 18a. $\mathrm{R}_{\mathrm{f}} 0.20\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$ :hexanes 70:30); $[\alpha]_{\mathrm{D}}-23.3$ (c 1, $\left.\mathrm{CHCl}_{3}\right)$; $\mathrm{IR}(\mathrm{KBr})$ $3550-3300,1642,1590,1480,1428,1231,1112,1085 .{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.78$ $-7.76(\mathrm{~m}, 4 \mathrm{H}), 7.47-7.43(\mathrm{~m}, 6 \mathrm{H}), 6.79(\mathrm{~s}, 2 \mathrm{H}), 5.95-5.84(\mathrm{~m}, 1 \mathrm{H}), 5.10-4.99(\mathrm{~m}, 2 \mathrm{H})$, $4.63(\mathrm{~s}, 1 \mathrm{H}), 4.48(\mathrm{t}, 1 \mathrm{H}, J=9.2 \mathrm{~Hz}), 4.23(\mathrm{~s}, 1 \mathrm{H}), 4.17(\mathrm{~d}, 1 \mathrm{H}, J=11.7 \mathrm{~Hz}), 4.05(\mathrm{~d}, 1 \mathrm{H}, J$ $=9.8 \mathrm{~Hz}), 3.86(\mathrm{~s}, 3 \mathrm{H}), 3.84(\mathrm{~d}, 1 \mathrm{H}, J=11.7), 3.75(\mathrm{~s}, 3 \mathrm{H}), 3.48(\mathrm{~d}, 1 \mathrm{H}, J=16.8 \mathrm{~Hz}), 3.36$ $(\mathrm{d}, 1 \mathrm{H}, J=8.7 \mathrm{~Hz}), 3.03(\mathrm{~d}, 1 \mathrm{H}, J=16.8 \mathrm{~Hz}), 2.22-2.17(\mathrm{~m}, 3 \mathrm{H}), 1.70-1.60(\mathrm{~m}, 1 \mathrm{H})$, $1.50(\mathrm{~s}, 3 \mathrm{H}), 1.12(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( $75 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 152.2,151.8,144.0,138.2,135.7$, 135.6, 133.1, 133.0, 129.7, 127.7, 114.6, 110.6, 110.5, 109.3, 69.0, 64.5, 64.3, 63.8, 56.4, 55.6, 33.2, 32.4, 29.2, 26.9, 22.9, 19.4, 14.2; MS (CI, $\left.\mathrm{NH}_{3}\right) \mathrm{m} / \mathrm{z} 587(\mathrm{M}+\mathrm{H})^{+}$; HRMS (CI) calcd. $\mathrm{C}_{36} \mathrm{H}_{47} \mathrm{O}_{5} \mathrm{Si}:(\mathrm{M}+\mathrm{H})^{+}$, 587.3192 ; found: $(\mathrm{M}+\mathrm{H})^{+}$, 587.3180. Anal. calcd. for $\mathrm{C}_{36} \mathrm{H}_{46} \mathrm{O}_{5} \mathrm{Si}$ : C, 73.68; H, 7.90. Found: C, 73.69; H, 7.86.

