Supporting Information

Synthesis and reactivity of the methylene arenium form of a benzyl cation, stabilized by complexation

Elena Poverenov¹, Gregory Leitus² & David Milstein^{*,1}

¹Department of Organic Chemistry and ²Unit of Chemical Research Support, The Weizmann Institute of Science, Rehovot 76100, Israel

General Procedures

All experiments with metal complexes and phosphine ligands were carried out under an atmosphere of purified nitrogen in a Vacuum Atmospheres glove box equipped with an MO 40-2 inert gas purifier, or using standard Schlenk techniques. All solvents were reagent grade or better. All non-deuterated solvents were refluxed over sodium/benzophenone ketyl and distilled under an argon atmosphere. Deuterated solvents were used as received. All the solvents were degassed with argon and kept in the glovebox over 4 Å molecular sieves. Commercially available reagents were used as received. The precursor (tmeda)Pd(BHT-OSiMe₃)Br was prepared according to a literature procedure. NMR spectra were recorded at 400(¹H), 100 (¹³C) and 162 (³¹P) MHz using a Bruker AMX-400 NMR spectrometer and at 500 (¹H), 126 (¹³C), 202 (³¹P) using Bruker DPX 500 spectrometer. All spectra were recorded at 23 °C unless otherwise specified. ¹H NMR and $^{13}C{^{1}H}$ NMR chemical shifts are reported in parts per million downfield from tetramethylsilane. ¹H NMR chemical shifts were referenced to the residual hydrogen signal of the deuterated solvents (2.09 ppm, toluene; 5.32 CH₂Cl₂ and 7.24 ppm, CDCl₃). In ${}^{13}C{}^{1}H$ NMR measurements the signals of d⁸-toluene (20.09 ppm), CD₂Cl₂ (53.80 ppm) and CDCl₃ (77.00 ppm) were used as a reference. ³¹P NMR chemical shifts are reported in ppm downfield from H₃PO₄ and referenced to an external 85% solution of phosphoric acid in D₂O. Screw-cap 5 mm NMR tubes were used in the NMR follow-up experiments. Abbreviations used in the description of NMR data are as follows: s, singlet; d, doublet; dd, double doublet; t, triplet; m, multiplet.

Preparation of (dtpp)Pd(QM) (2)

To a THF solution (1 mL) of complex **1** (40 mg, 0.07 mmol), pre-cooled to $-30 \,^{\circ}$ C, was added a THF solution (1 mL) of the dtpp ligand (25 mg, 0.08 mmol) pre-cooled to $-30 \,^{\circ}$ C and the reaction mixture was kept at $-30 \,^{\circ}$ C for 30 min. The solvent was evaporated and the resulting yellow solid was washed with pentane and dissolved in ether. Evaporation of the solvent yielded 36 mg (0.06 mmol, 79 % yield) of **2**.

³¹P{¹H} NMR (d⁸-toluene): 50.48 (d, $J_{P-P} = 7 \text{ Hz}$), 40.75 (d, $J_{P-P} = 7 \text{ Hz}$). ¹H NMR (d⁸-toluene): 6.72 (s, 2H, QM-ring), 2.97 (t, $J_{P-H} = 6 \text{ Hz}$, 2H, exocyclic), 1.68 (s, 18 H, tBu-QM), 1.38 (d, $J_{H-H} = 4 \text{ Hz}$, 2H, dtpp), 1.26 (m, 2H, dtpp), 1.14 (m, 2H, dtpp), 1.00 (d, $J_{P-H} = 12 \text{ Hz}$, 18 H, tBu-dtpp), 0.90 (d, $J_{P-H} = 12 \text{ Hz}$, 18 H, tBu-dtpp). ¹³C{¹H} NMR (d⁸-toluene): 184.09 (d, $J_{P-C} = 4 \text{ Hz}$, C=O), 141.92 (d, $J_{P-C} = 3 \text{ Hz}$, QM-ring), 139.14 (dd, $J_{P-C} = 3 \text{ Hz}$, 1 Hz, QM-ring), 77.65 (dd, $J_{P-C} = 2 \text{ Hz}$, 2 Hz, C=CH₂), 49.01 (dd, J_{P-C} = 31 Hz, 1 Hz, exocyclic), 36.17 (dd, J_{P-C} = 5 Hz, 3 Hz, C(CH₃)₃dtpp), 35.38 (d, J_{P-C} = 1 Hz, C(CH₃)₃-QM), 35.12 (dd, J_{P-C} = 6 Hz, 1 Hz, C(CH₃)₃-dtpp), 30.14 (d, J_{P-C} = 9 Hz, C(CH₃)₃-dtpp), 29.94 (d, J_{P-C} = 5 Hz, C(CH₃)₃-dtpp), 29.93 (s, C(CH₃)₃-QM), 24.02 (t, J_{P-C} = 5 Hz, dtpp), 21.96 (dd, J_{P-C} = 7 Hz, 3 Hz, dtpp), 21.48 (dd, J_{P-C} = 10 Hz, 2 Hz, dtpp). (Assignment of ¹³C{¹H} NMR signals was confirmed by ¹³C DEPT). **ES-MS**: m/z⁺ 657.81 (M-1) [calc. 658.20].

