Supporting information for:

Catalytic Asymmetric Inverse-Electron-Demand Diels-Alder

Reactions of N-Sulfonyl-1-Aza-1,3-dienes

Jorge Esquivias, Ramón Gómez Arrayás* and Juan C. Carretero*

Departamento de Química Orgánica. Facultad de Ciencias. Universidad Autónoma de Madrid. 28049. Madrid. Spain.

juancarlos.carretero@uam.es; ramon.gomez@uam.es

Table of Contents

Experimental Section	S 3
General methods	S 3
General procedure for the synthesis of the sulfonyl imines of chalcones	S 3
General procedure for the asymmetric inverse electron demand ADAR	S6
General procedure for the preparation of the tetracyclic compounds 30-32	S14
Determination of the stereochemistry of the products	S16
NMR-Spectra	S19
X-ray data for compound I	S52
X-ray data for compound 32b	S63

Experimental Section

General methods.

Melting points were taken in open-end capillary tubes. NMR spectra were recorded [300 MHz (¹H), 75 MHz (¹³C)] at room temperature in CDCl₃ calibrated at 7.26 ppm (¹H) or 77.0 ppm (¹³C). Mass spectra (MS) were determined at an ionizing voltage of 70 eV. All the reactions were carried out in anhydrous solvents and under argon atmosphere. CH_2Cl_2 and CH_3CN were dried and stored over microwave-activated 4Å molecular sieves. Flash column chromatography was performed using silica gel (230-400 mesh). Enantiomeric excesses were determined by HPLC using Chiralpak AD (0.46 cm x 25 cm) and Chiralpak AS (0.46cm x 25 cm) as the chiral stationary phases.

General procedure for the synthesis of the sulfonyl imines of chalcones.¹

To a solution of sulfonamide (5.0 mmol) and α , β -unsaturated ketone (5.0 mmol) in CH₂Cl₂ (15 ml), cooled to 0 °C, were successively added Et₃N (10 mmol) and TiCl₄ (5.0 mmol). The reaction mixture was heated at reflux overnight. Then the solution was cooled to room temperature, quenched with water (100 ml) and extracted with CH₂Cl₂ (3x 30 ml). The combined organic phase was dried (Na₂SO₄) and evaporated. The residue was purified by flash chromatography to afford pure α , β -unsaturated ketimines. Imines **1a**, **1b**, **1c** and **1d** were described in a previous paper²

(E)-1,3-Diphenyl-N-[(8-quinolyl)sulfonyl]prop-2-en-1-imine (1e).

Chromatography: *n*-hexane-EtOAc 2:1. Yield: 76%. White solid; mp= 150-151 °C. ¹H NMR: δ 9.09 (dd, *J*= 4.0 and 1.4 Hz, 1H), 8.59 (bs, 1H), 8.19 (dd, *J*= 8.2 and 1.3 Hz 1H), 7.99 (d, *J*= 7.9 Hz, 1H), 7.75-7.20 (m, 13H), 7.06 (d, *J*= 16.1 Hz, 1H). ¹³C NMR: δ 177.3, 151.2, 148.4, 143.9, 137.8,

136.2, 134.5, 133.6, 130.8, 130.5, 128.8, 128.5, 128.1, 125.1, 121.8. MS (FAB+) m/z 399.1 (M^+ +H, 100). FAB+ HRMS for $C_{24}H_{19}N_2O_2S$ (M^+): Calcd: 399.11672. Found: 399,11659.

(E)-3-(4-Fluorophenyl)-1-phenyl-N-[(8-quinolyl)sulfonyl]prop-2-en-1-imine (6e).

Chromatography: *n*-hexane-EtOAc 2:1. Yield: 71%.White solid; mp= 164-165 °C. ¹H NMR: δ 9.01 (dd, *J*= 4.2 and 1.8 Hz, 1H), 8.51 (bs, 1H), 8.13 (dd, *J*= 8.4 and 1.7 Hz 1H), 7.95 (dd, *J*= 8.3 and 1.2 Hz, 1H), 7.60-

¹ (a) Ram, R. N.; Khan, A. A. Synth. Commun. **2001**, 31, 841. (b) Sandrinelli, F.; Perrio S.; Belsin P. J. Org. Chem. **1997**, 62, 8626. (c) Jennings, W. B.; Lovely, C. J. Tetrahedron **1991**, 29, 5561.

² Esquivias, J.; Gómez Arrayás, R.; Carretero, J. C. J. Org. Chem. 2005, 70, 7451

7.40 (m, 7H), 7.35-7.22 (m, 5H), 6.95 (d, J= 16.1 Hz, 1H). ¹³C NMR: δ 176.1, 151.3, 148.4, 144.1, 137.8, 136.3, 134.5, 133.8, 131.1, 130.7, 129.0, 128.7, 128.6, 125.3, 122.0. MS (FAB+) m/z 417.0 (M⁺ +H, 100). FAB+ HRMS for C₂₄H₁₈FN₂O₂S (M⁺): Calcd: 417.10730. Found: 417.10821.

(E)-3-(2-Naphthyl)-1-phenyl-N-[(8-quinolyl)sulfonyl]prop-2-en-1-imine (7e).

Chromatography: n-hexane-EtOAc 2:1. Yield: 71%. Yellow solid; mp= 168-170 °C. ¹H NMR: δ 8.99 (dd, J= 4.2 and 1.7 Hz, 1H), 8.50 (bs, 1H), 8.14 (dd, J= 8.3 and 1.7 Hz 1H), 7.87 (dd, J= 8.0 and 1.0 Hz, 1H), 7.84-7.20 (m, 15H), 7.11 (d, J= 16.1 Hz, 1H). ¹³C NMR: δ 177.4, 151.3,

148.7, 144.1, 138.0, 136.3, 134.5, 133.7, 133.2, 132.3, 130.8, 130.7, 128.9, 128.8, 128.7, 128.2, 127.8, 127.6, 126.8, 125.3, 123.9, 122.0. MS (FAB+) m/z 449.0 (M⁺ +H, 42). FAB+ HRMS for C₂₈H₂₁N₂O₂S (M⁺+1): Calcd: 449.13237. Found: 449.13098.

(E)-3-(4-Methoxyphenyl)-1-phenyl-N-[(8-quinolyl)sulfonyl]prop-2-en-1-imine (8e).

Chromatography: n-hexane-EtOAc 2:1. Yield: 68%. Yellow solid; mp= 78-80 °C. ¹H NMR: δ 9.00 (dd, J= 4.2 and 1.7 Hz, 1H), 8.48 (bs, 1H), 8.07 (dd, J= 8.3 and 1.7 Hz 1H), 7.88 (d, J= 7.0, 1H), 7.54-7.20 (m, 10H), 6.92 (d, J= 16.1 Hz, 1H), 6.78 (d, J= 8.7 Hz, 2H) 3.71 (s, 3H).

¹³C NMR: δ 177.7, 162.1, 151.3, 148.9, 144.1, 138.2, 136.3, 133.6, 130.8, 130.6, 130.0, 129.0, 128.2, 128.1, 125.2, 121.9, 114.5, 55.5.

(E)- 3-(2-Furyl)-1-phenyl-N-[(8-quinolyl)sulfonyl]prop-2-en-1-imine (9e).

Chromatography: n-hexane-EtOAc 2:1. Yield: 71%. Yellow solid; mp= 168-170 °C. ¹H NMR: δ 9.03 (dd, J= 4.2 and 1.7 Hz, 1H), 8.50 (bs, 1H), 8.12 (dd, J= 8.3 and 1.7 Hz 1H), 7.94 (d, J= 8.2 Hz, 1H), 7.6-7.20 (m, 9H), 6.74 (d, J= 16.1 Hz, 1H), 6.57 (d, J= 3.4 Hz, 1H), 6.41 (dd, J= 3.4 and 1.8 Hz, 1H). ¹³C NMR: δ 176.9, 151.3, 151.2, 146.0, 144.1, 138.3, 136.2, 134.5, 133.6, 131.2,

130.7, 129.8, 128.9, 128.1, 125.2, 121.9, 116.6, 112.8.

(E)-4,4-Dimethyl-1-phenyl-N-[(8-quinolyl)sulfonyl]pent-2-en-1-imine (10e).

Chromatography: n-hexane-EtOAc 2:1. Yield: 76%. White solid; mp= 148-150 °C. ¹H NMR: δ 9.09 (dd, J= 4.0 and 1.6 Hz, 1H), 8.59 (bs, 1H), 8.21 (dd, J= 8.4 and 1.3 Hz 1H), 8.03 (d, J= 8.1 Hz, 1H), 7.70-7.30 (m, 8H), 6.03 (d, J = 16.1 Hz, 1H), 1.08 (s, 9H). ¹³C NMR: δ 178.2, 163.6, 151.4, 144.1, 138.3,

136.2, 133.6, 130.7, 128.9, 128.0, 125.3, 121.9, 34.9, 28.6.

(E)-1-(4-Chlorophenyl)-3-phenyl-N-[(8-quinolyl)sulfonyl]prop-2-en-1-imine (11e).

Chromatography: *n*-hexane-EtOAc 2:1. Yield: 78%. White solid; mp= 130-132 °C. ¹H NMR: δ 9.01 (dd, *J*= 4.2 and 1.8 Hz, 1H), 8.51 (bs, 1H), 8.13 (dd, *J*= 8.4 and 1.7 Hz 1H), 7.95 (dd, *J*= 8.3 and 1.2 Hz, 1H), 7.59-7.40 (m, 6H), 7.35-7.23 (m, 7H), 6.95 (d, *J*= 16.1 Hz, 1H). ¹³C NMR: δ

176.1, 151.3, 148.4, 144.1, 137.8, 136.3, 134.5, 133.8, 131.1, 130.7, 129.0, 128.7, 128.5, 125.3, 122.0.

(*E*)-3-Phenyl-*N*-[(8-quinolyl)sulfonyl]-1-[4-(trifluoromethyl)phenyl]prop-2-en-1-imine (12e).

Chromatography: *n*-hexane-EtOAc 2:1. Yield: 71%. Yellow solid; mp= 78-80 °C. ¹H NMR: δ 9.02 (dd, *J*= 4.3 and 1.9 Hz, 1H), 8.54 (bs, 1H), 8.14 (dd, *J*= 8.3 and 1.1 Hz 1H), 7.97 (d, *J*= 8.3 Hz, 1H), 7.60-7.28 (m, 12H), 6.95 (d, *J*= 16.1 Hz, 1H). ¹³C NMR: δ 175.9, 151.4, 149.3, 144.1,

137.8, 136.4, 134.4, 134.0, 131.4, 130.8, 129.1, 128.9, 128.6, 125.4, 122.1. MS (FAB+) m/z 467.0 (M⁺ +H, 100). FAB+ HRMS for $C_{25}H_{18}F_3N_2O_2S$ (M⁺): Calcd: 467.10411. Found: 467.10628.

(E)-1-(2-Naphthyl)-3-phenyl-N-[(8-quinolyl)sulfonyl]prop-2-en-1-imine (13e).

Chromatography: *n*-hexane-EtOAc 2:1. Yield: 73%. Yellow solid; mp= 83-85 °C. ¹H NMR: δ 9.06 (dd, *J*= 4.3 and 1.8 Hz, 1H), 8.54 (bs, 1H), 8.14 (d, *J*= 8.3 Hz 1H), 7.88 (d, *J*= 7.0 Hz, 1H), 7.54-7.20 (m, 15H), 7.02 (d, *J*= 16.1 Hz, 1H). ¹³C NMR: δ 177.4, 151.3, 148.4, 144.2, 136.3,

134.8, 133.6, 132.3, 130.9, 130.8, 129.1, 129.0, 128.7, 128.0, 127.7, 126.7, 125.3, 122.0. (2*E*,4*E*)-1-(*p*-chlorophenyl)-5-phenyl-*N*-[(8-quinolyl)sulfonyl]penta-2,4-dien-1-imine (14e).