18b. m.p. $116-118{ }^{\circ} \mathrm{C}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ; \mathrm{R}_{\mathrm{f}} 0.25$ (hexanes:AcOEt 80:20); $[\alpha]_{\mathrm{D}}+8.0\left(c 1.0, \mathrm{CHCl}_{3}\right)$; IR(film) 3550-3300, 1641, 1590, 1478, 1428, 1237, 1111, 1082, 998, 911; ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.72-7.62(\mathrm{~m}, 4 \mathrm{H}), 7.48-7.34(\mathrm{~m}, 6 \mathrm{H}), 6.76(\mathrm{~d}, 1 \mathrm{H}, J=9.0 \mathrm{~Hz}), 6.73(\mathrm{~d}$, $1 \mathrm{H}, J=9.0 \mathrm{~Hz}), 5.75-5.64(\mathrm{~m}, 1 \mathrm{H}), 4.87(\mathrm{dd}, 1 \mathrm{H}, J=17.1 \mathrm{~Hz}, 1.4 \mathrm{~Hz}), 4.83(\mathrm{~d}, 1 \mathrm{H}, J=$ $10.1 \mathrm{~Hz}), 4.70(\mathrm{dd}, 1 \mathrm{H}, J=8.8 \mathrm{~Hz}, J=5.5 \mathrm{~Hz}), 4.64(\mathrm{~s}, 1 \mathrm{H}), 4.20(\mathrm{~s}, 1 \mathrm{H}), 3.80(\mathrm{~d}, 1 \mathrm{H}, J=$ $11.4 \mathrm{~Hz}), 3.75(\mathrm{~s}, 3 \mathrm{H}), 3.75(\mathrm{~m}, 1 \mathrm{H}), 3.72(\mathrm{~s}, 3 \mathrm{H}), 3.31(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=16.4 \mathrm{~Hz}), 3.30(\mathrm{~d}, 1 \mathrm{H}, J$ $=5.5 \mathrm{~Hz}), 3.17(\mathrm{~d}, 1 \mathrm{H}, J=8.8 \mathrm{~Hz}), 3.10(\mathrm{~d}, 1 \mathrm{H}, J=16.4 \mathrm{~Hz}) 2.24-1.90(\mathrm{~m}, 3 \mathrm{H}), 1.62(\mathrm{~s}$, $3 \mathrm{H}), 1.50-1.41(\mathrm{~m}, 1 \mathrm{H}), 1.08(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 152.2,151.9,145.1$, $138.1,135.8,135.7,133.5,133.2,129.7,129.6,129.5,127.7,114.5,110.8,110.5,109.5$, $67.4,65.1,63.8,56.3,55.6,33.3,32.2,29.0,26.9,23.1,19.4 ; \mathrm{MS}\left(\mathrm{CI}, \mathrm{NH}_{3}\right) \mathrm{m} / \mathrm{z} 587(\mathrm{M}+$
$\mathrm{H}^{+}$; HRMS (CI) calcd. $\mathrm{C}_{36} \mathrm{H}_{46} \mathrm{O}_{5} \mathrm{Si}:(\mathrm{M}+\mathrm{H})^{+}$, 587.3192; found: $(\mathrm{M}+\mathrm{H})^{+}$, 587.3216. Anal. calcd. for $\mathrm{C}_{36} \mathrm{H}_{46} \mathrm{O}_{5} \mathrm{Si}$ : C, 73.68 ; H, 7.90. Found: C, 73.67 ; H, 7.92.

## 3. DEPROTECTION OF SILYL ETHER 18A.



TBAF in THF ( $1 \mathrm{M} ; 0.83 \mathrm{~mL}, 0.83 \mathrm{mmol}$ ) was added to silyl ether 18a ( 323 mg , 0.55 mmol ) in THF ( 10 mL ). After stirring for 1 h , the reaction was quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(5 \mathrm{~mL})$ and the aqueous layer extracted with $\mathrm{EtOAc}(5 \times 10 \mathrm{~mL})$. The combined organic layers were dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and rotary evaporated. The resulting oil was chromatographed $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{EtOAc} 95: 5\right.$ to $\left.70: 30\right)$ to yield $\mathbf{6}(167 \mathrm{mg}, 87 \%)$ as a white solid: m.p. $89-91{ }^{\circ} \mathrm{C}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$ :pentane $) ; \mathrm{R}_{\mathrm{f}} 0.25\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}:\right.$ EtOAc 90:10); $[\alpha]_{\mathrm{D}}-$ 22.7 (c 1, $\mathrm{CHCl}_{3}$ ); IR (film) 3500-3300, 1483, 1450, 1239, 1024; ${ }^{1} \mathrm{H}$ NMR ( 400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 6.83(\mathrm{~s}, 2 \mathrm{H}), 5.85(\mathrm{ddt}, 1 \mathrm{H}, J=16.8,10.2,6.5 \mathrm{~Hz}), 5.08(\mathrm{~d}, 1 \mathrm{H}, J=16.8 \mathrm{~Hz})$, $5.00(\mathrm{~d}, 1 \mathrm{H}, J=10.2 \mathrm{~Hz}), 4.79(\mathrm{~s}, 1 \mathrm{H}), 4.71(\mathrm{~d}, 1 \mathrm{H}, J=8.1 \mathrm{~Hz}), 4.63(\mathrm{bs}, 1 \mathrm{H}), 4.41(\mathrm{~s}, 1 \mathrm{H})$, $3.97(\mathrm{~d}, 1 \mathrm{H}, J=12.0 \mathrm{~Hz}), 3.90(\mathrm{~s}, 3 \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H}), 3.75(\mathrm{~d}, 1 \mathrm{H}, J=12.0 \mathrm{~Hz}), 3.60(\mathrm{~d}, 1 \mathrm{H}$, $J=16.8 \mathrm{~Hz}), 3.31(\mathrm{~d}, 1 \mathrm{H}, J=8.1 \mathrm{~Hz}), 3.24(\mathrm{~d}, 1 \mathrm{H}, J=16.8 \mathrm{~Hz}), 2.30-2.12(\mathrm{~m}, 2 \mathrm{H}), 2.00-$ $1.90(\mathrm{~m}, 1 \mathrm{H}), 1.83-1.73(\mathrm{~m}, 1 \mathrm{H}), 1.79(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( $\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 152.4$, $151.5,144.3,138.0,128.6,127.9,114.8,110.8,110.6,109.7,109.3,70.7,64.5,63.8,63.7$, 56.4, 55.6, 33.3, 33.1, 28.6, 23.2; MS (CI, $\left.\mathrm{NH}_{3}\right) \mathrm{m} / \mathrm{z} 366\left(\mathrm{M}+\mathrm{NH}_{4}\right)^{+}, 348(\mathrm{M}+\mathrm{H})^{+}$; HRMS (CI) calcd. $\mathrm{C}_{20} \mathrm{H}_{32} \mathrm{O}_{5} \mathrm{~N}:\left(\mathrm{M}+\mathrm{NH}_{4}\right)^{+}, 366.2280$; found: $\left(\mathrm{M}+\mathrm{NH}_{4}\right)^{+}, 366.2268$. Anal. calcd. for $\mathrm{C}_{20} \mathrm{H}_{28} \mathrm{O}_{5}$ : C, 68.94; H, 8.10. Found: C, 68.81; H, 8.42.

