Supporting information

Thermal Formation of Homochiral Serine Clusters

Pengxiang Yang¹, Ruifeng Xu², Sergio C. Nanita¹, and R. Graham Cooks^{1*}

¹Department of Chemistry, Purdue University, West Lafayette, IN 47906, US ²National Research Center for Certified Reference Materials, Beijing 100013, China

Prepared for J. Am. Chem. Soc.

*Corresponding author

R. Graham Cooks

Department of Chemistry, Purdue University

560 Oval Drive

West Lafayette, IN 47907-2084

Telephone: (765) 494-5262

Fax: (765) 494-9421

Email: cooks@purdue.edu

Figure Captions

Figure s1 Apparatus used to generate amino acid clusters by (a) electrospray and (b) sonic spray

Figure s2 Absolute ion abundance of amino acid clusters generated by sublimation/APCI at heated capillary temperatures of 150 $^{\circ}$ C

Figure s3 Ion chronogram of serine octamer, $[Ser_8+H]^+$, generated from solid L-serine at various heating rates from 0.5 °C/s up to 3 °C/s

Figure s4 Ion chronogram of serine octamer, $[Ser_8+H]^+$, generated from (a) the homochiral mixture (L-Ser/L-Thr) and (b) the heterochiral mixture (D-Ser/L-Thr), and the corresponding mass spectra. The clusters are labeled by their component units (# of L/D-serines + # of L-threonines).

Figure s5 Ion chronogram of the serine/cysteine octamer, $[Ser_7Cys_1+H]^+$, generated from (a) the homochiral mixture (L-Ser/L-Cys) and (b) the heterochiral mixture (D-Ser/L-Cys), and the corresponding mass spectra. The clusters are labeled by their component units (# of L/D-serines + # of L-cysteines). (The starred peaks are serine octamers substituted by serine pyrolysis products.)

Figure s6 Ion chronogram of the serine/tryptophan octamer, $[Ser_7Trp_1+H]^+$, generated from (a) the homochiral mixture (L-Ser/L-Trp) and (b) the heterochiral mixture (D-Ser/L-Trp), and the corresponding mass spectra. The clusters are labeled by their component units (# of L/D-serines + # of L-tryptophans). (The starred peaks are serine octamers substituted by serine pyrolysis products.)

Figure s7 Gas chromatography and mass spectra of the derivatized pyrolysis products from the thermal sublimation of L-serine (EA represents ethanolamine.)

Figure s8 Gas chromatography and mass spectra of the derivatized standard mixture, D/L-alanine, glycine and D/L-serine

Figure s9 Sublimation/APCI mass spectrum of mixtures of L-alanine and L-serine at 220 ^oC with a varied mol ratio of (a) 1:1 (b) 1:5 and (c) 1:10. The clusters are labeled by their component units (# of L-alanines + # of L-serines).

Table Caption

Table s1 Clustering of amino acids via sublimation/APCI at heated capillary temperatures of 50 $^{\circ}$ C and 150 $^{\circ}$ C

Figures

Figure s1.

Figure s2

Heated temperature of 150 oC

(a) L-serine : L-cysteine (20 : 1)

Figure s7

TIC: 2.04E6

m/z = 939 - 941

(a) L-serine : L-tryptophan (1 : 1)

1003

80

60

40

20

0 1 50

750

100

220 °C

800

Relative Ion Abundance

(b) D-serine : L-tryptophan (1 : 1)

TIC: 5.65E5 m/z = 939 - 941

<u>~~</u> S5

1050

[Ser₇Trp₁+H]⁺

Figure s9

Temperature of Heated Capillary (°C)	Amino Acids	Optimum Clustering Temperature (°C)	Relative abundance of protonated clusters observed showing size n											
			1	2	3	4	5	6	7	8	9	10	11	12
50	L-Ser	220	38	50						100				
	L-Thr	230	42	18	8	26	10			100				
	L-Pro	200	100	53	22	89	23	22	5				13	28
	L-Ala	200	57	100	63	35	19							
	L-Val	205	100	81	29	77	11							
	L-Lue	210	100	63	14	19								
	L-lle	210	100	38	27	99	22	8	10					
	L-Met	230	100	44	7	31								
	L-Cys	200	100	56	5									
	L-Lys	210	100	42	29	29								
150	L-Ser	220	29	68						100				
	L-Thr	230	45	100						33				
	L-Pro	200	41	100	7	64	12	6						
	L-Ala	200	21	100										
	L-Val	205	7	100	5	15								
	L-Lue	210	19	100		19								
	L-lle	210	32	100		20								
	L-Met	230	100	23	6									
	L-Cys	200	100	96										
	L-Lys	210	100	28										

Table s1 Clustering of amino acids via sublimation/APCI at heated capillary temperatures of 50 $^{\circ}C$ and 150 $^{\circ}C$