Chromatography: *n*-hexane-EtOAc 2:1. Yield: 69%. yellow solid; mp= 118-120 °C. ¹H NMR: δ 9.15 (dd, *J*= 4.3 and 1.8 Hz, 1H), 8.62 (bs, 1H), 8.26 (dd, *J*= 8.3 and 1.6 Hz 1H), 8.09 (d, *J*= 8.2 Hz, 1H), 7.7-7.31 (m, 12H), 7.15 (m, 1H), 6.92 (m, 2H). ¹³C NMR: δ 175.9,

151.4, 149.2, 144.1, 142.8, 137.9, 136.4, 135.7, 133.9, 131.3, 130.8, 129.7, 129.0, 128.9, 128.5, 127.6, 127.4, 125.3, 122.0.

(2*E*,4*E*)-1-(*p*-cyanophenyl)-5-phenyl-*N*-[(8-quinolyl)sulfonyl]penta-2,4-dien-1-imine (15e).

Chromatography: *n*-hexane-EtOAc 2:1. Yield: 72%. yellow solid; mp= 158-160 °C. ¹H NMR: δ 9.13 (dd, *J*= 4.3 and 1.8 Hz, 1H), 8.60 (bs, 1H), 8.22 (dd, *J*= 8.3 and 1.6 Hz 1H), 8.04 (d, *J*= 8.2 Hz, 1H), 7.65-7.30 (m, 12H), 7.01 (m, 1H), 6.91 (m, 2H). ¹³C NMR: δ 175.9,

151.4, 149.2, 144.1, 142.8, 137.9, 136.4, 135.7, 133.9, 131.3, 130.7, 129.7, 129.0, 128.9, 128.5, 127.6, 127.4, 125.3, 122.0.

(1E,4E)-1,5-diphenyl-N-[(8-quinolyl)sulfonyl]penta-1,4-dien-3-imine (16e).

Chromatography: *n*-hexane-EtOAc 2:1. Yield: 62%. yellow solid; mp= 150-152 °C. ¹H NMR: δ 9.10 (dd, *J*= 4.3 and 1.8 Hz, 1H), 8.69 (d, *J*= 7.4 Hz, 1H), 8.22 (dd, *J*= 8.3 and 1.6 Hz 1H), 8.04 (d, *J*= 8.2 Hz, 1H), 7.70-7.28 (m, 16H). ¹³C NMR: δ 172.8, 151.4, 144.2, 144.0, 138.2,

136.4, 134.9, 133.8, 130.8, 130.6, 129.0, 128.9, 128.5, 125.4, 128.5, 123.9, 122.0.

General procedure for the asymmetric inverse electron demand ADAR.

A solution of Ni(ClO₄)₂·6H₂O (7.2 mg, 0.02 mmol) and (*R*,*R*)-DBFOX (9.2 mg, 0.022 mmol) in CH₂Cl₂ (1 ml) was stirred at room temperature for 4 h in a schlenk flask. Then a solution of ketimine (0.2 mmol) in CH₂Cl₂ (1 ml) was added, followed by the vinyl ether (5 equiv). The reaction was stirred at room temperature until consumption of the starting imine (72 h in all cases, except for azadiene **21e** and azatrienes **25e** and **26e** which required 120 h). Then, the mixture was quenched with saturated aqueous NH₄Cl and extracted several times with CH₂Cl₂. The combined organic phase was dried (Na₂SO₄) and concentrated. The residue was purified by flash chromatography using CH₂Cl₂ in deactivated SiO₂.

2-Ethoxy-4,6-diphenyl-1-[(2-pyridyl)sulfonyl]-1,2,3,4-tetrahydropyridine (2d).

Yield: 85%; white solid; mp= 69-71 °C. ¹H NMR (300 MHz, CDCl₃): δ 8.80 (ddd, *J*= 4.6, *J*= 1.6 and *J*= 0.8 Hz, 1H), 7.80 (m, 1H), 7.65 (m, 1H), 7.53 (ddd, *J*= 7.5, 4.6 and 1.1 Hz, 1H), 7.34-7.05 (m, 10H), 5.98 (dd, *J*= 6.1 and 4.2 Hz, 1H), 5.96 (d, *J*= 3.4 Hz, 1H), 4.19 (dq, *J*= 9.5 and 7.0 Hz, 1H), 3.83 (dq, *J*= 9.5 and 7.0 Hz, 1H), 2.87 (td, *J*= 7.3 and 3.4 Hz, 1H), 2.62 (ddd, *J*= 4.6 (ddd, *J*= 4.6 (ddd)) (ddd) (dd) (

14.0, 7.1 and 5.9 Hz, 1H), 2.07 (ddd, *J*= 14.0, 7.8 and 4.2 Hz, 1H), 1.27 (t, *J*= 7.0 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃): 157.3, 150.0, 144.0, 138.6, 137.6, 136.6, 128.4, 127.9, 127.7, 127.5, 126.9, 126.6, 126.5, 123.6, 85.4, 63.9, 40.2, 37.6, 14.9. $[\alpha]_D^{20} = -43$ (*c* 0.65, CHCl₃). Enantiomeric excess: 66% ee; HPLC (AD column) 0.7 ml/min (*n*-hexane-isopropanol, 90/10): t_R 15.7 (*minor*), t_R 23.1 (*major*). MS FAB⁺ *m*/*z*: 375.0 (M⁺-OEt, 100). FAB HRMS for C₂₄H₂₅N₂O₃S (M⁺): Calcd: 421,15076. Found: 421,15104.

2-Ethoxy-4,6-diphenyl-1-[(8-quinolyl)sulfonyl]-1,2,3,4-tetrahydropyridine (2e).

Yield 73%; white solid; mp= 65-67 °C. ¹H NMR (300 MHz, CDCl₃): δ 9.20 (dd, *J*= 4.2 and 1.7 Hz, 1H), 8.32 (dd, *J*= 8.3 and 1.7 Hz, 1H), 8.11 (dd, *J*=7.4 and 1.4 Hz, 1H), 8.06 (dd, *J*=8.2 and 1.3 Hz, 1H), 7.63 (dd, *J*= 8.3 and 4.2 Hz, 1H), 7.47 (m, 1H), 7.31-7.12 (m, 9H), 6.89 (dd, *J*= 7.9 and 1.7 Hz, 1H), 6.55 (dd, *J*= 5.7 and 4.3 Hz, 1H), 5.87 (d, *J*= 3.3 Hz, 1H), 4.22 (dq, *J*= 9.6 and 7.1 Hz, 1H), 2.73-2.55 (m, 2H), 2.08 (ddd,

J= 13.2, 7.4 and 3.4 Hz, 1H), 1.27 (t, *J*= 7.0 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃): 151.1, 144.3, 144.0, 139.0, 137.4, 136.7, 133.9, 133.8, 128.9, 128.2, 127.9, 127.7, 126.9, 126.8, 126.3, 125.4, 122.2, 85.1, 63.7, 41.3, 37.8, 15.2. $[\alpha]_D^{20}$ = -22 (*c* 0.4, CHCl₃). Enantiomeric excess: 88% ee; HPLC (AD column) 0.7 ml/min (*n*-hexane-isopropanol, 90/10): t_R 32.3 (*minor*), t_R 37.3 (*major*). MS FAB⁺ *m/z*: 425.1 (M⁺-OEt, 85), FAB HRMS for C₂₈H₂₈O₃N₂S (M⁺): Calcd: 471.17424. Found: 471.17582.

4,6-Diphenyl-2-propoxy-1-[(8-quinolyl)sulfonyl]-1,2,3,4-tetrahydropyridine (3e).

Yield 66%; white solid; mp= 53-55 °C. ¹H NMR (300 MHz, CDCl₃): δ 9.09 (dd, *J*= 4.2 and 1.7 Hz, 1H), 8.22 (dd, *J*= 8.3 and 1.7 Hz, 1H), 7.98 (dd, *J*=7.4 and 1.3 Hz, 1H), 7.94 (dd, *J*=8.2 and 1.3 Hz, 1H), 7.53 (dd, *J*= 8.3 and 4.2 Hz, 1H), 7.37 (m, 1H), 7.21-7.02 (m, 9H), 6.83 (dd, *J*= 7.9 and 1.7 Hz, 1H), 6.39 (dd, *J*= 5.6 and 3.8 Hz, 1H), 5.74 (d, *J*= 3.4 Hz, 1H), 4.02 (dq, *J*= 9.5 and 6.7 Hz, 1H), 3.69 (dq, *J*= 9.5 and 6.7 Hz, 1H), 2.65 (td, *J*= 7.3 and 3.4 Hz,

1H), 2.48 (ddd, J= 15.0, 7.2 and 1.4 Hz, 1H), 1.98 (ddd, J= 13.9, 7.2 and 3.8 Hz, 1H), 1.56 (m, 2H), 0.86 (t, J= 7.3 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃): 151.1, 144.6, 144.0, 139.0, 137.4, 137.3, 136.6, 133.9, 133.7, 128.9, 128.2, 127.9, 127.7, 127.6, 126.9, 126.4, 126.2, 125.4, 122.2, 85.2, 70.1, 40.8, 37.7, 22.9, 10.9. $[\alpha]_D^{20}$ = -35 (*c* 0.4, CHCl₃). Enantiomeric excess: 91% ee; HPLC (AS column) 0.8 ml/min (*n*-hexane-isopropanol, 97/3): t_R 40.0 (*minor*), t_R 44..8 (*major*). MS FAB⁺ *m/z*: 425.1 (M⁺-OPr, 75), FAB HRMS for C₂₆H₂₁O₂N₂S (M⁺): Calcd: 425.1318. Found: 425.1312. Anal. Calcd for C₂₉H₂₈O₃N₂S: C 71.87, H 5.82, N 5.78, S 6.62; found: C 71.57, H 6.13, N 5.53, S 6.24.

2-Cyclohexyloxy-4,6-diphenyl-1-[(8-quinolyl)sulfonyl]-1,2,3,4-tetrahydropyridine (4e).

Yield 70%; yellow solid; m.p= 78-80. ¹H NMR (300 MHz, CDCl₃): δ 9.10 (dd, *J*= 4.2 and 1.8 Hz, 1H), 8.22 (dd, *J*= 8.3 and 1.7 Hz, 1H), 7.95 (m, 2H), 7.52 (dd, *J*= 8.3 and 4.1 Hz, 1H), 7.36 (t, *J*= 7.8 Hz, 1H), 7.20-7.03 (m, 8H), 6.89 (m, 2H), 6.46 (dd, , *J*= 5.4 and 3.6 Hz, 1H), 5.75 (d, *J*= 3.4 Hz, 1H), 4.11 (m, 1H), 2.75 (m, 1H), 2.46 (m, 1H), 2.00 (m, 1H), 1.85-1.55 (m, 4H), 1.25-1.15 (m, 6H). ¹³C NMR (75 MHz, CDCl₃): 151.1, 144.9, 144.0, 139.1,

137.5, 137.0, 136.6, 133.8, 133.7, 128.8, 128.1, 128.0, 127.6, 127.5, 126.8, 126.3, 126.0, 125.3, 122.0, 81.6, 73.1, 40.7, 37.6, 33.2, 31.6, 29.1, 25.9, 22.6. $[\alpha]_D{}^{20} = -33$ (*c* 0.15, CHCl₃). Enantiomeric excess: 88% ee; HPLC (AD column) 0.7 ml/min (*n*-hexane-isopropanol, 90/10): t_R 17.6 (*minor*), t_R 20.5 (*major*).

2-tert-Butoxy-4,6-diphenyl-1-[(8-quinolyl)sulfonyl]-1,2,3,4-tetrahydropyridine (5e).