## 4. DEPROTECTION OF SILYL ETHER 18B.



TBAF in THF ( $1 \mathrm{M} ; 0.47 \mathrm{~mL}, 0.47 \mathrm{mmol}$ ) was added to silyl ether $\mathbf{1 8 b}(182 \mathrm{mg}$, 0.31 mmol ) in THF ( 6 mL ). After stirring for 1 h , the reaction mixture was quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(5 \mathrm{~mL})$ and the aqueous layer extracted with EtOAc ( $5 \times 10 \mathrm{~mL}$ ). The combined organic layers were dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and rotary evaporated. The resulting oil was chromatographed $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$ : EtOAc $80: 20$ to $\left.60: 40\right)$ to yield the syn diol 6-epi-6 ( $93 \mathrm{mg}, 86 \%$ ) as a colorless oil: $\mathrm{R}_{\mathrm{f}} 0.20\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}:\right.$ EtOAc $\left.80: 20\right)$; $[\alpha]_{\mathrm{D}}-8.7$ (c 0.83, $\mathrm{CHCl}_{3}$ ); IR (film) 3550-3250, 1622, 1597, 1464, 1249, 1081, 1039, 910; ${ }^{1} \mathrm{H}$ NMR (300 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.82(\mathrm{~s}, 2 \mathrm{H}), 5.71(\mathrm{ddt}, 1 \mathrm{H}, \mathrm{J}=16.8,10.2,6.6 \mathrm{~Hz}$ ), $4.99-4.84(\mathrm{~m}, 3 \mathrm{H})$, $4.76(\mathrm{~s}, 1 \mathrm{H}), 4.32(\mathrm{~s}, 1 \mathrm{H}), 3.87(\mathrm{~s}, 3 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 3.76-3.71(\mathrm{~m}, 2 \mathrm{H}), 3.59(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=$ $8.7 \mathrm{~Hz}), 3.48(\mathrm{~d}, 1 \mathrm{H}, J=6.0 \mathrm{~Hz}), 3.36(\mathrm{~d}, 1 \mathrm{H}, J=6.0 \mathrm{~Hz}), 2.16-2.04(\mathrm{~m}, 2 \mathrm{H}), 1.96-1.86$ $(\mathrm{m}, 1 \mathrm{H}), 1.83(\mathrm{~s}, 3 \mathrm{H}), 1.60-1.49(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta$ 152.4, 151.7, $145.3,137.7,128.9,128.0,114.8,110.9,110.3,109.7,67.1,65.6,64.0,62.2,56.4,55.9$, 33.4, 33.0, 28.8, 23.3; MS (CI, $\mathrm{NH}_{3}$ ) m/z $366\left(\mathrm{M}+\mathrm{NH}_{4}\right)^{+}, 348(\mathrm{M}+\mathrm{H})^{+}$; HRMS (CI) calcd. $\mathrm{C}_{20} \mathrm{H}_{29} \mathrm{O}_{5}:(\mathrm{M}+\mathrm{H})^{+}$, 349.2014; found: $(\mathrm{M}+\mathrm{H})^{+}$, 349.2026. Anal. calcd. for $\mathrm{C}_{20} \mathrm{H}_{28} \mathrm{O}_{5}$ : C, 68.94; H, 8.10. Found: C, 68.86; H, 8.06.