Characterization of 2 in CD₂Cl₂ (for comparison with the methylene arenium complex 3):

³¹P{¹H} NMR (CD₂Cl₂): 51.75 (d, J_{P-P} = 14 Hz), 40.55 (d, J_{P-P} = 14 Hz). ¹H NMR (CD₂Cl₂): 6.57 (s, 2H, QM-ring), 2.90 (dd, J_{P-H} = 6 Hz, 5Hz, 2H, exocyclic), 1.45 (m, 2H, dtpp), 1.38 (m, 2H, dtpp), 1.35 (m, 2H, dtpp), 1.29 (d, J_{P-H} = 12 Hz, 18 H, tBu-dtpp), 1.28 (s, 18 H, tBu-QM), 0.99 (d, J_{P-H} = 12 Hz, 18 H, tBu-dtpp). ¹³C{¹H} NMR (CD₂Cl₂): 183.57 (d, J_{P-C} = 3 Hz, C=O), 141.19 (d, J_{P-C} = 2 Hz, QM-ring), 139.35 (dd, J_{P-C} = 3 Hz, 1 Hz, QM-ring), 78.12 (dd, J_{P-C} = 12 Hz, 5 Hz, C=CH₂), 47.67 (d, J_{P-C} = 33 Hz, exocyclic), 36.90 (dd, J_{P-C} = 7 Hz, 4 Hz, C(CH₃)₃dtpp), 35.27 (d, J_{P-C} = 6 Hz, C(CH₃)₃-dtpp), 34.94 (s, C(CH₃)₃-QM), 30.30 (d, J_{P-C} = 12 Hz, C(CH₃)₃-dtpp), 30.27 (d, J_{P-C} = 15 Hz, C(CH₃)₃-dtpp), 29.46 (s, C(CH₃)₃-QM), 27.02 (d, J_{P-C} = 5 Hz, dtpp), 23.10 (dd, J_{P-C} = 10 Hz, 2 Hz, dtpp), 21.99 (dd, J_{P-C} = 7 Hz, 3 Hz, dtpp). **IR** (film): 1600.5 cm⁻¹.

Preparation of (dtpp)Pd(methylene arenium) (3)

To a CD_2Cl_2 solution (1 mL) of (dtpp)Pd(QM) **2** (30 mg, 0.05 mmol) pre-cooled to -30 °C, was added 5 µL of MeOTf (0.05 mmol). The reaction mixture was kept at -30 °C for 10 min and then warmed up to room temperature. After 1 h the ³¹P{¹H} NMR spectrum revealed quantitative formation of complex **3**. Yellow X-ray quality crystals of **3** were obtained by slow diffusion of pentane into a solution of **3** in toluene at – 20^o C.

Slow conversion of **3** to **4** takes place at room temperature. Complex **3** was characterized at -30 °C.

³¹P{¹H} NMR (CD₂Cl₂): 52.91 (d, $J_{P-P} = 20 \text{ Hz}$), 39.05 (d, $J_{P-P} = 20 \text{ Hz}$). ¹H NMR (CD₂Cl₂): 6.59 (bs, 2H, MA-ring), 4.22 (s, 3H, O-CH₃), 2.97 (dd, $J_{P-H} = 6 \text{ Hz}$, $J_{P-H} = 1 \text{ Hz}$, 2H, exocyclic), 1.89 (m, 2H, dtpp), 1.65 (m, 2H, dtpp), 1.53 (m, 2H, dtpp), 1.26 (s, 18 H, tBu), 1.24 (d, $J_{P-H} = 12 \text{ Hz}$, 18 H, tBu-dtpp), 0.92 (d, $J_{P-H} = 12 \text{ Hz}$, 18 H, tBu-dtpp). ¹³C{¹H} NMR (CD₂Cl₂): 166.08 (dd, $J_{P-C} = 7 \text{ Hz}$, 1 Hz, C-O-CH₃ of MA-ring), 139.88 (s, *ortho* of MA- ring), 129.14 (s, *meta* of MA-