Yield 35%; white solid; m.p= 66-68 °C. ¹H NMR (300 MHz, CDCl₃): δ 9.07 (dd, *J*= 4.1 and 1.7 Hz, 1H), 8.18 (dd, *J*= 8.3 and 1.7 Hz, 1H), 8.01 (dd, *J*=7.4 and 1.3 Hz, 1H), 7.92 (dd, *J*=8.3 and 1.3 Hz, 1H), 7.49 (dd, *J*= 8.3 and 4.3 Hz, 1H), 7.36 (t, *J*=7.7 Hz, 1H), 7.26 (m, 2H), 7.15-6.93 (m, 8H), 6.37 (dd, *J*= 4.5 and 3.0 Hz, 1H), 5.65 (d, *J*= 3.4 Hz, 1H), 2.76 (m, 1H), 2.34 (ddd, *J*= 13.4, 8.5 and 4.5 Hz, 1H), 1.83 (ddd, *J*= 13.8, 4.3 and

3.2 Hz, 1H), 1.31 (s, 9H). ¹³C NMR (75 MHz, CDCl₃): 151.1, 145.4, 139.6, 139.4, 136.4, 134.2, 133.7, 128.3, 127.9, 127.6, 127.5, 127.1, 125.9, 125.4, 124.6, 122.0, 78.8, 75.7, 40.8, 37.4, 28.7. $[\alpha]_D^{20}$ = -13 (*c* 0.4, CHCl₃). Enantiomeric excess: 68% ee; HPLC (AD column) 0.7 ml/min (*n*-hexane-isopropanol, 98/2): t_R 54.7 (*minor*), t_R 78.1 (*major*). MS FAB⁺ *m/z*: 425.1 (M⁺-O^tBu, 100), FAB HRMS for C₂₆H₂₁O₂N₂S (M⁺): Calcd: 425.1318. Found: 425.1306.

2,3,3a,4,7,7a-hexahydro-4,6-diphenyl-7-[(8-quinolyl)sulfonyl]furo[2,3-b]pyridine.

Yield 83%; white solid; m.p= 65-67 °C. ¹H NMR (300 MHz, CDCL₃): δ 9.25 (dd, *J*= 4.2 and 1.8 Hz, 1H), 8.31 (dd, *J*= 8.3 and 1.7 Hz, 1H), 8.06 (dd, *J*= 7.5 and 1.4 Hz, 1H), 8.03 (dd, *J*= 8.1 and 1.4 Hz, 1H), 7.65 (dd, *J*= 8.3 and 4.1 Hz, 1H), 7.44 (t, *J*= 7.8 Hz, 1H), 7.31-7.15 (m, 9H), 6.95 (m, 2H), 6.09 (dd, *J*= 3.9 and 0.8, 1H), 3.96 (m, 1H), 3.63 (m, 1H), 3.22 (m, 2H), 1.89 (m, 1H), 1.55 (m, 1H). ¹³C NMR (75 MHz, CDCL₃): 151.1, 143.8, 141.0, 138.0,

137.6, 136.5, 133.6, 133.3, 128.9, 128.6, 128.0, 127.7, 127.6, 126.7, 126.6, 125.3, 125.2, 122.2, 90.3, 67.3, 52.4, 41.2, 26.8. $[\alpha]_D{}^{20}$ = -15 (*c* 0.26, CHCl₃). Enantiomeric excess: 58% ee; HPLC (AD column) 1.0 ml/min (*n*-hexane-isopropanol, 70/30): t_R 26.9 (*major*), t_R 38.8

(*minor*). MS FAB⁺ m/z: 469.0 (M⁺ +H, 7), FAB HRMS for C₂₈H₂₅O₃N₂S (M⁺): Calcd: 469.15859. Found: 469.15815.

4-(*p*-Fluorophenyl)-6-phenyl-2-propoxy-1-[(8-quinolyl)sulfonyl]-1,2,3,4tetrahydropyridine (17e).

Yield 75%; white solid; m.p= 62-64 °C. ¹H NMR (300 MHz, CDCl₃): δ 9.10 (dd, *J*= 4.2 and 1.8 Hz, 1H), 8.20 (dd, *J*= 8.3 and 1.7 Hz, 1H), 7.93 (m, 2H), 7.52 (dd, *J*= 8.3 and 4.1 Hz, 1H), 7.42 (t, *J*= 7.8 Hz, 1H), 7.16-7.01 (m, 5H), 6.89 (m, 2H), 6.78 (m, 2H), 6.30 (dd, *J*= 5.1 and 3.3 Hz, 1H), 5.65 (d, *J*= 3.3 Hz, 1H), 3.94 (dq, *J*= 9.4 and 6.6 Hz, 1H), 3.67 (dq, *J*= 9.4 and 6.6 Hz, 1H), 2.85 (td, *J*= 7.3 and 3.4 Hz, 1H), 2.46 (ddd, *J*= 13.6, 7.2 and 5.6 Hz, 1H).

2.02 (ddd, J= 13.9, 5.5 and 3.4 Hz, 1H), 1.52 (m, 2H), 0.82 (t, J= 7.4 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃): 151.0, 144.0, 140.7, 138.9, 137.5, 137.2, 136.6, 133.8, 133.7, 133.5, 129.6, 129.5, 128.8, 127.7, 127.6, 127.0, 125.4, 124.8, 122.2, 114.9, 114.7, 84.7, 70.2, 39.7, 36.7, 22.9, 10.8. [α]_D²⁰= -81 (c 0.4, CHCl₃). Enantiomeric excess: 92% ee; HPLC (AD column) 0.7 ml/min (n-hexane-isopropanol, 90/10): t_R 31.9 (minor), t_R 42.7 (major). MS FAB⁺ m/z: 443.0 (M⁺-OPr, 78), FAB HRMS for C₂₉H₂₈O₃N₂FS (M⁺): Calcd: 503.18043. Found: 503.18046.

4-(2-Napthyl)-6-phenyl-2-propoxy-1-[(8-quinolyl)sulfonyl]-1,2,3,4-tetrahydropyridine (18e)

O O O S N N O Pr

Yield 69%; white solid; m.p= 68-70 °C. ¹H NMR (300 MHz, CDCl₃): δ 9.20 (dd, *J*= 4.2 and 1.8 Hz, 1H), 8.32 (dd, *J*= 8.4 and 1.7 Hz, 1H), 8.06 (m, 2H), 7.83 7.61 (m, 4H), 7.51-7.33 (m, 4H), 7.26-7.10 (m, 6H), 6.46 (dd, *J*= 5.5 and 3.8 Hz, 1H), 5.92 (d, *J*= 3.3 Hz, 1H), 4.10 (dq, *J*= 9.5 and 6.6 Hz, 1H), 3.79 (dq, *J*= 9.5 and 6.6 Hz, 1H), 3.04 (td, *J*= 7.3 and 3.4 Hz, 1H), 2.65 (ddd, *J*= 13.6, 7.5 and 5.7 Hz, 1H), 2.22 (ddd, *J*= 13.7, 7.1 and 3.7 Hz, 1H), 1.65 (m,

2H), 0.94 (t, J= 7.4 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃): 151.1, 144.0, 142.2, 139.1, 137.5, 137.3, 136.6, 133.8, 133.7, 133.3, 132.1, 128.8, 127.8, 127.7, 127.6, 127.5, 127.0, 126.6, 126.3, 125.9, 125.5, 125.4, 122.2, 85.0, 70.2, 40.1, 37.7, 22.9, 10.9. $[\alpha]_D^{20}$ = -97 (*c* 0.4, CHCl₃). Enantiomeric excess: 90% ee; HPLC (AD column) 0.7 ml/min (*n*-hexane-isopropanol, 90/10): t_R 33.7 (*minor*), t_R 42.1 (*major*). MS FAB⁺ *m/z*: 475.1 (M⁺-OPr, 78), FAB HRMS for C₃₃H₃₁O₃N₂S (M⁺): Calcd: 535.20554. Found: 535.20674. Anal. Calcd for C₃₃H₃₁O₃N₂S: C 74.13, H 5.66, N 5.24, S 6.00; found: C 73.89, H 5.94, N 4.87, S 5.69.

4-(*p*-Methoxyphenyl)-6-phenyl-2-propoxy-1-[(8-quinolyl)sulfonyl]-1,2,3,4tetrahydropyridine (19e).

Yield 65%; white solid; m.p= 72-74 °C. ¹H NMR (300 MHz, CDCl₃): δ 9.09 (dd, *J*= 4.2 and 1.8 Hz, 1H), 8.21 (dd, *J*= 8.3 and 1.7 Hz, 1H), 7.96 (m, 2H), 7.52 (dd, *J*= 8.3 and 4.1 Hz, 1H), 7.36 (t, *J*= 7.9 Hz, 1H), 7.20-7.03 (m, 5H), 6.75 (d, *J*= 8.7 Hz, 2H), 6.62 (d, *J*= 8.7 Hz, 2H), 6.36 (dd, *J*= 5.6 and 3.8 Hz, 1H), 5.65 (d, *J*= 3.3 Hz, 1H), 3.99 (dq, *J*= 9.5 and 6.7 Hz, 1H), 3.69 (dq, *J*= 9.5 and 6.7 Hz, 1H), 3.64 (s, 3H), 2.61 (td, *J*= 7.3 and 3.4 Hz, 1H), 2.46

(ddd, J= 13.5, 7.1 and 5.6 Hz, 1H), 1.95 (ddd, J= 13.7, 5.5 and 3.4 Hz, 1H), 1.54 (m, 2H), 0.86 (t, J= 7.4 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃): 155.7, 148.7, 141.7, 136.7, 135.1, 134.7, 134.4, 131.6, 131.3, 126.5, 125.3, 124.6, 124.4, 123.0, 119.8, 111.2, 82.8, 67.8, 52.9, 38.5, 34.5, 20.6, 8.5. [α]_D²⁰= -27 (c 0.4, CHCl₃). Enantiomeric excess: 80% ee; HPLC (AD column) 0.7 ml/min (n-hexane-isopropanol, 90/10): t_R 50.12. (minor), t_R 55.5 (major). Anal. Calcd for C₃₀H₃₀N₂O₄S: C 70.01, H 5.88, N 5.44, S 6.23; found: C 69.86, H 6.01, N 5.22, S 5.89.

4-(2-Furyl)-6-phenyl-2-propoxy-1-[(8-quinolyl)sulfonyl]-1,2,3,4-tetrahydropyridine (20e).

Yield 52%; white solid; m.p= 56-58 °C. ¹H NMR (300 MHz, CDCl₃): δ 9.06 (dd, J= 4.2 and 1.8 Hz, 1H), 8.17 (dd, J= 8.4 and 1.8 Hz, 1H), 7.90 (m, 2H), 7.50 (dd, J= 8.3 and 4.1 Hz, 1H), 7.31 (t, J= 7.9 Hz, 1H), 7.14-7.01 (m, 6H), 6.30 (dd, J= 4.7 and 3.5 Hz, 1H), 6.11 (dd, J= 3.1 and 1.9 Hz, 1H), 5.81 (d, J= 2.5, 1H), 5.67 (d, J= 3.4 Hz, 1H), 3.89 (dq, J= 9.4 and 6.6 Hz, 1H), 3.65 (dq, J= 9.4 and 6.6 Hz, 1H), 3.04 (td, J= 8.0 and 5.2 Hz, 1H), 2.42 (ddd, J=

13.9, 7.8 and 5.6 Hz, 1H), 1.95 (ddd, J= 13.9, 5.3 and 3.4 Hz, 1H), 1.50 (m, 2H), 0.79 (t, J= 7.4 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃): 157.2, 151.0, 143.8, 140.6, 138.9, 137.4, 137.1, 136.5, 133.7, 128.8, 127.7, 127.5, 127.3, 127.2, 125.3, 122.1, 121.1, 110.1, 104.8, 84.4, 69.9, 35.8, 30.9, 22.9, 10.8. [α]_D²⁰= -17 (c 0.4, CHCl₃). Enantiomeric excess: 77% ee; HPLC (AS column) 1.0 ml/min (n-hexane-isopropanol, 94/6): t_R 71.12. (minor), t_R 74.5 (major). MS FAB⁺ m/z: 416.1 (M⁺-OPr, 100), FAB HRMS for C₂₇H₂₇N₂O₄S (M⁺): Calcd: 475,16133. Found: 475.16105.