## 5. LACTONE 5.

### 5.1. Oxidation of diol 6.


$\mathrm{PhI}(\mathrm{OAc})_{2}(437 \mathrm{mg}, 1.36 \mathrm{mmol})$ was added in portions to diol $6(135 \mathrm{mg}, 0.39$ mmol ) and TEMPO ( $12 \mathrm{mg}, 0.08 \mathrm{mmol}$ ) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{~mL})$ with stirring. After 20 h , saturated aqueous $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}(10 \mathrm{~mL})$ was added and the resulting suspension was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 10 \mathrm{~mL})$. The combined organic layers were washed with $10 \%$ aqueous $\mathrm{NaHCO}_{3}(5 \mathrm{~mL})$ and brine $(5 \mathrm{~mL})$, dried $\left(\mathrm{MgSO}_{4}\right)$ and rotary evaporated. The resulting oil was chromatographed $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ to yield $5(107 \mathrm{mg}, 80 \%)$ as a colorless oil: $\mathrm{R}_{\mathrm{f}} 0.25$ $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;[\alpha]_{\mathrm{D}}+14\left(c 1.0, \mathrm{CHCl}_{3}\right) ;$ IR (film) $1780,1711,1483,1266,1113,909 ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.90(\mathrm{~d}, 1 \mathrm{H}, J=9.0 \mathrm{~Hz}), 6.79(\mathrm{~d}, 1 \mathrm{H}, J=9.0 \mathrm{~Hz}), 5.86(\mathrm{ddt}, 1 \mathrm{H}, J=$ $16.8,10.1,6.4 \mathrm{~Hz}), 5.53(\mathrm{~s}, 1 \mathrm{H}), 5.14-4.99(\mathrm{~m}, 2 \mathrm{H}), 4.82(\mathrm{~s}, 1 \mathrm{H}), 4.36(\mathrm{~s}, 1 \mathrm{H}), 3.91(\mathrm{~s}$, $1 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H}), 3.62(\mathrm{~d}, 1 \mathrm{H}, J=16.9 \mathrm{~Hz}), 3.36(\mathrm{~d}, 1 \mathrm{H}, J=16.5 \mathrm{~Hz}), 2.42-$ $2.32(\mathrm{~m}, 2 \mathrm{H}), 2.20-1.96(\mathrm{~m}, 2 \mathrm{H}), 1.82(\mathrm{~s}, 3 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR ( $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta$ 173.0, $153.0,152.0,144.6,137.2,129.4,122.2,115.4,112.8,111.2,110.2,76.4,62.9,61.6,56.5$, 56.2, 33.3, 27.6, 24.1, 23.1; HRMS (CI) calcd. $\mathrm{C}_{20} \mathrm{H}_{28} \mathrm{O}_{5} \mathrm{~N}:\left(\mathrm{M}+\mathrm{NH}_{4}\right)^{+}, 362.1967$; found: $\left(\mathrm{M}+\mathrm{NH}_{4}\right)^{+}, 362.1958$. Anal. calcd. for $\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{O}_{5}$ : C, 69.75; H, 7.02. Found: C, 69.76; H, 6.97.

