SUPPORTING INFORMATION ## Binding of Intercalating and Groove-binding Dyes to Bacteriophage T5 Maja Eriksson*, Maria Härdelin*, Anette Larsson*, Johan Bergenholtz[†], and Björn Åkerman*[‡] *Department of Chemical and Biological Engineering, Chalmers University of Technology †Department of Chemistry, Göteborg University, Sweden. #### A. Gel Scan of a FIGE Gels on Proteinase Release of DNA. - 1. Field-inversion electrophoretic analysis in agarose gels (Fig. S1) show that complete release of the DNA is achieved after 6h of proteinase digestion, and that 1% of the DNA is present as free polymer in the native phage sample (Fig. S2). The observation on the fraction of free DNA is in good agreement with that 2.5% of the total DNA is free in our phage preparation, as obtained from our fits of the data on fluorescence incubation kinetics (Fig. 2 of main article). That the proteinase-induced release of the T5-DNA is complete after 6h is supported by the observation that the light scattering intensity after this incubation time (15% of the scattering intensity of native phages according to Fig. 9d of main text) is in very good agreement with the 16% intensity which was observed after complete DNA-ejection as catalyzed by the T5-receptor FhuA ¹. - 2. Considerably longer incubation times than 6 h led to degradation of the T5-DNA bands, possibly due to presence of DNAse in the proteinase K solution (Fig. S1, sample 11). **Figure S1.** Proteinase-induced release of bacteriophage T5-DNA. The samples were incubated with at 56° C for 0-24 hours (increasing incubation time from left to right) and post-stained with EB after field inversion electrophoresis at 7.5 V/cm for 7 hours. Samples 8 and 11 indicate the DNA-samples which were incubated for 6 and 24 hours, respectively, and samples 12 and 13 are HindIII-digested λ -DNA (23.1-2.0 kbp). [‡]Corresponding author: Telephone: +46-(0)31-7723052, Fax: +46-(0)31-7723858, Email: baa@chalmers.se **Figure S2.** Normalized emission of the phage T5 DNA-bands (samples 1-8) in Fig. S1. Emission intensities were normalized for the intensity at 6 hours. #### B. Fitted Kinetic Constants. Table S1. Effect of ionic strength on association of YO-PRO to T5 phage. | | 0 | | 1 0 | | |-------------------|----------------------|----------------------|----------------------|----------------------| | [NaCl] | 50 mM | 150 mM | 500 mM | 1 M | | $k_1 (s^{-1})^a$ | 1.1×10^{-3} | 2.4×10^{-3} | 5.2×10^{-3} | 1.5x10 ⁻² | | $k_2 (s^{-1})^a$ | 2.4×10^{-4} | 4.4×10^{-4} | 1.3×10^{-3} | 1.6×10^{-4} | | $A_1/(A_1+A_2)^a$ | 0.41 | 0.41 | 0.47 | 0.92 | | $K_{rel}^{[b]}$ | 0.27 ± 0.02 | 0.24 ± 0.03 | 0.23 ± 0.01 | 0.31 ± 0.01 | ^aRate constants (k_1, k_2) and amplitudes (A_1, A_2) obtained from fits to Eq. 1. # C. Excitation Spectra of YO-PRO and BOXTO-PRO Bound to Phage T5. Normalized excitation spectra for YO-PRO and BOXTO-PRO bound to both phage T5 and extracted T5-DNA are shown in Figure S3. For YO-PRO the two spectra are completely superimposed indicating that YO-PRO bind in same way to DNA inside phage capsids and to T5-DNA in free solution. For BOXTO-PRO the spectra are not completely superimposable. A shoulder on the high energy side of the spectrum is seen when BOXTO-PRO is bound to phage T5, but not when bound to extracted T5-DNA, indicating a difference in the binding modes for BOXTO-PRO when bound to packaged and free T5-DNA. ^bRatio between the final intensities with phages and with extracted T5-DNA, after correction for free DNA in the phage sample (average values and standard errors of n measurements, n= 3-4). **Figure S3.** Normalized excitation spectra measured of **a.** YO-PRO and **b.** BOXTO-PRO bound to phage T5 (dashed lines) after 3 and 24 hours, respectively, and same dyes bound to extracted T5-DNA (solid lines). [DNA bp]= $1.92 \mu M$, [dye] = $1.22 \mu M$. Emission measured at 530 nm and 580 nm for YO-PRO and BOXTO-PRO, respectively. # References (1) De Frutos, M.; Letellier, L.; Raspaud, E. *Biophys. J.* **2005**, 88, 1364.