4-*tert*Butyl-6-phenyl-2-propoxy-1-[(8-quinolyl)sulfonyl]-1,2,3,4-tetrahydropyridine (21e).

Yield 61%; white solid; m.p= 65-67 °C. ¹H NMR (300 MHz, CDCl₃): δ 9.09 (dd, *J*= 4.2 and 1.8 Hz, 1H), 8.16 (m, 2H), 7.95 (d, *J*= 8.1 Hz, 1H), 7.49 (m, 2H), 7.38-7.15 (m, 5H), 7.00 (m, 1H), 6.57 (dd, *J*= 7.7 and 5.8 Hz, 1H), 5.78 (d, *J*= 4.0 Hz, 1H), 4.12 (dq, *J*= 9.4 and 6.6 Hz, 1H), 3.79 (dq, *J*= 9.4 and 6.6 Hz, 1H), 2.25 (m, 1H), 1.67 (m, 1H), 1.22 (m, 1H), 0.98 (t, *J*= 7.3 Hz, 3H),

0.82 (m, 2H), 0.26 (s, 9H). ¹³C NMR (75 MHz, CDCl₃): 151.1, 144.2, 139.3, 138.3, 137.0, 136.6, 134.2, 133.5, 129.2, 128.9, 127.8, 127.7, 127.3, 126.1, 125.2, 121.9, 87.5, 69.9, 42.1, 36.9, 30.3, 26.8, 22.9, 10.9. $[\alpha]_D^{20} = 82$ (c 0.5, CHCl₃). Enantiomeric excess: 84% ee; HPLC (AD column) 0.7 ml/min (*n*-hexane-isopropanol, 90/10): t_R 11.6 (*major*), t_R 15.9 (*minor*).

6-(*p*-Chlorophenyl)-4-phenyl-2-propoxy-[(8-quinolyl)sulfonyl]-1,2,3,4-tetrahydropyridine (22e).

Yield 73%; white solid; m.p= 58-60 °C; ¹H NMR (300 MHz, CDCl₃): δ 9.10 (dd, *J*= 4.2 and 1.8 Hz, 1H), 8.24 (dd, *J*= 8.3 and 1.7 Hz, 1H), 8.02 (m, 2H), 7.53 (dd, *J*= 8.4 and 4.2 Hz, 1H), 7.42 (m, 1H), 7.28-7.0 (m, 7H), 6.83 (m, 2H), 6.34 (dd, *J*= 5.6 and 3.8 Hz, 1H), 5.74 (d, *J*= 3.4 Hz, 1H), 3.96 (dq, *J*= 9.5 and 6.7 Hz, 1H), 3.67 (dq, *J*= 9.5 and 6.7 Hz, 1H), 2.63

(td, J= 7.3 and 3.4 Hz, 1H), 2.44 (ddd, J= 13.6, 7.2 and 5.6 Hz, 1H), 1.99 (ddd, J= 13.5, 7.2 and 3.8 Hz, 1H), 1.56 (m, 2H), 0.86 (t, J= 7.5 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃): 151.1, 144.2, 143.9, 137.6, 137.3, 136.7, 136.3, 133.9, 133.8, 133.5, 128.8, 128.2, 128.1, 127.9, 127.8, 126.9, 126.4, 125.4, 122.2, 85.2, 70.1, 40.7, 37.6, 22.9, 10.9. [α]_D²⁰= -35 (*c* 0.4, CHCl₃). Enantiomeric excess: 90% ee; HPLC (AD column) 0.7 ml/min (*n*-hexane-isopropanol, 90/10): t_R 30.8 (*major*), t_R 37.0 (*minor*). MS FAB⁺ *m/z*: 459.1 (M⁺-OPr, 100), FAB HRMS for C₂₉H₂₈O₃N₂ClS (M⁺): Calcd: 519.1503. Found: 519.1547. Anal. Calcd for C₂₉H₂₇O₃N₂ClS: C 67.10, H 5.29, N 5.40, S 6.18; found: C 67.48, H 5.53, N 5.03, S 5.84.

4-Phenyl-2-propoxy-1-[(8-quinolyl)sulfonyl]-6-[*p*-(trifluoromethyl)phenyl]-1,2,3,4-tetrahydropyridine (23e).

Yield 69%; white solid; m.p= 68-70 °C. ¹H NMR (300 MHz, CDCl₃): δ 9.09 (dd, *J*= 4.2 and 1.7 Hz, 1H), 8.23 (dd, *J*= 8.3 and 1.6 Hz, 1H), 7.99 (m, 2H), 7.55 (dd, *J*= 8.3 and 4.1 Hz, 1H), 7.44-7.28 (m, 6H), 7.14-7.02 (m, 3H), 6.83 (m, 2H), 6.32 (dd, *J*= 5.5 and 3.6 Hz, 1H), 5.83 (d, *J*= 3.4

Hz, 1H), 3.98 (dq, J= 9.5 and 6.7 Hz, 1H), 3.69 (dq, J= 9.5 and 6.7 Hz, 1H), 2.69 (td, J= 7.2 and 3.4 Hz, 1H), 2.41 (ddd, J= 13.6, 7.6 and 5.6 Hz, 1H), 1.99 (ddd, J= 13.8, 6.9 and 3.7 Hz, 1H), 1.55 (m, 2H), 0.86 (t, J= 7.4 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃): 151.1, 144.1, 144.0, 142.7, 137.2, 136.7, 136.3, 133.9, 133.8, 129.3, 128.9, 128.3, 128.1, 127.9, 127.0, 126.4, 125.4, 124.7, 124.6, 122.3, 85.1, 70.3, 40.3, 37.7, 22.9, 10.8. [α]_D²⁰= -43 (c 0.4, CHCl₃). Enantiomeric excess: 91% ee; HPLC (AD column) 0.7 ml/min (n-hexane-isopropanol, 90/10): t_R 37.8 (major), t_R 40.4 (minor). MS FAB⁺ m/z: 494.1 (M⁺-OPr, 100), FAB HRMS for C₃₀H₂₈F₃N₂O₃S (M⁺): Calcd: 553,16945. Found: 553,16913.

6-(2-Napthyl)-4-phenyl-2-propoxy-1-[(8-quinolyl)sulfonyl]-1,2,3,4-tetrahydropyridine (24e).

Yield 67%, white solid; m.p= 78-80 °C; ¹H NMR (300 MHz, CDCl₃): δ 9.13 (dd, *J*= 4.2 and 1.8 Hz, 1H), 8.21 (dd, *J*= 8.4 and 1.7 Hz, 1H), 7.89 (m, 2H), 7.69 (m, 1H), 7.60-7.41 (m, 4H), 7.40-7.28 (m, 3H), 7.26-7.03 (m, 4H), 6.88 (m, 2H), 6.45 (dd, *J*= 5.5 and 3.8 Hz, 1H), 5.90 (d, *J*= 3.3 Hz, 1H), 4.09 (dq, *J*= 9.5 and 6.6 Hz, 1H), 3.75 (dq, *J*= 9.5 and 6.6 Hz, 1H), 2.77 (td, *J*= 7.3 and 3.4 Hz, 1H), 2.57 (ddd, *J*= 13.6, 7.5 and 5.7 Hz, 1H),

2.06 (ddd, J= 13.7, 7.1 and 3.7 Hz, 1H), 1.59 (m, 2H), 0.88 (t, J= 7.4 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃): 151.1, 144.5, 137.4, 137.2, 136.6, 136.4, 133.9, 133.6, 133.0, 132.8, 128.8, 128.2, 128.0, 127.9, 127.5, 127.1, 127.0, 126.3, 125.8, 125.6, 125.3, 125.2, 124.6, 122.1, 85.2, 70.2, 40.8, 37.8, 23.0, 10.9. Enantiomeric excess: 6% ee; HPLC (AD column) 0.7 ml/min (*n*-hexane-isopropanol, 90/10): t_R 45.8 (*major*), t_R 60.2 (*minor*).

6-(*p*-Chlorophenyl)-2-propoxy-4-styryl-1-[(8-quinolyl)sulfonyl]-1,2,3,4-tetrahydropyridine (25e).

Yield 63%; white solid; m.p= 65-67 °C. ¹H NMR (300 MHz, CDCl₃): δ 9.06 (dd, *J*= 4.2 and 1.8 Hz, 1H), 8.19 (dd, *J*= 8.3 and 1.7 Hz, 1H), 7.95 (dd, *J*= 8.1 and 1.3 Hz, 1H), 7.86 (dd, *J*= 7.5 and 1.4 Hz, 1H), 7.51 (dd, *J*= 8.3 and 4.1 Hz, 1H), 7.35 (t, *J*= 7.9 Hz, 1H), 7.20-7.15 (m, 4H), 7.00-6.95 (m, 4H), 6.16 (m, 3H), 5.36 (d, *J*= 3.6 Hz, 1H), 3.87 (dq, *J*= 9.4 and 6.6 Hz, 1H), 3.70 (dq, *J*= 9.4 and 6.6 Hz, 1H), 2.66 (m, 1H), 2.13 (ddd, *J*= 14.0, 7.7 and 3.8 Hz, 1H), 1.96 (dt, = 14.0 and 2.7 Hz, 1H), 1.55 (m,

3H), 0.87 (t, J= 7.3 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃): 151.1, 143.9, 137.9, 137.4, 136.5, 135.0, 133.8, 133.6, 133.4, 133.3, 129.2, 128.8, 128.6, 128.5, 128.4, 128.0, 127.4, 126.0, 125.3, 122.4, 122.2, 84.3, 70.1, 35.6, 35.1, 23.1, 10.9. $[\alpha]_D^{20}$ = -140 (*c* 0.2, CHCl₃).

Enantiomeric excess: 92% ee; HPLC (AD column) 0.7 ml/min (*n*-hexane-isopropanol, 90/10): t_R 28.7 (*major*), t_R 38.1 (*minor*).

6-(*p*-Cyanophenyl)-2-propoxy-4-styryl-1-[(8-quinolyl)sulfonyl]-1,2,3,4-tetrahydropyridine (26e).

Yield 70%; yellow solid; m.p= 85-86 °C. ¹H NMR (300 MHz, CDCl₃): δ 9.06 (dd, J= 4.2 and 1.8 Hz, 1H), 8.21 (dd, J= 8.3 and 1.7 Hz, 1H), 7.96 (m, 2H), 7.52 (dd, J= 8.3 and 4.1 Hz, 1H), 7.40 (t, J= 7.8 Hz, 1H), 7.37 (d, J= 8.4 Hz, 2H), 7.26 (d, J= 8.4 Hz, 2H), 7.15 (m, 5H), 6.16 (m, 2H), 6.05 (m, 1H), 5.51 (d, J= 3.6 Hz, 1H), 3.86 (dq, J= 9.4 and 6.6 Hz, 1H), 3.68 (dq, J= 9.4 and 6.6 Hz, 1H), 2.62 (m, 1H), 1.92 (m, 1H), 1.55 (m, 3H), 0.87 (t, J= 7.3 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃): 151.2, 144.4, 143.9,

137.2, 136.6, 134.9, 134.2, 133.3, 133.0, 131.5, 129.6, 128.9, 128.5, 127.7, 127.2, 126.0, 125.4, 124.7, 122.4, 119.0, 110.9, 84.3, 70.2, 35.7, 34.7, 23.0, 10.9. $[\alpha]_D{}^{20}=$ -102 (*c* 0.4, CHCl₃). Enantiomeric excess: 92% ee; HPLC (AD column) 0.7 ml/min (*n*-hexane-isopropanol, 90/10): t_R 45.9 (*minor*), t_R 53.5 (*major*).