### 5.2. Oxidation of $\operatorname{syn}$ diol 6-epi-6.



TPAP ( $10 \mathrm{mg}, 0.026 \mathrm{mmol}$ ) was added in one portion to a suspension of syn diol 6-epi-6 ( $62 \mathrm{mg}, 0.18 \mathrm{mmol}$ ), $N$-methylmorpholine- $N$-oxide ( $63 \mathrm{mg}, 0.53 \mathrm{mmol}$ ) and $4 \AA$ molecular sieves ( 80 mg ) in dry $\mathrm{MeCN}(3 \mathrm{~mL})$ and the resulting suspension was stirred for 2 h at room temperature. After this time, the mixture was rotary evaporated and the resulting slurry was chromatographed $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ to yield $19(47 \mathrm{mg}, 74 \%)$ as a white solid: m.p. 85-86 $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ; \mathrm{R}_{\mathrm{f}} 0.25\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;[\alpha]_{\mathrm{D}}-74\left(c 1.9, \mathrm{CHCl}_{3}\right)$; IR (film) 1783, 1473, 1437, 1256, 1084, 1051; ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 6.85(\mathrm{~d}, 1 \mathrm{H}, J=9.0 \mathrm{~Hz}), 6.79(\mathrm{~d}$, $1 \mathrm{H}, J=9.0 \mathrm{~Hz}), 5.88(\mathrm{~d}, 1 \mathrm{H}, J=1.3 \mathrm{~Hz}), 5.82(\mathrm{ddt}, 1 \mathrm{H}, J=16.8,10.2,6.5 \mathrm{~Hz}), 5.11-5.00$ $(\mathrm{m}, 2 \mathrm{H}), 4.69(\mathrm{~s}, 1 \mathrm{H}), 4.23(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=1.3 \mathrm{~Hz}), 4.14(\mathrm{~s}, 1 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H}), 3.74(\mathrm{~s}, 3 \mathrm{H}), 3.46$
$(\mathrm{d}, 1 \mathrm{H}, J=16.7 \mathrm{~Hz}), 3.29(\mathrm{~d}, 1 \mathrm{H}, J=16.7 \mathrm{~Hz}), 2.38-2.18(\mathrm{~m}, 3 \mathrm{H}), 2.08-1.98(\mathrm{~m}, 1 \mathrm{H})$, $1.81(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 171.5,152.8,151.2,145.7,136.9,129.7$, $121.5,115.8,111.6,109.3,108.8,75.5,61.9,60.0,56.5,56.2,33.8,28.4,24.4,23.6$; MS $\left(\mathrm{CI}, \mathrm{NH}_{3}\right) \mathrm{m} / \mathrm{z} 362\left(\mathrm{M}+\mathrm{NH}_{4}\right)^{+}, 345(\mathrm{M}+\mathrm{H})^{+}$; HRMS (CI) calcd. $\mathrm{C}_{20} \mathrm{H}_{28} \mathrm{O}_{5} \mathrm{~N}:\left(\mathrm{M}+\mathrm{NH}_{4}\right)^{+}$, 362.1967, found: $\left(\mathrm{M}+\mathrm{NH}_{4}\right)^{+}$, 362.1970. Anal. calcd. for $\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{O}_{5}$ : C, 69.75; H, 7.02. Found: C, 69.76; H, 7.14.

### 5.3. Epimerization of lactone 19 to 5.


$\mathrm{AlMe}_{3}$ in hexane $(2.0 \mathrm{M} ; 113 \mu \mathrm{~L}, 0.23 \mathrm{mmol})$ was added dropwise to 2,6-diphenyl-4-nitrophenol ( $100 \mathrm{mg}, 0.34 \mathrm{mmol}$ ) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2.2 \mathrm{~mL})$. The resulting red Lewis acid solution ( $0.05 \mathrm{M} ; 2.4 \mathrm{~mL}, 0.12 \mathrm{mmol}$ ) was added dropwise to $19(68 \mathrm{mg}, 0.20 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ and stirred for 36 h . After this time, the reaction mixture was quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(4 \mathrm{~mL})$, saturated aqueous Rochelle's salt ( 10 mL ) was added and the resulting suspension was stirred for 2 h . After this time, the aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 15 \mathrm{~mL})$ and the combined organic layers were dried $\left(\mathrm{MgSO}_{4}\right)$ and rotary evaporated. The oil was chromatographed $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ to yield $\mathbf{5}(56 \mathrm{mg}, 83 \%)$ as a colorless oil.