ring), 107.51 (bd, $J_{P-C} = 6$ Hz, $C=CH_2$), 62.89 (s, C-O-CH₃), 45.89 (d, $J_{P-C} = 34$ Hz, exocyclic), 36.70 (d, $J_{P-C} = 10$ Hz, $C(CH_3)_3$ -dtpp), 34.55 (d, $J_{P-C} = 10$ Hz, $C(CH_3)_3$ -dtpp), 34.48 (s, $C(CH_3)_3$ -MA), 29.77 (d, $J_{P-C} = 5$ Hz, $C(CH_3)_3$ -dtpp), 29.60 (d, $J_{P-C} = 5$ Hz, $C(CH_3)_3$ -dtpp), 28.96 (s, $C(CH_3)_3$ -MA), 23.39 (m, dtpp), 21.40 (t, $J_{P-C} = 8$ Hz, dtpp), 20.64 (d, $J_{P-C} = 11$ Hz, dtpp). (Assignment of ${}^{13}C{}^{1}H$ NMR signals was confirmed by ${}^{13}C$ DEPT and C-H correlation measurements).

Formation of (dtpp)Pd(benzyl)(triflate) (4)

When complex **3** was allowed to stand at room temperature (in CD_2Cl_2), the ³¹P{¹H} NMR spectrum revealed formation of the new complex **4**. Complex **4** continued to grow and after 7 h 70 % of **4** (with 30 % of complex **3**) were observed. The relative amounts of complexes **3** and **4** remained unchanged after 3 h.

³¹P{¹H} NMR (CD₂Cl₂): 69.10 (d, J_{P-P} = 42 Hz), 42.92 (d, J_{P-P} = 42 Hz). ¹H NMR (CD₂Cl₂): 6.79 (s, 2H, Ar), 3.80 (s, 3H, O-CH₃), 2.95 (dd, J_{P-H} = 8 Hz, 1Hz, 2 H, Pd-CH₂), 2.07 (m, 2 H, dtpp), 2.08 (m, 2 H, dtpp), 1.70 (m, 2 H, dtpp), 1.43 (s, 18 H, tBu), 1.42 (d, J_{P-H} = 12 Hz, 18 H, tBu-dtpp), 0.99 (d, J_{P-H} = 12 Hz, 18 H, tBu-dtpp). ¹³C{¹H} NMR (CD₂Cl₂): 147.98 (d, J_{P-C} = 6 Hz, C-O-CH₃ of benzylic ring), 136.12 (s, benzylic ring), 128.32 (d, J_{P-C} = 18 Hz, benzylic ring), 125.45 (d, J_{P-C} = 17 Hz, benzylic ring), 64.60 (d, J_{P-C} = 5 Hz, C-O-CH₃), 40.70 (dd, J_{P-C} = 42 Hz, 9 Hz, Pd-CH₂), 39.50 (d, J_{P-C} = 15 Hz, C(CH₃)₃-dtpp), 36.08 (s, C(CH₃)₃), 34.95 (d, J_{P-C} = 12 Hz, C(CH₃)₃-dtpp), 31.55 (s, C(CH₃)₃), 30.76 (d, J_{P-C} = 4 Hz, C(CH₃)₃-dtpp), 29.95 (d, J_{P-C} = 6 Hz, C(CH₃)₃-dtpp), 22.78 (d, J_{P-C} = 5 Hz, dtpp), 21.82 (t, J_{P-C} = 8 Hz, dtpp), 20.52 (d, J_{P-C} = 15 Hz, dtpp). (Assignment of ¹³C{¹H} NMR signals was confirmed by ¹³C DEPT and C-H correlation measurements). **ES-MS**: m/z⁺ 671.81 (M-OTf) [calc. 671.81], m/z⁻ 148.94 (OTf) [calc. 149.07].

Note: It is not clear if **3** and **4** are in equilibrium. Spin Saturation Transfer studies did not show any evidence of it, and upon prolonged standing at room temperature side reactions of the remaining **3** to give other (different from **4**) compounds took place.

Reaction of complex 3 with water and Et₃N

To a CD₂Cl₂ solution (1.5 mL) of complex **2** (60 mg., 0.092 mmol) was added 10.4 μ L (0.092 mmol) of MeOTf at -30 °C. After keeping the reaction mixture at room temperature for 1.5 h, ³¹P and ¹³C NMR spectra revealed formation of complex **3** as a major product with minor signals of the benzyl complex **4**. 80 μ L (4.6 mmol, 50 equiv) of H₂O were added at room temperature followed after 5 min by addition of Et₃N (12 μ L, 0.092 mmol). ³¹P and ¹³C NMR revealed formation of the initial complex **2** as a major product, while the benzyl complex **4** remained unchanged.