4-Phenyl-2-propoxy-4-styryl-1-[(8-quinolyl)sulfonyl]-1,2,3,4-tetrahydropyridine (27e).

Yield 68%; yellow solid; m.p= 80-81 °C. ¹H NMR (300 MHz, CDCl₃): δ 9.05 (dd, *J*= 4.2 and 1.8 Hz, 1H), 8.35 (dd, *J*= 8.3 and 1.7 Hz, 1H), 8.02 (d, *J*= 8.3 Hz, 1H), 7.93 (d, *J*= 8.4 Hz, 1H), 7.52 (dd, *J*= 8.3 and 4.1 Hz, 1H), 7.40 (t, *J*= 7.8 Hz, 1H), 7.21-7.00 (m, 7H), 6.90 (m, 3H), 6.36 (d, *J*= 16.0 Hz, 1H), 6.25 (dd, *J*= 5.0 and 4.3 Hz, 1H), 5.70 (d, *J*= 3.5 Hz, 1H), 3.78 (dq, *J*= 9.4 and 6.6 Hz, 1H), 3.50 (dq, *J*= 9.4 and 6.6 Hz, 1H), 2.70

(m, 1H), 2.52 (m, 1H), 2.03 (ddd, J= 13.7, 6.0 and 3.3 Hz, 1H), 1.49 (m, 3H), 0.82 (t, J= 7.3 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃): 151.2, 144.7, 143.9, 137.4, 136.9, 136.7, 135.3, 134.3, 133.9, 129.4, 128.9, 128.5, 128.2, 127.9, 127.6, 127.4, 126.6, 125.5, 123.2, 122.2, 85.0, 69.7, 39.4, 42.1, 26.0, 10.8. [α]_D²⁰= -13 (c 0.4, CHCl₃). Enantiomeric excess: 20% ee; HPLC (AD column) 0.7 ml/min (n-hexane-isopropanol, 90/10): t_R 24.2 (major), t_R 43.4 (minor).

2-Hydroxy-4,6-diphenyl-1-[(8-quinolyl)sulfonyl]-1,2,3,4-tetrahydropyridine (29).

To a solution of compound **3e** (91% ee, 0.21 mmol) in CH_2Cl_2 (2 ml) at 0 °C was added BF₃.OEt₂ (0.21 mmol). The mixture was stirred at 0 °C for 2 h before the mixture was quenched with saturated aqueous NH₄Cl. The mixture was extracted with CH₂Cl₂ (2 x 15 mL) and the combined organic phase was dried (Na₂SO₄) and concentrated. The residue was

purified by flash chromatography in deactivated SiO₂ (*n*-hexane-AcOEt 3:1) to afford **29** as a white solid (88% yield); m.p.: 67-69 °C. ¹H NMR (300 MHz, CDCl₃): δ 9.00 (dd, *J*= 4.2 and 1.7 Hz, 1H), 8.22 (dd, *J*= 8.3 and 1.7 Hz, 1H), 7.84 (dd, *J*=7.4 and 1.3 Hz, 1H), 7.54 (dd, *J*=8.2 and 1.3 Hz, 1H), 7.44 (dd, *J*= 8.3 and 4.2 Hz, 1H), 7.21-7.02 (m, 6H), 6.91-6.62 (m, 5H), 5.65 (s, 1H), 5.05 (dd, *J*= 2.7 and 1.3 Hz, 1H), 3.83 (ddd, *J*= 9.5, 6.7 and 2.8 Hz, 1H), 2.51

(dddd, J= 14.0, 6.7, 3.0 and 1.4 Hz, 1H), 2.08 (m, 1H). ¹³C NMR (75 MHz, CDCl₃): 151.1, 144.7, 144.3, 139.0, 137.5, 137.3, 135.9, 133.9, 133.2, 128.9, 128.2, 128.0, 127.7, 127.6, 126.9, 126.4, 126.2, 125.4, 122.2, 85.2, 71.4, 45.2, 33.4. [α]_D²⁰= +17 (*c* 0.4, CHCl₃).

General procedure for the preparation of tetracyclic compounds 30-32.

To a solution of compound **3e** (91% ee, 0.21 mmol) in CH_2Cl_2 (2 ml) at 0 °C was added BF₃.OEt₂ (0.21 mmol). The mixture was stirred at 0 °C for 2 h before the mixture was cooled to -78 °C and treated with a solution of the nucleophile (1.2 equiv) in CH_2Cl_2 (1 mL). The mixture was stirred for 30 min at -78 °C and it was quenched with saturated aqueous NH₄Cl and extracted with CH_2Cl_2 (2 x 15 mL). The combined organic phase was dried (Na₂SO₄) and concentrated. The residue was purified by flash chromatography in deactivated SiO₂ (*n*-hexane-AcOEt 3:1).

Compound 30a.

Yield 82%; white solid; mp= 76-78 °C; ¹H NMR (300 MHz, CDCl₃): δ 7.15-6.94 (m, 12H), 6.78 (dd, *J*= 7.4 and 1.4 Hz, 1H), 6.44 (t, *J*= 7.5 Hz, 1H), 6.18 (m, 1H), 5.59 (ddd, *J*= 7.9, 4.9 and 2.9 Hz, 1H), 5.21 (dd, *J*= 2.7 and 0.8 Hz, 1H), 5.16 (dd, *J*= 6.8 and 2.5 Hz, 1H), 4.01 (ddd, *J*= 15.4, 4.9 and 1.2 Hz, 1H), 3.82 (ddd, *J*= 15.3, 2.6 and 0.8 Hz, 1H), 3.60 (m, 1H),

2.73 (dtd, J= 13.9, 6.1 and 1.0 Hz, 1H), 1.91 (ddd, J= 14.2, 8.4. and 2.5 Hz, 1H). ¹³C NMR (75 MHz, CDCl₃): 144.0, 140.8, 138.0, 136.9, 130.8, 128.8, 127.9, 127.7, 127.6, 127.5, 127.4, 127.0, 125.8, 123.7, 123.4, 122.6, 121.0, 119.5, 117.4, 72.9, 45.6, 36.4, 31.6. [α]_D²⁰= -203 (c 0.4, CHCl₃).MS FAB⁺ m/z: 427.1 (M⁺ +H, 100), FAB HRMS for C₂₆H₂₃N₂O₂S (M⁺): Calcd: 427.1403. Found: 427.1435

Compound 31a.

Yield 71%, white solid; m.p.: 83-85 °C; ¹H NMR (300 MHz, CDCl₃): δ 7.44-7.18 (m, 16H), 6.94 (dd, *J*= 7.4 and 1.5 Hz, 1H), 6.63 (t, *J*= 7.6 Hz, 1H), 6.22 (dd, *J*= 10.0 and 1.5 Hz, 1H), 5.77 (d, *J*= 3.8 Hz, 1H), 5.65 (dd, *J*= 9.8 and 4.9 Hz, 1H), 5.25 (dd, *J*= 5.1 and 1.1 Hz, 1H), 4.20 (m, 1H), 3.66 (ddd, *J*= 10.5, 5.0 and 2.2 Hz, 1H), 2.80 (dtd, *J*= 14.2, 5.2 and 1.2 Hz,

1H), 2.04 (ddd, J= 14.2, 10.6. and 2.2 Hz, 1H), 1.15 (d, J= 6.3 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃): 143.8, 139.8, 138.1, 137.4, 130.8, 128.8, 128.3, 128.0, 127.8, 127.5, 127.0, 124.1, 123.8, 122.0, 118.5, 117.2, 70.8, 49.2, 36.1, 32.4, 17.7. [α]_D²⁰= -323 (*c* 0.34, CHCl₃).

Compound 32a.

Yield 60%; white solid; mp= 79-81 °C; ¹H NMR (300 MHz, CDCl₃): δ 7.31-7.12 (m, 11H), 7.01 (dd, *J*= 7.4 and 1.4 Hz, 1H), 6.61 (t, *J*= 7.6 Hz, 1H), 6.36 (d, *J*= 9.6 Hz, 1H), 5.82 (dd, *J*= 9.6 and 5.9 Hz, 1H), 5.75 (dd, *J*= 5.1 and 2.2 Hz, 1H), 5.12 (dd, *J*= 1.9 and 1.5 Hz, 1H), 4.20 (m, 1H), 3.66 (ddd, *J*= 10.5, 5.0 and 2.2 Hz, 1H), 2.80 (dtd, *J*= 14.2, 5.2 and 1.2 Hz, 1H),

2.04 (ddd, J= 14.2, 10.6. and 2.2 Hz, 1H), 1.15 (d, J= 6.3 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃): 143.8, 139.8, 138.1, 137.4, 130.8, 128.8, 128.3, 128.0, 127.8, 127.5, 127.0, 124.1, 123.8, 122.0, 118.5, 117.2, 70.8, 49.2, 36.1, 32.4, 17.7. [α]_D²⁰= -354 (c 0.3, CHCl₃).Anal. Calcd for C₂₇H₂₄N₂O₂S: C 73.61, H 5.49, N 6.36, S 7.28; found: C 73.28, H 5.68, N 6.04, S 7.89.

Compound 32b.

Yield 15%; white solid; mp= 83-85 °C; ¹H NMR (300 MHz, CDCl₃): δ 7.45-7.15 (m, 11H), 6.94 (dd, *J*= 7.2 and 1.4 Hz, 1H), 6.64 (dd, *J*= 7.8 and 7.3 Hz, 1H), 6.23 (d, *J*= 9.8 Hz, 1H), 5.81 (d, *J*= 3.6 Hz, 1H), 5.62 (dd, *J*= 9.7 and 5.4 Hz, 1H), 5.18 (dd, *J*= 11.2 and 3.1 Hz, 1H), 4.09 (m, 1H), 3.76 (ddd, *J*= 10.4, 7.0 and 3.6 Hz, 1H), 2.74 (m, 1H), 2.30 (ddd, *J*= 13.4, 7.1.

and 3.3 Hz, 1H), 1.30 (d, J= 6.5 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃): 144.0, 140.2, 138.3, 136.9, 131.8, 128.8, 127.8, 127.7, 127.6, 127.2, 127.4, 127.0, 125.8, 123.7, 123.4, 122.6, 121.0, 119.5, 117.4, 72.9, 36.4, 31.4, 18.3. [α]_D²⁰= -134 (*c* 0.4, CHCl₃).

Determination of the stereochemistry of the products

a) Stereochemistry endo

It is well-known that the Diels-Alder reaction of N-sulfonyl-1-aza-1,3-dienes takes place with very high endo-selectivity³. We have confirmed this stereochemistry by X-ray diffraction analysis of (\pm) -I (see below). Data of X-ray structure of I are found at the end of the Supporting Information.

b) Relative stereochemistry of the tetracyclic products 30-32

The relative stereochemistry of both diastereomers **32a** and **32b** has been established by NMR. ¹³C-¹H Heteronuclear correlation and ¹H-COSY experiments allowed proton assignment, while the 2D-NOESY experiments were decisive for determination of the relative stereochemistry. Some critical diagnostic criteria, such as coupling constants for the key aminal proton and strong NOE contacts are shown in the Figure below. The stereochemical assignments of the related derivatives **30a** and **31a** have been established by chemical analogy and similarity of their ¹H NMR spectra with that of **32a**. On the other hand, these relative stereochemistries are in agreement with the attack of the Grignard reagent to the less hindered convex face of the quinolinium intermediate **28**. Furthermore, as shown later, this stereochemical assignment has been unequivocally confirmed by X-ray crystallographic analysis of **32b**.

³ Boger et al. J. Am. Chem. Soc. 2006, 2587; J. Org. Chem. 1993, 2068 and J. Am. Chem. Soc. 1991, 113, 1713.