## 6. RING CLOSING METATHESIS OF 5. ${ }^{2}$


$\mathrm{Cl}_{2}\left(\mathrm{Cy}_{3} \mathrm{P}\right)(\mathrm{sIMes}) \mathrm{Ru}=\mathrm{CHPh}(47 \mathrm{mg}, 56 \mu \mathrm{~mol})$ in $\operatorname{PhMe}(58 \mathrm{~mL})$ and tetrafluoro-pbenzoquinone ( $20 \mathrm{mg}, 0.11 \mathrm{mmol}$ ) in $\mathrm{PhMe}(58 \mathrm{~mL})$ were added simultaneously via syringe pump over 12 h to diene $5(48 \mathrm{mg}, 0.14 \mathrm{mmol})$ in $\mathrm{PhMe}(48 \mathrm{~mL})$, at $80^{\circ} \mathrm{C}$, and stirred for further 6 h . Argon was bubbled through the reaction mixture during the course of the reaction. After this time, the resulting dark solution was rotary evaporated and the crude oil was cromatographed on $5 \% \mathrm{AgNO}_{3} / \mathrm{SiO}_{2}$ (pentane: $\mathrm{EtOAc} 90: 10$ ) to yield 20 ( 29 mg , $65 \%$ ) as a colorless oil: $\mathrm{R}_{\mathrm{f}} 0.20\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$ :hexanes $\left.80: 20\right)$; $[\alpha]_{\mathrm{D}}-105(c 0.1, \mathrm{MeOH}) ;[\alpha]_{\mathrm{D}}-$ 102 (c 0.1, MeOH) (lit. +111 (c 0.1, MeOH)); IR (film) 1675, 1458, 1429, 1406, 1377, 1262, 1126, 1076, 1041; ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 6.96(\mathrm{~d}, 1 \mathrm{H}, J=9.0 \mathrm{~Hz}), 6.85(\mathrm{~d}$, $1 \mathrm{H}, J=9.0 \mathrm{~Hz}), 6.40(\mathrm{~s}, 1 \mathrm{H}), 5.27(\mathrm{t}, 1 \mathrm{H}, J=8.0 \mathrm{~Hz}), 4.03(\mathrm{~s}, 1 \mathrm{H}), 3.83(\mathrm{~s}, 3 \mathrm{H}), 3.81(\mathrm{~s}$, $3 \mathrm{H}), 3.74(\mathrm{~d}, 1 \mathrm{H}, J=15.4 \mathrm{~Hz}), 3.02(\mathrm{~d}, 1 \mathrm{H}, J=15.4 \mathrm{~Hz}), 2.79-2.71(\mathrm{~m}, 1 \mathrm{H}), 2.57-2.44$ $(\mathrm{m}, 1 \mathrm{H}), 2.25-2.14(\mathrm{~m}, 1 \mathrm{H}), 1.51(\mathrm{~s}, 3 \mathrm{H}), 1.31-1.26(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( 100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 172.4,152.9,152.5,137.9,130.3,122.2,121.9,112.9,110.2,74.5,63.7,61.6$, 56.6, 55.9, 27.4, 25.1, 22.5, 21.3. $\mathrm{MS}\left(\mathrm{CI}, \mathrm{NH}_{3}\right) \mathrm{m} / \mathrm{z} 334\left(\mathrm{M}+\mathrm{NH}_{4}\right)^{+}, 318(\mathrm{M}+\mathrm{H})^{+}$; HRMS (CI) calcd. $\mathrm{C}_{18} \mathrm{H}_{24} \mathrm{O}_{5} \mathrm{~N}:\left(\mathrm{M}+\mathrm{NH}_{4}\right)^{+}, 334.1654$; found: $\left(\mathrm{M}+\mathrm{NH}_{4}\right)^{+}, 334.1648$.

## 7. OXIDATIVE DEPROTECTION OF 20.



CAN ( $188 \mathrm{mg}, 0.34 \mathrm{mmol})$ in $\mathrm{H}_{2} \mathrm{O}(1.0 \mathrm{~mL})$ was added dropwise to lactone 20 (43.6 $\mathrm{mg}, 0.138 \mathrm{mmol})$ in $\mathrm{MeCN}(2.0 \mathrm{~mL})$. After 10 min , the reaction mixture was extracted with $\mathrm{CHCl}_{3}(3 \times 20 \mathrm{~mL})$ and the combined organic layers were dried $\left(\mathrm{MgSO}_{4}\right)$ and rotary evaporated. The resulting oil was chromatographed (pentane:EtOAc 85:15) to yield 2 (27.2 $\mathrm{mg}, 69 \%$ ) as a yellow oil: $\mathrm{R}_{\mathrm{f}} 0.10$ (pentane:EtOAc 85:15); $[\alpha]_{\mathrm{D}}+42\left(c 0.77, \mathrm{CHCl}_{3}\right)$, (lit. ${ }^{2}$ -55 (c 0.15; $\mathrm{CHCl}_{3}$ )); IR (film) 1781, 1655, 1599, 1430, 1287, 1124, 1081, 1032; ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.95(\mathrm{~d}, 1 \mathrm{H}, J=10.0 \mathrm{~Hz}), 6.91(\mathrm{~d}, 1 \mathrm{H}, J=10.0 \mathrm{~Hz}), 6.05(\mathrm{~s}, 1 \mathrm{H}), 5.34$ $(\mathrm{m}, 1 \mathrm{H}), 3.97(\mathrm{~s}, 1 \mathrm{H}), 3.62(\mathrm{~d}, 1 \mathrm{H}, J=14.0 \mathrm{~Hz}), 2.95(\mathrm{~d}, 1 \mathrm{H}, J=14.0 \mathrm{~Hz}), 2.78-2.69(\mathrm{~m}$, $1 \mathrm{H}), 2.50-2.20(\mathrm{~m}, 2 \mathrm{H}), 1.50(\mathrm{~s}, 3 \mathrm{H}), 1.31-1.26(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $10.0 \mathrm{~Hz}), 5.94(\mathrm{~s}, 1 \mathrm{H}), 5.44-5.36(\mathrm{~m}, 1 \mathrm{H}), 4.41(\mathrm{~s}, 1 \mathrm{H}), 3.61(\mathrm{~d}, 1 \mathrm{H}, J=13.7 \mathrm{~Hz}), 2.93(\mathrm{~d}$, $1 \mathrm{H}, J=13.7 \mathrm{~Hz}), 2.64-2.56(\mathrm{~m}, 1 \mathrm{H}), 2.44-2.18(\mathrm{~m}, 2 \mathrm{H}), 1.52(\mathrm{~s}, 3 \mathrm{H}), 1.38-1.26(\mathrm{~m}$, 1 H ); MS (EI) m/z $286\left(\mathrm{M}^{+}\right)$; HRMS (EI) calcd. $\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{O}_{5}:\left(\mathrm{M}^{+}\right)$, 286.0841, found: $\left(\mathrm{M}^{+}\right)$, 286.0840.

## 8. DETERMINATION OF RELATIVE STEREOCHEMISTRY OF 18A AND 18B.

Silyl ether 18a was deprotected to provide diol 6, which was selectively esterified at the primary alcohol to form the para-nitrobenzoyl ester (22) as follows:


Diol 6 ( $41 \mathrm{mg}, 0.12 \mathrm{mmol}), \mathrm{Et}_{3} \mathrm{~N}(18 \mu \mathrm{~L}, 0.13 \mathrm{mmol})$ and 4-nitrobenzoyl chloride ( $24 \mathrm{mg}, 0.13 \mathrm{mmol}$ ) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL}$ ) were stirred for 30 min . After this time, saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(3 \mathrm{~mL})$ was added. The organic layer was washed with $\mathrm{H}_{2} \mathrm{O}(5 \mathrm{~mL})$ and brine $(5 \mathrm{~mL})$, dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and rotary evaporated. The resulting oil was chromatographed (hexane:EtOAc 80:20) to give 22 ( $78 \mathrm{mg}, 75 \%$ ) as pale yellow crystals: $\mathrm{R}_{f} 0.30$ ( $8: 2$, hexanes: EtOAc); IR (KBr) 3531, 1727, 1529, 1269, 1101, 719; ${ }^{1} \mathrm{H}$ NMR ( 500 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.31(\mathrm{~d}, 2 \mathrm{H}, J=8.9 \mathrm{~Hz}), 8.28(\mathrm{~d}, 2 \mathrm{H}, J=8.5 \mathrm{~Hz}), 6.81(\mathrm{~s}, 2 \mathrm{H}), 5.85(\mathrm{~m}$, $1 \mathrm{H}), 5.07(\mathrm{dd}, 1 \mathrm{H}, J=1.5 \mathrm{~Hz}, J=17.1 \mathrm{~Hz}), 5.01(\mathrm{dd}, 1 \mathrm{H}, J=10.1 \mathrm{~Hz}, J=1.1 \mathrm{~Hz}), 4.71$ $(\mathrm{m}, 3 \mathrm{H}), 4.69(\mathrm{~s}, 1 \mathrm{H}), 4.41(\mathrm{~s}, 1 \mathrm{H}), 4.18(\mathrm{~d}, 1 \mathrm{H}, J=11.0 \mathrm{~Hz}), 3.90(\mathrm{~s}, 3 \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H})$, $3.59(\mathrm{~d}, 1 \mathrm{H} ; J=17.1 \mathrm{~Hz}), 3.42(\mathrm{~d}, 1 \mathrm{H}, J=8.3 \mathrm{~Hz}), 3.23(\mathrm{~d}, 1 \mathrm{H}, J=16.8 \mathrm{~Hz}), 2.27-2.05$ $(\mathrm{m}, 3 \mathrm{H}), 1.79(\mathrm{~s}, 3 \mathrm{H}), 1.67(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 164.4,152.4,151.7$, $150.6,144.3,137.4,135.3,130.9,128.7,128.0,123.6,115.4,110.9,110.7,109.4,69.4$, 65.6, 64.6, 61.8, 56.4, 55.6, 33.3, 32.9, 28.9, 23.1; MS $\left(\mathrm{CI}, \mathrm{NH}_{3}\right) \mathrm{m} / \mathrm{z} 515\left(\mathrm{M}+\mathrm{NH}_{4}\right)^{+}, 498$ $(\mathrm{M}+\mathrm{H})^{+}$. The structure of $\mathbf{2 2}$ was determined by X-ray diffraction.


18b was a crystalline solid and its structure was confirmed by X-ray diffraction.


9. ${ }^{1}$ H AND ${ }^{13}$ C NMR SPECTRA OF ALL NEW COMPOUNDS.











68.0564










| $-33.4272$ <br> 28.786 |
| :---: |
|  |  |
|  |  |



132


- 33.2346
—— 27.5921
27.0907
$\square$
$\square$ 23.1186








## 10. Crystal and data structure.

Crystal data for 18b: $\mathrm{C}_{36} \mathrm{H}_{46} \mathrm{O}_{5} \mathrm{Si}, M=586.82$, triclinic, $P \overline{1}$ (no. 2), $a=9.5415(18), b=$ 13.767(2), $c=14.084(4) \AA, \alpha=88.852(18), \beta=72.68(2), \gamma=72.912(15)^{\circ}, V=1683.6(6)$ $\AA^{3}, Z=2, D_{\mathrm{c}}=1.158 \mathrm{~g} \mathrm{~cm}^{-3}, \mu(\mathrm{Cu}-\mathrm{K} \alpha)=0.921 \mathrm{~mm}^{-1}, T=173 \mathrm{~K}$, colourless blocky needles, Oxford Diffraction Xcalibur PX Ultra diffractometer; 6442 independent measured reflections, $F^{2}$ refinement, $R_{1}=0.045, w R_{2}=0.113,6291$ independent observed absorptioncorrected reflections $\left[\left|F_{\mathrm{o}}\right|>4 \sigma\left(\left|F_{\mathrm{o}}\right|\right), 2 \theta_{\max }=142^{\circ}\right], 386$ parameters. CCDC 618906.

Crystal data for 22: $\mathrm{C}_{27} \mathrm{H}_{31} \mathrm{NO}_{8}, M=497.53$, triclinic, $P \overline{1}$ (no. 2), $a=10.976(2), b=$ 11.368(2), $c=11.4464(18) \AA, \alpha=90.079(14), \beta=116.397(17), \gamma=101.338(15)^{\circ}, V=$ 1248.0(4) $\AA^{3}, Z=2, D_{\mathrm{c}}=1.324 \mathrm{~g} \mathrm{~cm}^{-3}, \mu(\mathrm{Mo}-\mathrm{K} \alpha)=0.098 \mathrm{~mm}^{-1}, T=173 \mathrm{~K}$, pale yellow shards, Oxford Diffraction Xcalibur 3 diffractometer; 7850 independent measured reflections, $F^{2}$ refinement, $R_{1}=0.042, w R_{2}=0.112,5981$ independent observed absorptioncorrected reflections $\left[\left|F_{\mathrm{o}}\right|>4 \sigma\left(\left|F_{\mathrm{o}}\right|\right), 2 \theta_{\max }=64^{\circ}\right], 330$ parameters. CCDC 618907.

Fig. S1 The molecular structure of 18b.

Fig. S2 The molecular structure of $\mathbf{1 8 b}$ ( $50 \%$ probability ellipsoids).

Fig. S3 The molecular structure of $\mathbf{2 2}$.

Fig. S4 The molecular structure of 22 (50\% probability ellipsoids).


Fig. S1


Fig. S2


Fig. S3


Fig. S4
${ }^{1}$ Bekele, T; Brunette, S. R.; Lipton, M. A. J. Org. Chem. 2003, 68, 8471.
${ }^{2}$ Arnone, A.; Cardillo, R.; Meille, S.V; Nasini, G.; Tollazi, M. J. Chem. Soc., Perkin Trans. 1 1994, 2165.