Methylene arenium release

To a CD_2Cl_2 solution (1.5 mL) of complex **2** (30 mg, 0.046 mmol) was added 5.2 µL (0.046 mmol) of MeOTf at -30 °C. After keeping the reaction mixture at room temperature for 1.5 h, ³¹P and ¹³C NMR revealed formation of complex **3** as a major product, together with minor signals of the benzyl complex **4**. 100 equiv of H₂O (4.6 mmol, 80 µL) were added, followed by addition after 5 min of a CD_2Cl_2 solution of diphenyl acetylene (0.046 mmol, 8.2 mg). The released methylene arenium reacted with water to give 3, 5-di-*tert*-butyl-4-hydroxybenzyl alcohol, which was detected by GC/MS, giving an identical fragmentation pattern to that of an authentic sample. ³¹P NMR spectrum of the solution revealed formation of (dtpp)Pd(diphenylacetylene), **5** in 30 % yield. (Rearrangement to the benzyl complex **4** remained unchanged).

Characterization of complex 5:

³¹P{¹H} NMR (CDCl₃): 46.55 (s). ¹H NMR (CDCl₃): 7.62 – 7.00 (10 H, Ar), 2.19 (m, 2 H, dtpp), 2.04 (m, 4 H, dtpp), 1.17 (d, $J_{P-H} = 12$ Hz, 36 H, tBu-dtpp). ¹³C{¹H} NMR (CDCl₃): 141.55 (t, $J_{P-C} = 2$ Hz, C_{ipso}), 128.88 (s, C_{ortho}), 126.91 (s, C_{meta}), 124.07 (s, C_{para}), 122.64 (dd, J_{P-C} trans = 67 Hz, J_{P-C} cis = 2 Hz, C=), 34.57 (d, $J_{P-C} = 11$ Hz, C(CH₃)₃-dtpp), 30.95 (d, $J_{P-C} = 8$ Hz, C(CH₃)₃-dtpp), 23.59 (dd, $J_{P-C} = 13$ Hz, $J_{P-C} = 4$ Hz, dtpp), 21.79 (dd, $J_{P-C} = 7$ Hz, $J_{P-C} = 3$ Hz, dtpp). (Assignment of the ¹³C{¹H} NMR signals was confirmed by ¹³C DEPT). **IR** (film): 1818.14 cm⁻¹. **ES-MS**: m/z⁺ 617.88 (M+1) [calc. 617.75].

X ray structure determination and refinement of complexes 2 and 3.

The crystals were mounted in a nylon loop and flash frozen in a cold nitrogen stream (120 K) on a Nonius Kappa CCD with Mo K α radiation ($\lambda = 0.71073$ Å). Accurate unit cell dimensions were obtained from 20° of data. The data were processed with the Denzo-Scalepack package. The structure was solved by direct methods, (Shelxs-97) and refined by full-matrix least-squares based on F² with Shelx1-97.

Complex No.	Complex 3	Complex 2
Empirical formula	C36H67F3O4P2S1Pd1 (C35H67O1P2Pd1 + S1F3C1O3)	C34H64O1P2Pd1
Fw	821.30	657.19
Z	2	2
Crystal system	monoclinic	triclinic
Space group	P2(1)	P-1
Unit cell		
a/Å	10.963(2)	9.338(2)
b/Å	13.760(3)	11.847(2)
c/Å	13.558(3)	17.238(2)
α/deg		79.13 (3)
β/deg	103.21(1)	76.00(3)°
γ/deg		73.19 (3)
$D_c (Mg/m^3)$	1.370	1.242
μ (MoK α) /mm ⁻¹	0.648	0.642
Crystal size /mm ³	0.7 x 0.3 x 0.3	0.8 x 0.2 x 0.2
Total/ independent	16370/ 4725	38188/ 8033
reflections		
Parameters/restraints	444/ 1	361 / 0
Final R1 (based on F ²) for	0.0339	0.0340

data with $I > 2\sigma(I)$		
R _{int}	0.039	0.039
R_1, wR_2	0.0385, 0.0823	0.0389, 0.0787
Goodness-of -fit on F^2	1.079	1.138
Largest electron density	1.294	1.248
peak (e/Å ³)		