δ H¹ = 5.75 ppm (CDCl₃) J = 5.1 and 2.2 Hz

32a

δ H¹ = 5.18 ppm (CDCl₃) J = 11.2 and 3.1 Hz

32b

C) Absolute stereochemistry

The absolute stereochemistry has been unequivocally established by X-ray crystallographic analysis of an enantiopure sample of the crystalline product **32b** (see below). Data of X-ray structure of **32b** are found at the end of the Supporting Information.

Sticks and balls view of crystal structure of compound 32b

NMR Spectra

9.5 9.9 9.0 8.5 7.5 7.0 6.0 0.0 8.0 65 5.0 4.5 (ppm) 1.5 5.5 35 3.0 2.5 2.0 1.0 0.5 4.0

-S27-

5.0 (ppm) 1.0 0.5 9.5 9.0 8.5 8.0 7.5 7.0 6.5 60 4.5 3.5 3.0 2.5 2.0 1.5 5.5 4.0

X-ray data for compound ${\bf I}$

Table 1. Crystal data and structure refinement for I.

Project name: 2005 Jorge Esquivias Jorge	1 100K 70104	
Project path: F:\2005\Jorge_Esquivias\70	0104\work\2005_Jom.*	
Identification code	2005_jom	
Empirical formula	C25 H23 F3 N2 O3 S	
Formula weight	488.51	
Temperature	100(2) K	
Wavelength	1.54178 Å	
Crystal system	Orthorhombic	
Space group	P2(1)2(1)2(1)	
Unit cell dimensions	a = 9.4345(2) Å	<i>α</i> = 90°.
	b = 11.1796(3) Å	β= 90°.
	c = 21.8461(6) Å	$\gamma = 90^{\circ}.$
Volume	2304.19(10) Å ³	
Z	4	
Density (calculated)	1.408 Mg/m ³	
Absorption coefficient	1.733 mm ⁻¹	
F(000)	1016	
Crystal size	0.25 x 0.25 x 0.20 mm ³	
Theta range for data collection	4.05 to 70.62°.	
Index ranges	-10<=h<=10, -12<=k<=1	3, -24<=l<=26
Reflections collected	12952	

Independent reflections	4224 [R(int) = 0.0273]
Completeness to theta = 70.62°	97.0 %
Absorption correction	YES, SADABS v. 2.03
Refinement method	Full-matrix least-squares on F^2
Data / restraints / parameters	4224 / 0 / 399
Goodness-of-fit on F ²	1.037
Final R indices [I>2sigma(I)]	R1 = 0.0296, wR2 = 0.0763
R indices (all data)	R1 = 0.0305, wR2 = 0.0771
Absolute structure parameter	0.00
Largest diff. peak and hole	0.260 and -0.180 e.Å ⁻³

Table 2. Atomic coordinates (x 10⁴) and equivalent isotropic displacement parameters ($Å^2x$ 10³) for I. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

	X	у	Z	U(eq)
S(1)	304(1)	3379(1)	5907(1)	17(1)
C(1)	1817(2)	2482(2)	6086(1)	18(1)
C(2)	2733(2)	1061(2)	6709(1)	24(1)
C(3)	4003(2)	1070(2)	6393(1)	26(1)
C(4)	4151(2)	1824(2)	5893(1)	29(1)
C(5)	3029(2)	2564(2)	5737(1)	24(1)
C(6)	-813(2)	3663(2)	7036(1)	19(1)
C(7)	-17(2)	3793(2)	7644(1)	24(1)
C(8)	1581(2)	4004(2)	7555(1)	19(1)
C(9)	1721(2)	5091(2)	7159(1)	19(1)
C(10)	950(2)	5175(2)	6648(1)	17(1)
C(11)	-3187(2)	3914(2)	6672(1)	25(1)
C(12)	-4546(2)	4537(2)	6844(1)	34(1)
C(13)	2337(2)	4078(2)	8166(1)	18(1)
C(14)	3286(2)	3182(2)	8331(1)	20(1)
C(15)	3939(2)	3200(2)	8902(1)	21(1)
C(16)	3667(2)	4119(2)	9310(1)	21(1)
C(17)	2723(2)	5016(2)	9146(1)	19(1)
C(18)	2058(2)	4998(2)	8580(1)	19(1)
C(19)	928(2)	6230(2)	6239(1)	17(1)
C(20)	-325(2)	6588(2)	5949(1)	19(1)
C(21)	-355(2)	7595(2)	5583(1)	20(1)

C(22)	867(2)	8265(2)	5502(1)	20(1)
C(23)	2120(2)	7929(2)	5789(1)	23(1)
C(24)	2143(2)	6915(2)	6150(1)	21(1)
C(25)	843(2)	9363(2)	5110(1)	24(1)
N(1)	-13(2)	4209(1)	6514(1)	17(1)
N(2)	1630(2)	1751(1)	6561(1)	21(1)
O(1)	724(2)	4160(1)	5422(1)	22(1)
O(2)	-888(1)	2606(1)	5833(1)	23(1)
O(3)	-2129(1)	4237(1)	7111(1)	21(1)
F(1)	657(2)	10362(1)	5429(1)	35(1)
F(2)	2044(2)	9504(1)	4795(1)	54(1)
F(3)	-212(2)	9354(1)	4697(1)	41(1)

Table 3. Bond lengths [Å] and angles [°] for I.

S(1)-O(2)	1.4271(14)
S(1)-O(1)	1.4290(13)
S(1)-N(1)	1.6463(15)
S(1)-C(1)	1.7875(19)
C(1)-N(2)	1.333(2)
C(1)-C(5)	1.378(3)
C(2)-N(2)	1.335(3)
C(2)-C(3)	1.383(3)
C(2)-H(2)	0.98(2)
C(3)-C(4)	1.386(3)
C(3)-H(3)	0.93(3)
C(4)-C(5)	1.386(3)
C(4)-H(4)	0.91(3)
C(5)-H(5)	0.95(3)
C(6)-O(3)	1.407(2)
C(6)-N(1)	1.497(2)
C(6)-C(7)	1.533(2)
C(6)-H(6)	0.98(2)
C(7)-C(8)	1.538(3)
C(7)-H(7A)	1.01(2)
C(7)-H(7B)	0.94(2)

C(8)-C(9)	1.499(3)
C(8)-C(13)	1.515(2)
C(8)-H(8)	0.90(2)
C(9)-C(10)	1.336(3)
C(9)-H(9)	0.96(2)
C(10)-N(1)	1.441(2)
C(10)-C(19)	1.479(2)
C(11)-O(3)	1.430(2)
C(11)-C(12)	1.506(3)
C(11)-H(11A)	0.99(2)
C(11)-H(11B)	1.00(2)
C(12)-H(12A)	1.01(3)
C(12)-H(12B)	0.94(3)
C(12)-H(12C)	0.92(3)
C(13)-C(14)	1.392(3)
C(13)-C(18)	1.394(3)
C(14)-C(15)	1.390(3)
C(14)-H(14)	1.00(2)
C(15)-C(16)	1.385(3)
C(15)-H(15)	0.95(2)
C(16)-C(17)	1.388(3)
C(16)-H(16)	0.96(2)
C(17)-C(18)	1.388(3)
C(17)-H(17)	0.93(2)
C(18)-H(18)	0.97(2)
C(19)-C(24)	1.392(3)
C(19)-C(20)	1.400(3)
C(20)-C(21)	1.382(3)
C(20)-H(20)	0.95(2)
C(21)-C(22)	1.385(3)
C(21)-H(21)	0.97(3)
C(22)-C(23)	1.390(3)
C(22)-C(25)	1.497(3)
C(23)-C(24)	1.381(3)
C(23)-H(23)	0.97(3)
C(24)-H(24)	0.95(2)
C(25)-F(1)	1.328(2)
C(25)-F(2)	1.336(2)

C(25)-F(3)	1.344(2)
O(2)-S(1)-O(1)	120.28(8)
O(2)-S(1)-N(1)	106.81(8)
O(1)-S(1)-N(1)	107.69(7)
O(2)-S(1)-C(1)	108.32(8)
O(1)-S(1)-C(1)	106.48(8)
N(1)-S(1)-C(1)	106.54(8)
N(2)-C(1)-C(5)	125.58(17)
N(2)-C(1)-S(1)	114.14(14)
C(5)-C(1)-S(1)	120.26(14)
N(2)-C(2)-C(3)	123.43(18)
N(2)-C(2)-H(2)	116.3(14)
C(3)-C(2)-H(2)	120.3(14)
C(2)-C(3)-C(4)	119.01(18)
C(2)-C(3)-H(3)	123.6(15)
C(4)-C(3)-H(3)	117.3(15)
C(3)-C(4)-C(5)	118.68(19)
C(3)-C(4)-H(4)	119.9(17)
C(5)-C(4)-H(4)	121.4(17)
C(1)-C(5)-C(4)	117.25(18)
C(1)-C(5)-H(5)	117.6(17)
C(4)-C(5)-H(5)	125.1(17)
O(3)-C(6)-N(1)	110.36(14)
O(3)-C(6)-C(7)	106.73(15)
N(1)-C(6)-C(7)	111.95(15)
O(3)-C(6)-H(6)	110.8(13)
N(1)-C(6)-H(6)	102.8(12)
C(7)-C(6)-H(6)	114.2(13)
C(6)-C(7)-C(8)	112.71(15)
C(6)-C(7)-H(7A)	107.1(14)
C(8)-C(7)-H(7A)	110.8(14)
C(6)-C(7)-H(7B)	105.6(14)
C(8)-C(7)-H(7B)	112.9(15)
H(7A)-C(7)-H(7B)	107.4(19)
C(9)-C(8)-C(13)	115.05(15)
C(9)-C(8)-C(7)	106.46(15)
C(13)-C(8)-C(7)	111.04(14)

C(9)-C(8)-H(8)	109.2(13)
C(13)-C(8)-H(8)	105.9(13)
C(7)-C(8)-H(8)	109.0(14)
C(10)-C(9)-C(8)	119.48(17)
C(10)-C(9)-H(9)	123.0(13)
C(8)-C(9)-H(9)	117.2(13)
C(9)-C(10)-N(1)	117.38(16)
C(9)-C(10)-C(19)	124.59(17)
N(1)-C(10)-C(19)	117.83(15)
O(3)-C(11)-C(12)	108.09(16)
O(3)-C(11)-H(11A)	108.4(14)
C(12)-C(11)-H(11A)	108.6(14)
O(3)-C(11)-H(11B)	108.3(13)
C(12)-C(11)-H(11B)	111.3(13)
H(11A)-C(11)-H(11B)	112.0(19)
C(11)-C(12)-H(12A)	110.8(17)
C(11)-C(12)-H(12B)	109.0(15)
H(12A)-C(12)-H(12B)	113(2)
C(11)-C(12)-H(12C)	112(2)
H(12A)-C(12)-H(12C)	102(3)
H(12B)-C(12)-H(12C)	110(3)
C(14)-C(13)-C(18)	118.99(16)
C(14)-C(13)-C(8)	119.45(16)
C(18)-C(13)-C(8)	121.50(16)
C(15)-C(14)-C(13)	120.50(17)
C(15)-C(14)-H(14)	120.9(12)
C(13)-C(14)-H(14)	118.6(12)
C(16)-C(15)-C(14)	120.36(17)
C(16)-C(15)-H(15)	120.8(14)
C(14)-C(15)-H(15)	118.9(14)
C(15)-C(16)-C(17)	119.31(17)
C(15)-C(16)-H(16)	118.8(13)
C(17)-C(16)-H(16)	121.9(13)
C(18)-C(17)-C(16)	120.62(17)
C(18)-C(17)-H(17)	117.0(13)
C(16)-C(17)-H(17)	122.4(13)
C(17)-C(18)-C(13)	120.22(17)
C(17)-C(18)-H(18)	120.5(12)

C(13)-C(18)-H(18)	119.3(12)
C(24)-C(19)-C(20)	118.38(16)
C(24)-C(19)-C(10)	120.76(16)
C(20)-C(19)-C(10)	120.84(16)
C(21)-C(20)-C(19)	120.77(17)
C(21)-C(20)-H(20)	119.8(14)
C(19)-C(20)-H(20)	119.4(14)
C(20)-C(21)-C(22)	119.85(17)
C(20)-C(21)-H(21)	120.8(14)
C(22)-C(21)-H(21)	119.4(14)
C(21)-C(22)-C(23)	120.28(17)
C(21)-C(22)-C(25)	120.24(17)
C(23)-C(22)-C(25)	119.48(17)
C(24)-C(23)-C(22)	119.51(17)
C(24)-C(23)-H(23)	118.4(16)
C(22)-C(23)-H(23)	122.0(16)
C(23)-C(24)-C(19)	121.22(17)
C(23)-C(24)-H(24)	121.3(14)
C(19)-C(24)-H(24)	117.5(14)
F(1)-C(25)-F(2)	106.48(17)
F(1)-C(25)-F(3)	105.12(16)
F(2)-C(25)-F(3)	106.40(16)
F(1)-C(25)-C(22)	113.01(15)
F(2)-C(25)-C(22)	112.31(16)
F(3)-C(25)-C(22)	112.94(16)
C(10)-N(1)-C(6)	118.00(14)
C(10)-N(1)-S(1)	118.10(12)
C(6)-N(1)-S(1)	118.36(12)
C(1)-N(2)-C(2)	116.02(16)
C(6)-O(3)-C(11)	115.02(14)

Symmetry transformations used to generate equivalent atoms:

	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U ¹²
S(1)	21(1)	17(1)	14(1)	-1(1)	-1(1)	0(1)
C(1)	22(1)	15(1)	18(1)	-3(1)	0(1)	1(1)
C(2)	31(1)	19(1)	21(1)	0(1)	-3(1)	3(1)
C(3)	28(1)	25(1)	26(1)	-1(1)	-1(1)	9(1)
C(4)	25(1)	37(1)	27(1)	-1(1)	7(1)	5(1)
C(5)	28(1)	26(1)	18(1)	2(1)	3(1)	2(1)
C(6)	17(1)	22(1)	19(1)	2(1)	1(1)	-2(1)
C(7)	22(1)	32(1)	16(1)	3(1)	-1(1)	-5(1)
C(8)	21(1)	18(1)	17(1)	-1(1)	1(1)	1(1)
C(9)	18(1)	20(1)	19(1)	-1(1)	1(1)	-1(1)
C(10)	17(1)	17(1)	17(1)	-3(1)	2(1)	-1(1)
C(11)	20(1)	31(1)	24(1)	-3(1)	-4(1)	-2(1)
C(12)	22(1)	43(1)	37(1)	-6(1)	-4(1)	1(1)
C(13)	18(1)	19(1)	17(1)	2(1)	1(1)	-3(1)
C(14)	20(1)	18(1)	21(1)	-2(1)	2(1)	1(1)
C(15)	18(1)	19(1)	27(1)	2(1)	-2(1)	1(1)
C(16)	22(1)	25(1)	16(1)	2(1)	-3(1)	-5(1)
C(17)	20(1)	20(1)	19(1)	0(1)	2(1)	-4(1)
C(18)	18(1)	19(1)	21(1)	2(1)	0(1)	1(1)
C(19)	19(1)	18(1)	15(1)	-3(1)	1(1)	2(1)
C(20)	18(1)	19(1)	19(1)	-2(1)	1(1)	0(1)
C(21)	22(1)	20(1)	18(1)	-2(1)	1(1)	6(1)
C(22)	25(1)	16(1)	17(1)	-3(1)	4(1)	5(1)
C(23)	21(1)	23(1)	24(1)	1(1)	1(1)	-3(1)
C(24)	19(1)	25(1)	20(1)	1(1)	-2(1)	1(1)
C(25)	28(1)	20(1)	24(1)	-1(1)	6(1)	4(1)
N(1)	18(1)	17(1)	16(1)	0(1)	-1(1)	-1(1)
N(2)	23(1)	19(1)	20(1)	1(1)	1(1)	-1(1)
O (1)	31(1)	21(1)	16(1)	0(1)	1(1)	3(1)
O(2)	24(1)	21(1)	24(1)	-4(1)	-5(1)	-1(1)
O(3)	17(1)	29(1)	17(1)	-3(1)	0(1)	-1(1)
F(1)	54(1)	18(1)	33(1)	-3(1)	2(1)	0(1)
F(2)	48(1)	51(1)	64(1)	35(1)	37(1)	21(1)
F(3)	61(1)	28(1)	33(1)	8(1)	-20(1)	-4(1)

Table 4. Anisotropic displacement parameters $(Å^2 x \ 10^3)$ for I. The anisotropic displacement factor exponent takes the form: $-2\pi^2 [h^2 \ a^{*2}U^{11} + ... + 2h \ k \ a^* \ b^* \ U^{12}]$

	Х	у	Z	U(eq)
H(2)	2610(20)	550(20)	7067(11)	26(6)
H(3)	4800(30)	630(20)	6510(11)	33(6)
H(4)	4990(30)	1850(20)	5686(12)	41(7)
H(5)	3030(30)	3120(20)	5411(12)	41(7)
H(6)	-940(20)	2840(20)	6902(10)	17(5)
H(7A)	-190(30)	3040(20)	7885(11)	29(6)
H(7B)	-470(30)	4420(20)	7852(10)	25(6)
H(8)	1960(20)	3370(20)	7359(9)	14(5)
H(9)	2300(20)	5740(20)	7311(10)	19(5)
H(11A)	-2880(30)	4210(20)	6265(11)	28(6)
H(11B)	-3300(20)	3020(20)	6680(10)	21(5)
H(12A)	-4400(30)	5430(30)	6869(12)	46(8)
H(12B)	-5260(30)	4310(20)	6566(11)	34(6)
H(12C)	-4820(30)	4360(30)	7238(16)	66(10)
H(14)	3460(20)	2518(19)	8038(9)	12(5)
H(15)	4570(30)	2570(20)	9007(11)	28(6)
H(16)	4140(20)	4119(18)	9696(10)	17(5)
H(17)	2510(20)	5654(19)	9405(10)	16(5)
H(18)	1390(20)	5623(19)	8468(9)	14(5)
H(20)	-1160(30)	6120(20)	5999(10)	24(6)
H(21)	-1230(30)	7850(20)	5392(10)	26(6)
H(23)	2980(30)	8390(20)	5748(12)	39(7)
H(24)	2990(30)	6650(20)	6338(10)	24(5)

Table 5. Hydrogen coordinates ($x\;10^4)$ and isotropic displacement parameters (Å $^2x\;10\;^3)$ for I.

Table 6. Torsion angles [°] for I.

O(2)-S(1)-C(1)-N(2)	-53.45(15)
O(1)-S(1)-C(1)-N(2)	175.87(13)
N(1)-S(1)-C(1)-N(2)	61.14(15)
O(2)-S(1)-C(1)-C(5)	125.21(15)
O(1)-S(1)-C(1)-C(5)	-5.47(17)
N(1)-S(1)-C(1)-C(5)	-120.20(15)
N(2)-C(2)-C(3)-C(4)	-0.5(3)

C(2)-C(3)-C(4)-C(5)	1.5(3)
N(2)-C(1)-C(5)-C(4)	-0.2(3)
S(1)-C(1)-C(5)-C(4)	-178.65(15)
C(3)-C(4)-C(5)-C(1)	-1.2(3)
O(3)-C(6)-C(7)-C(8)	-142.25(16)
N(1)-C(6)-C(7)-C(8)	-21.4(2)
C(6)-C(7)-C(8)-C(9)	56.3(2)
C(6)-C(7)-C(8)-C(13)	-177.74(16)
C(13)-C(8)-C(9)-C(10)	-171.52(17)
C(7)-C(8)-C(9)-C(10)	-48.1(2)
C(8)-C(9)-C(10)-N(1)	1.4(2)
C(8)-C(9)-C(10)-C(19)	176.11(17)
C(9)-C(8)-C(13)-C(14)	-126.49(18)
C(7)-C(8)-C(13)-C(14)	112.51(19)
C(9)-C(8)-C(13)-C(18)	56.3(2)
C(7)-C(8)-C(13)-C(18)	-64.7(2)
C(18)-C(13)-C(14)-C(15)	0.4(3)
C(8)-C(13)-C(14)-C(15)	-176.83(17)
C(13)-C(14)-C(15)-C(16)	-0.8(3)
C(14)-C(15)-C(16)-C(17)	0.6(3)
C(15)-C(16)-C(17)-C(18)	-0.1(3)
C(16)-C(17)-C(18)-C(13)	-0.3(3)
C(14)-C(13)-C(18)-C(17)	0.2(3)
C(8)-C(13)-C(18)-C(17)	177.33(16)
C(9)-C(10)-C(19)-C(24)	34.5(3)
N(1)-C(10)-C(19)-C(24)	-150.88(16)
C(9)-C(10)-C(19)-C(20)	-143.45(19)
N(1)-C(10)-C(19)-C(20)	31.2(2)
C(24)-C(19)-C(20)-C(21)	0.0(3)
C(10)-C(19)-C(20)-C(21)	177.93(15)
C(19)-C(20)-C(21)-C(22)	-0.2(3)
C(20)-C(21)-C(22)-C(23)	-0.2(3)
C(20)-C(21)-C(22)-C(25)	-179.58(16)
C(21)-C(22)-C(23)-C(24)	0.7(3)
C(25)-C(22)-C(23)-C(24)	-179.87(16)
C(22)-C(23)-C(24)-C(19)	-0.9(3)
C(20)-C(19)-C(24)-C(23)	0.6(3)
C(10)-C(19)-C(24)-C(23)	-177.37(16)

C(21)-C(22)-C(25)-F(1)	95.8(2)
C(23)-C(22)-C(25)-F(1)	-83.6(2)
C(21)-C(22)-C(25)-F(2)	-143.68(18)
C(23)-C(22)-C(25)-F(2)	36.9(3)
C(21)-C(22)-C(25)-F(3)	-23.3(2)
C(23)-C(22)-C(25)-F(3)	157.23(17)
C(9)-C(10)-N(1)-C(6)	39.4(2)
C(19)-C(10)-N(1)-C(6)	-135.64(16)
C(9)-C(10)-N(1)-S(1)	-113.95(16)
C(19)-C(10)-N(1)-S(1)	71.00(18)
O(3)-C(6)-N(1)-C(10)	91.90(18)
C(7)-C(6)-N(1)-C(10)	-26.8(2)
O(3)-C(6)-N(1)-S(1)	-114.81(14)
C(7)-C(6)-N(1)-S(1)	126.47(15)
O(2)-S(1)-N(1)-C(10)	-172.38(12)
O(1)-S(1)-N(1)-C(10)	-41.90(15)
C(1)-S(1)-N(1)-C(10)	72.01(14)
O(2)-S(1)-N(1)-C(6)	34.35(14)
O(1)-S(1)-N(1)-C(6)	164.84(12)
C(1)-S(1)-N(1)-C(6)	-81.25(14)
C(5)-C(1)-N(2)-C(2)	1.1(3)
S(1)-C(1)-N(2)-C(2)	179.71(13)
C(3)-C(2)-N(2)-C(1)	-0.8(3)
N(1)-C(6)-O(3)-C(11)	76.21(18)
C(7)-C(6)-O(3)-C(11)	-161.93(16)
C(12)-C(11)-O(3)-C(6)	176.08(16)

Symmetry transformations used to generate equivalent atoms:

Table 7. Hydrogen bonds for I $[Å and °]$.

D-HA	d(D-H)	d(HA)	d(DA)	<(DHA)

X-ray data for compound 32b

Table 1.	Crystal	data and	structure refinement	for compound 32b
----------	---------	----------	----------------------	------------------

Identification code	jep002_0m	
Empirical formula	C27 H24 N2 O2 S	
Formula weight	440.54	
Temperature	100(2) K	
Wavelength	0.71073 Å	
Crystal system	Orthorhombic	
Space group	P2(1)2(1)2(1)	
Unit cell dimensions	a = 11.123(5) Å	α=90°.
	b = 12.226(5) Å	β= 90°.
	c = 16.556(9) Å	$\gamma=90^{\circ}.$
Volume	2251.3(18) Å ³	
Z	4	
Density (calculated)	1.300 Mg/m ³	
Absorption coefficient	0.171 mm ⁻¹	
F(000)	928	
Crystal size	$0.30 \ x \ 0.02 \ x \ 0.01 \ mm^3$	
Theta range for data collection	2.76 to 26.88°.	
Index ranges	-13<=h<=14, -15<=k<=13, -21	<=l<=19

Reflections collected	19072
Independent reflections	4809 [R(int) = 0.1389]
Completeness to theta = 26.88°	99.1 %
Absorption correction	SADABS (Bruker-Nonius)
Max. and min. transmission	0.9983 and 0.9505
Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	4809 / 0 / 290
Goodness-of-fit on F ²	1.022
Final R indices [I>2sigma(I)]	R1 = 0.0762, wR2 = 0.1738
R indices (all data)	R1 = 0.1311, wR2 = 0.2115
Absolute structure parameter	0.05(17)
Largest diff. peak and hole	0.916 and -0.955 e.Å ⁻³

S(1)-O(1)	1.413(3)
S(1)-O(2)	1.429(3)
S(1)-N(1)	1.654(4)
S(1)-C(25)	1.733(5)
N(1)-C(5)	1.454(6)
N(1)-C(1)	1.497(6)
C(1)-N(2)	1.442(6)
C(1)-C(2)	1.502(7)
N(2)-C(26)	1.371(6)
N(2)-C(18)	1.457(6)
C(2)-C(3)	1.532(7)
C(3)-C(4)	1.497(7)
C(3)-C(6)	1.503(7)
C(4)-C(5)	1.328(7)
C(5)-C(12)	1.479(7)
C(6)-C(7)	1.385(7)
C(6)-C(11)	1.393(7)
C(7)-C(8)	1.370(7)
C(8)-C(9)	1.390(7)
C(9)-C(10)	1.385(7)
C(10)-C(11)	1.366(7)
C(12)-C(17)	1.372(7)
C(12)-C(13)	1.389(7)
C(13)-C(14)	1.380(7)
C(14)-C(15)	1.362(8)
C(15)-C(16)	1.372(7)
C(16)-C(17)	1.393(7)
C(18)-C(19)	1.498(8)
C(18)-C(27)	1.511(9)
C(19)-C(20)	1.308(8)
C(20)-C(21)	1.455(7)
C(21)-C(22)	1.384(8)
C(21)-C(26)	1.414(7)
C(22)-C(23)	1.387(8)
C(23)-C(24)	1.351(7)
C(24)-C(25)	1.399(7)

Table 2. Bond lengths [Å] and angles [°] for JEP002_0m.

C(25)-C(26)	1.395(7)
O(1)-S(1)-O(2)	116.1(2)
O(1)-S(1)-N(1)	112.3(2)
O(2)-S(1)-N(1)	107.2(2)
O(1)-S(1)-C(25)	109.3(2)
O(2)-S(1)-C(25)	110.5(2)
N(1)-S(1)-C(25)	100.4(2)
C(5)-N(1)-C(1)	110.3(4)
C(5)-N(1)-S(1)	110.7(3)
C(1)-N(1)-S(1)	115.0(3)
N(2)-C(1)-N(1)	110.9(4)
N(2)-C(1)-C(2)	114.1(4)
N(1)-C(1)-C(2)	112.6(4)
C(26)-N(2)-C(1)	122.6(4)
C(26)-N(2)-C(18)	121.5(4)
C(1)-N(2)-C(18)	115.2(4)
C(1)-C(2)-C(3)	109.3(4)
C(4)-C(3)-C(6)	112.9(4)
C(4)-C(3)-C(2)	113.0(4)
C(6)-C(3)-C(2)	110.9(4)
C(5)-C(4)-C(3)	126.0(5)
C(4)-C(5)-N(1)	120.1(4)
C(4)-C(5)-C(12)	124.4(4)
N(1)-C(5)-C(12)	115.2(4)
C(7)-C(6)-C(11)	117.6(4)
C(7)-C(6)-C(3)	120.9(5)
C(11)-C(6)-C(3)	121.3(4)
C(8)-C(7)-C(6)	121.8(5)
C(7)-C(8)-C(9)	120.2(5)
C(10)-C(9)-C(8)	118.3(5)
C(11)-C(10)-C(9)	121.3(5)
C(10)-C(11)-C(6)	120.8(4)
C(17)-C(12)-C(13)	119.0(5)
C(17)-C(12)-C(5)	119.9(4)
C(13)-C(12)-C(5)	120.9(5)
C(14)-C(13)-C(12)	120.1(5)
C(15)-C(14)-C(13)	120.7(5)

C(14)-C(15)-C(16)	119.8(5)
C(15)-C(16)-C(17)	120.0(5)
C(12)-C(17)-C(16)	120.4(5)
N(2)-C(18)-C(19)	110.3(4)
N(2)-C(18)-C(27)	112.6(5)
C(19)-C(18)-C(27)	110.8(5)
C(20)-C(19)-C(18)	122.4(5)
C(19)-C(20)-C(21)	120.9(5)
C(22)-C(21)-C(26)	119.5(5)
C(22)-C(21)-C(20)	122.5(5)
C(26)-C(21)-C(20)	117.9(5)
C(21)-C(22)-C(23)	121.8(5)
C(24)-C(23)-C(22)	119.4(5)
C(23)-C(24)-C(25)	120.3(5)
C(26)-C(25)-C(24)	121.7(4)
C(26)-C(25)-S(1)	121.4(4)
C(24)-C(25)-S(1)	116.8(4)
N(2)-C(26)-C(25)	123.3(4)
N(2)-C(26)-C(21)	119.3(4)
C(25)-C(26)-C(21)	117.4(4)

Symmetry transformations used to generate equivalent atoms:

Table 3. Torsion angles [°] for JEP002_0m.

O(1)-S(1)-N(1)-C(5)	-59.7(4)
O(2)-S(1)-N(1)-C(5)	68.9(3)
C(25)-S(1)-N(1)-C(5)	-175.6(3)
O(1)-S(1)-N(1)-C(1)	66.3(4)
O(2)-S(1)-N(1)-C(1)	-165.1(3)
C(25)-S(1)-N(1)-C(1)	-49.7(4)
C(5)-N(1)-C(1)-N(2)	-173.5(4)
S(1)-N(1)-C(1)-N(2)	60.4(5)
C(5)-N(1)-C(1)-C(2)	57.2(5)
S(1)-N(1)-C(1)-C(2)	-69.0(5)
N(1)-C(1)-N(2)-C(26)	-36.4(6)
C(2)-C(1)-N(2)-C(26)	92.1(6)
N(1)-C(1)-N(2)-C(18)	134.0(4)
C(2)-C(1)-N(2)-C(18)	-97.5(5)
N(2)-C(1)-C(2)-C(3)	173.3(4)
N(1)-C(1)-C(2)-C(3)	-59.0(5)
C(1)-C(2)-C(3)-C(4)	31.1(6)
C(1)-C(2)-C(3)-C(6)	159.1(4)
C(6)-C(3)-C(4)-C(5)	-130.6(5)
C(2)-C(3)-C(4)-C(5)	-3.7(7)
C(3)-C(4)-C(5)-N(1)	1.6(8)
C(3)-C(4)-C(5)-C(12)	-171.7(5)
C(1)-N(1)-C(5)-C(4)	-27.4(6)
S(1)-N(1)-C(5)-C(4)	101.1(5)
C(1)-N(1)-C(5)-C(12)	146.6(4)
S(1)-N(1)-C(5)-C(12)	-84.9(4)
C(4)-C(3)-C(6)-C(7)	-133.5(5)
C(2)-C(3)-C(6)-C(7)	98.5(5)
C(4)-C(3)-C(6)-C(11)	51.3(6)
C(2)-C(3)-C(6)-C(11)	-76.7(6)
C(11)-C(6)-C(7)-C(8)	1.3(7)
C(3)-C(6)-C(7)-C(8)	-174.1(4)
C(6)-C(7)-C(8)-C(9)	-0.4(7)
C(7)-C(8)-C(9)-C(10)	-0.3(7)
C(8)-C(9)-C(10)-C(11)	0.1(8)
C(9)-C(10)-C(11)-C(6)	0.8(8)

C(7)-C(6)-C(11)-C(10)	-1.5(7)
C(3)-C(6)-C(11)-C(10)	173.9(4)
C(4)-C(5)-C(12)-C(17)	141.3(5)
N(1)-C(5)-C(12)-C(17)	-32.4(6)
C(4)-C(5)-C(12)-C(13)	-34.0(7)
N(1)-C(5)-C(12)-C(13)	152.3(5)
C(17)-C(12)-C(13)-C(14)	-0.1(8)
C(5)-C(12)-C(13)-C(14)	175.2(5)
C(12)-C(13)-C(14)-C(15)	0.6(8)
C(13)-C(14)-C(15)-C(16)	-0.3(8)
C(14)-C(15)-C(16)-C(17)	-0.5(8)
C(13)-C(12)-C(17)-C(16)	-0.7(7)
C(5)-C(12)-C(17)-C(16)	-176.1(5)
C(15)-C(16)-C(17)-C(12)	1.1(8)
C(26)-N(2)-C(18)-C(19)	-32.4(7)
C(1)-N(2)-C(18)-C(19)	157.1(4)
C(26)-N(2)-C(18)-C(27)	92.0(6)
C(1)-N(2)-C(18)-C(27)	-78.5(6)
N(2)-C(18)-C(19)-C(20)	24.4(8)
C(27)-C(18)-C(19)-C(20)	-101.1(7)
C(18)-C(19)-C(20)-C(21)	-5.0(9)
C(19)-C(20)-C(21)-C(22)	174.2(6)
C(19)-C(20)-C(21)-C(26)	-9.2(8)
C(26)-C(21)-C(22)-C(23)	-0.2(9)
C(20)-C(21)-C(22)-C(23)	176.4(5)
C(21)-C(22)-C(23)-C(24)	-0.2(9)
C(22)-C(23)-C(24)-C(25)	-0.1(8)
C(23)-C(24)-C(25)-C(26)	0.9(8)
C(23)-C(24)-C(25)-S(1)	-176.0(4)
O(1)-S(1)-C(25)-C(26)	-97.1(4)
O(2)-S(1)-C(25)-C(26)	134.0(4)
N(1)-S(1)-C(25)-C(26)	21.2(4)
O(1)-S(1)-C(25)-C(24)	79.8(4)
O(2)-S(1)-C(25)-C(24)	-49.1(4)
N(1)-S(1)-C(25)-C(24)	-162.0(4)
C(1)-N(2)-C(26)-C(25)	7.7(7)
C(18)-N(2)-C(26)-C(25)	-162.1(5)
C(1)-N(2)-C(26)-C(21)	-169.2(5)

C(18)-N(2)-C(26)-C(21)	21.0(7)
C(24)-C(25)-C(26)-N(2)	-178.3(4)
S(1)-C(25)-C(26)-N(2)	-1.6(7)
C(24)-C(25)-C(26)-C(21)	-1.3(7)
S(1)-C(25)-C(26)-C(21)	175.4(4)
C(22)-C(21)-C(26)-N(2)	178.1(5)
C(20)-C(21)-C(26)-N(2)	1.3(7)
C(22)-C(21)-C(26)-C(25)	1.0(7)
C(20)-C(21)-C(26)-C(25)	-175.8(5)

Symmetry transformations used to generate equivalent atoms: