## Supportting information (I)

# Diverse Pathways on the Reaction of Fischer Carbenes and Palladium 

María P. López-Alberca, María J. Mancheño,* Israel Fernández, Mar Gómez-Gallego, Miguel A. Sierra,* and Rosario Torres ${ }^{\varnothing}$<br>Departamento de Química Orgánica, Facultad de Química, Universidad Complutense, 28040 Madrid, Spain

[^0]
## Table of Contents

- Experimental Section:.............................................page 3-10
- X-Ray Crystal Analysis of complex 7b....................... page 11
- References......................................................... page 13


## Experimental Section

General procedure. ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra were recorded at $22{ }^{\circ} \mathrm{C}$ on Bruker Avance 500 ( 500.1 and 125.7 MHz ), 300 ( 300.1 and 75.4 MHz ) or Bruker 200AC (200.1 and 50 MHz ) spectrometers. Chemical shifts are given in ppm relative to TMS ( $\left.{ }^{1} \mathrm{H}, 0.0 \mathrm{ppm}\right)$ and $\mathrm{CDCl}_{3}\left({ }^{13} \mathrm{C}, 77.0 \mathrm{ppm}\right)$. IR spectra were taken on a PerkinElmer 781 spectrometer. DMF and $\mathrm{CH}_{3} \mathrm{CN}$ were distilled from calcium hydride and THF from sodium-benzophenone. Flame-dried glassware and standard Schlenk techniques were used for moisture sensitive reactions. Merck silica-gel (230-400 Mesh) or fluorisil was used as the stationary phase for purification of crude reaction mixtures by flash column chromatography. Identification of products was made by TLC (kiesegel 60F-254). UV light $(\lambda=254 \mathrm{~nm})$ and 5\% phosphomolybdic acid solution in $95 \% \mathrm{EtOH}$ were used to develop the plates.

All commercially available compounds were used without further purification. Carbene complex pentacarbonyl[1-ethoxy-3-phenyl-2-propiniliden]chromium(0) 6, was prepared according to literature methods. ${ }^{1}$

Synthesis of carbene complex 5a. A solution of $210 \mathrm{mg}(2.25 \mathrm{mmol})$ of aniline and 790 mg ( 2.25 mmol ) of carbene complex 6 in THF was stirred for 12 h at room temperature to yield $998 \mathrm{mg}(100 \%)$ of complex 5a as an orange-red solid. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right): \delta=1.68(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 4.99(\mathrm{q}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.63(\mathrm{~s}, 1 \mathrm{H})$, $6.69(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.04-7.41(\mathrm{~m}, 8 \mathrm{H}), 10.47(\mathrm{bs}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75\right.$ $\mathrm{MHz}): \delta=15.8,74.4,122.1,122.8,125.3,128.7,129.0,129.1,130.3,134.8,138.3$, 147.0, 218.2, 224.0, 301.9. IR (KBr): $v=3423,2047,1964,1902,1554 \mathrm{~cm}^{-1}$; $\mathrm{C}_{22} \mathrm{H}_{17} \mathrm{CrNO}_{6}$ : calcd C, $59.60 ; \mathrm{H}, 3.86 ; \mathrm{Cr}, 11.73 ; \mathrm{N}, 3.16$; found C, $59.56 ; \mathrm{H}, 3.90$.

Synthesis of carbene complex 5b. A solution of $313 \mathrm{mg}(1.43 \mathrm{mmol})$ of $o$-iodoaniline and $500 \mathrm{mg}(1.43 \mathrm{mmol})$ of carbene complex 6 in THF was stirred for 36 h at room temperature to yield $800 \mathrm{mg}(98 \%)$ of complex $\mathbf{5 b}$ as an orange-red solid. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right): \delta=1.76(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 5.10(\mathrm{q}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.46(\mathrm{~d}, J=$ $6.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.75(\mathrm{~m}, 2 \mathrm{H}), 6.95(\mathrm{~m}, 1 \mathrm{H}), 7.27-7.38(\mathrm{~m}, 5 \mathrm{H}), 7.83(\mathrm{~d}, \mathrm{~J}=6.0 \mathrm{~Hz}, 1 \mathrm{H})$, 10.01 (bs, 1 H$) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right): \delta=16.3,75.5,93.1,123.0,126.0,126.8$, 128.5, 128.7, 129.0, 130.3, 134.9, 139.3, 140.6, 145.3, 218.0, 224.1, 306.1. IR $\left(\mathrm{CCl}_{4}\right): v$ 3463, 2050, 1969, 1924, 1899, 1569, $1541 \mathrm{~cm}^{-1} ; \mathrm{C}_{22} \mathrm{H}_{16} \mathrm{CrINO}_{6}$ : calcd C, 46.42; H, 2.83; Cr, 9.13; I, 22.29; N, 2.46; found C, 46.30; H, 2.86.

Stoichiometric reactions of enamine carbene complexes with palladium catalysts. General method. A solution of the corresponding carbene complex and the palladium catalysts in a 1:0.6 ratio respectively were dissolved in MeCN together with $\mathrm{K}_{2} \mathrm{CO}_{3}$ in excess at room temperature. The mixture was stirred under argon atmosphere as indicated for each case at room temperature. Then, the solvent was eliminated in vacuo and the residue obtained disaggregated in AcOEt and filtered over a short pad of celita. For reactions with DMF as solvent, water was added to the reaction mixture and was extracted with AcOEt. The organic layers were washed with brine and dried over magnesium sulphate. The solvent was removed in vacuo. Further purification by flash column chromatography allowed the isolation of pure compounds.

## Stoichiometric reactions of complex 5a.

a) $\mathbf{P d C l}_{2}(\mathbf{M e C N})_{2} / \mathbf{K}_{2} \mathbf{C O}_{3}$ in $\mathbf{M e C N}$. Following the general method, from a solution of $25 \mathrm{mg}(0.06 \mathrm{mmol})$ of carbene complex $\mathbf{5 a}, 88 \mathrm{mg}(0.03 \mathrm{mmol})$ of $\mathrm{PdCl}_{2}(\mathrm{MeCN})_{2}$, and $39 \mathrm{mg}(0.28 \mathrm{mmol})$ of $\mathrm{K}_{2} \mathrm{CO}_{3}$ in 1 mL of MeCN , after 2 h were obtained $17 \mathrm{mg}(93 \%)$ of 7a. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right): \delta=1.50(\mathrm{t}, J=7.1 \mathrm{~Hz}, 6 \mathrm{H}), 4.05(\mathrm{q}, J=7.1 \mathrm{~Hz}$,

4H), $5.45(\mathrm{~s}, 2 \mathrm{H})$, 6.31-6.36 (m, 4H), 6.53-6.57 (m, 6H), 6.92-6.95 (m, 4H), 7.05-7.09 $(\mathrm{m}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right): \delta=14.6,65.1,109.7,123.2,124.3,127.4,127.7$, 127.9, 128.0, 137.3, 148.1, 182.1, 208.5; IR (KBr): $v=3028,1479,1454,1437,1198$ $\mathrm{cm}^{-1}$. HRMS (FAB): calcd. for $\mathrm{C}_{34} \mathrm{H}_{33} \mathrm{~N}_{2} \mathrm{O}_{2}{ }^{104} \mathrm{Pd} 605.1582$; found: 605.1566.
b) $\operatorname{Pd}(\mathbf{O A c})_{2} / \mathbf{K}_{2} \mathbf{C O}_{3}$ in $\mathbf{M e C N}$. Following the general method, from a solution of 25 $\mathrm{mg}(0.06 \mathrm{mmol})$ of carbene complex $5 \mathbf{5 a}, 8 \mathrm{mg}(0.034 \mathrm{mmol})$ of $\mathrm{Pd}(\mathrm{OAc})_{2}$, and 39 mg ( 0.28 mmol ) of $\mathrm{K}_{2} \mathrm{CO}_{3}$ in 1 mL of MeCN , after 4.5 hours were obtained $5 \mathrm{mg}(27 \%)$ of palladium carbene complex 7a, $2.1 \mathrm{mg}(16 \%)$ of aldehyde $\mathbf{9 a}$ and $2 \mathrm{mg}(12 \%)$ of the ester 8a. The same reaction using $62 \mathrm{mg}(0.11 \mathrm{mmol})$ of KOH , instead of $\mathrm{K}_{2} \mathrm{CO}_{3}$, gives $3 \mathrm{mg}(19 \%)$ of palladium carbene complex 7a, $13 \mathrm{mg}(55 \%)$ of aldehyde $9 \mathbf{9 a}$ and 2.3 mg (14\%) of ester 8a. Aldehyde 9a: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right): \delta=5.38(\mathrm{~d}, \mathrm{~J}=2.5 \mathrm{~Hz}$, $1 \mathrm{H}), 6.75(\mathrm{~m}, 1 \mathrm{H}), 6.79(\mathrm{~m}, 1 \mathrm{H}), 7.01-7.05(\mathrm{~m}, 2 \mathrm{H}), 7.13-7.17(\mathrm{~m}, 2 \mathrm{H}), 7.31-7.39(\mathrm{~m}$, $4 \mathrm{H}), 9.31(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 12.34(\mathrm{bs}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right): \delta=100.7$, $123.3,124.5,128.3,128.5,128.7,129.8,134.6,139.0,161.0,188.0 ; \operatorname{IR}\left(\mathrm{CHCl}_{3}\right): v=$ 3018, 1599, 1568, $1215 \mathrm{~cm}^{-1}$; Ester 8a: ${ }^{21}{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right): \delta=1.33(\mathrm{t}, \mathrm{J}=$ $7.1 \mathrm{~Hz}, 3 \mathrm{H}), 4.22(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 5.00(\mathrm{~s}, 1 \mathrm{H}), 6.66-6.69(\mathrm{~m}, 2 \mathrm{H}), 6.89-6.94(\mathrm{~m}$, $1 \mathrm{H}), \quad 7.06-7.11(\mathrm{~m}, 2 \mathrm{H}), 7.28-7.35(\mathrm{~m}, 5 \mathrm{H}), 10.30(\mathrm{bs}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75\right.$ $\mathrm{MHz}): \delta=14.0,59.3,91.2,122.2,122.9,128.2,128.4,128.6,129.4,136.0,140.4$, $159.1,170.1 ; \operatorname{IR}\left(\mathrm{CHCl}_{3}\right): v=3018,1288,1215,1180 \mathrm{~cm}^{-1}$.
c) $\operatorname{Pd}(\mathbf{O A c})_{2} / \mathbf{K}_{2} \mathbf{C O}_{3}$ in DMF. Following the general method, from a solution of 25 mg $(0.06 \mathrm{mmol})$ of carbene complex $\mathbf{5 a}, 8 \mathrm{mg}(0.034 \mathrm{mmol})$ of $\mathrm{Pd}(\mathrm{OAc})_{2}$, and $39 \mathrm{mg}(0.28$ mmol ) of $\mathrm{K}_{2} \mathrm{CO}_{3}$ in 1 mL of DMF, after 6 hours the aldehyde 9 a was observed as the main product in the reaction mixture..
d) $\mathbf{P d C l}_{2} / \mathbf{K}_{\mathbf{2}} \mathbf{C O}_{3}$ in $\mathbf{M e C N}$. Following the general method, from a solution of 25 mg $(0.06 \mathrm{mmol})$ of carbene complex $\mathbf{5 a}, 6 \mathrm{mg}(0.03 \mathrm{mmol})$ of $\mathrm{PdCl}_{2}$, and $39 \mathrm{mg}(0.28$ mmol ) of $\mathrm{K}_{2} \mathrm{CO}_{3}$ in 1 mL of MeCN , after 1 h and 35 minutes were isolated $7 \mathrm{mg}(38 \%)$ of palladium carbene complex 7a.
e) $\mathbf{P d}\left(\mathbf{P P h}_{3}\right)_{4} / \mathbf{K}_{2} \mathbf{C O}_{3}$ in $\mathbf{M e C N}$. Following the general method, from a solution of 25 $\mathrm{mg}(0.06 \mathrm{mmol})$ of carbene complex 5a, $39 \mathrm{mg}(0.03 \mathrm{mmol})$ of $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$, and 39 mg ( 0.28 mmol ) of $\mathrm{K}_{2} \mathrm{CO}_{3}$ in 1 mL of MeCN after 3 hours were obtained $5 \mathrm{mg}(27 \%)$ of palladium carbene complex 7a, 3 mg (22\%) of aldehyde $\mathbf{9 a}$ and $5 \mathrm{mg}(31 \%)$ of ester $\mathbf{8 a}$. Stoichiometric reactions of complex $\mathbf{5 b}$.
a) $\mathbf{P d C l}_{2}(\mathbf{M e C N})_{2} / \mathbf{K}_{2} \mathbf{C O}_{3}$ in $\mathbf{M e C N}$. Following the general method, from a solution of $25 \mathrm{mg}(0.044 \mathrm{mmol})$ of $\mathbf{5 b}, 7 \mathrm{mg}(0.03 \mathrm{mmol})$ of $\mathrm{PdCl}_{2}(\mathrm{MeCN})_{2}$ and $30 \mathrm{mg}(0.22$ $\mathrm{mmol})$ of $\mathrm{K}_{2} \mathrm{CO}_{3}$ in 1 mL of MeCN , after 90 minutes were obtained $17 \mathrm{mg}(90 \%)$ of pure 7b. Further crystallization in a mixture of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ /pentane gave $\mathbf{7 b}$ as yellow crystals. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta=1.52(\mathrm{t}, J=7 \mathrm{~Hz}, 6 \mathrm{H}), 4.09(\mathrm{q}, J=7 \mathrm{~Hz}, 4 \mathrm{H})$, $5.50(\mathrm{~s}, 2 \mathrm{H}), 6.21-6.27(\mathrm{~m}, 2 \mathrm{H}), 6.52-6.63(\mathrm{~m}, 4 \mathrm{H}), 6.93-7.00(\mathrm{~m}, 6 \mathrm{H}), 7.05-7.28(\mathrm{~m}$, $6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right): \delta=14.6,65.3,98.7,109.4,125.0,126.3,127.1$, 127.4, 127.5, 128.1, 137.1, 137.5, 148.2, 181.6, 210.0; $\mathrm{IR}\left(\mathrm{CHCl}_{3}\right): v=3018,2927$, 2854, 1479, 1452, 1437, 1215, $1197 \mathrm{~cm}^{-1}$. HRMS (FAB): calcd. for $\mathrm{C}_{34} \mathrm{H}_{31} \mathrm{I}_{2} \mathrm{~N}_{2} \mathrm{O}_{2}{ }^{104} \mathrm{Pd}$ 856.9523; found: 856.9515 .
b) $\mathbf{P d}\left(\mathbf{P P h}_{3}\right)_{4} / \mathbf{K}_{2} \mathbf{C O}_{3}$ in DMF. Following the general method from a solution of 50 mg ( 0.09 mmol ) of carbene complex $5 \mathbf{b}, 61 \mathrm{mg}(0.05 \mathrm{mmol})$ of $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$, and $61 \mathrm{mg}(0.44$ $\mathrm{mmol})$ of $\mathrm{K}_{2} \mathrm{CO}_{3}$ in 2 mL of DMF after 26 hours and were obtained $7 \mathrm{mg}(20 \%)$ of ester $\mathbf{8 b}$ and $10 \mathrm{mg}(42 \%)$ of the indole 11. Ester 8b: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right): \delta=$ $1.34(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 4.26(\mathrm{c}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 5.14(\mathrm{~s}, 1 \mathrm{H}), 6.33-6.36(\mathrm{~m}, 1 \mathrm{H}), 6.61-$ $6.67(\mathrm{~m}, 1 \mathrm{H}), 6.87-6.92(\mathrm{~m}, 1 \mathrm{H}), 7.25-7.36(\mathrm{~m}, 5 \mathrm{H}), 7.78-7.81(\mathrm{~m}, 1 \mathrm{H}), 10.13(\mathrm{bs}, 1 \mathrm{H})$;
${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right): \delta=14.5,59.5,93.0,93.1,124.2,124.6,128.0,128.1$, $128.5,129.5,135.7,139.1,142.0,158.1,169.7$; $\mathrm{IR}\left(\mathrm{CHCl}_{3}\right): v=3018,1612,1599$, 1288, 1215, 1177, $752 \mathrm{~cm}^{-1} ; \mathrm{C}_{17} \mathrm{H}_{16} \mathrm{NO}_{2}$ : calcd C, $50.41 ; \mathrm{H}, 4.23 ; \mathrm{N}, 3.67$; found C , 50.45; $\mathrm{H}, 4.21$. Indole 11: ${ }^{31} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right): \delta=1.31(\mathrm{t}, J=7.0 . \mathrm{Hz}, 3 \mathrm{H})$, $4.33(\mathrm{q}, ~ J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.27-7.47(\mathrm{~m}, 6 \mathrm{H}), 7.66-7.70(\mathrm{~m}, 2 \mathrm{H}), 8.23-8.25(\mathrm{~m}, 1 \mathrm{H}), 8.50$ (bs, 1H); ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right): \delta=14.3,59.7,104.8,111.0,122.1,122.2,123.2$, 127.6, 128.1, 129.2, 129.6, 132.0, 135.1, 144.4, 165.3; IR $\left(\mathrm{CCl}_{4}\right): v=3271,1670$, 1429, 1489, 1126, $1049 \mathrm{~cm}^{-1}$; MS-EI m/z (\%): 265 (75), 220 (100), 221 (19), 193 (40), 165 (29).
c) $\mathbf{P d}\left(\mathbf{P P h}_{3}\right)_{4}$ in DMF. Following the general method, from a solution of $50 \mathrm{mg}(0.09$ $\mathrm{mmol})$ of carbene complex $\mathbf{5 b}$ and $61 \mathrm{mg}(0.05 \mathrm{mmol})$ of $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$ in 2 mL of DMF after 20 hours and were obtained $2 \mathrm{mg}(6 \%)$ of ester $\mathbf{8 b}, 11 \mathrm{mg}(48 \%)$ of the indole 11, and $9 \mathrm{mg}(40 \%)$ of quinoline 10. Quinoline 10: ${ }^{4} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right): \delta=1.55$ $(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 4.30(\mathrm{q}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.09(\mathrm{~s}, 1 \mathrm{H}), 7.39-7.69(\mathrm{~m}, 5 \mathrm{H}), 8.01-8.19$ $(\mathrm{m}, 4 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right): \delta=14.6,64.1,98.6,120,5,121.7,125.3,127.6$, 128.7, 129.1, 129.2, 130.0, 140.4, 149.2, 158.8, 162.2; $\operatorname{IR}\left(\mathrm{CHCl}_{3}\right): v=1652,1593$, 1558, 1506, $1215 \mathrm{~cm}^{-1}$; ESI-MS: $\left[\mathrm{C}_{17} \mathrm{H}_{15} \mathrm{NO}+\mathrm{H}^{+}\right] 250$; MS-EI m/z (\%): 249 (100), 234 (33), 221 (72), 220 (66), 193 (36), 165 (28). $\mathrm{C}_{17} \mathrm{H}_{15} \mathrm{NO}$ : calcd C, 81.90; H, 6.06; N, 5.62; found C, 82.12; H, 6.27.
c) $\mathbf{P d}\left(\mathbf{P P h}_{3}\right)_{4} / \mathbf{K}_{2} \mathbf{C O}_{3}$ in $\mathbf{M e C N}$. Following the general method, from a solution of 50 $\mathrm{mg}(0.09 \mathrm{mmol})$ of carbene complex $\mathbf{5 b}, 61 \mathrm{mg}(0.05 \mathrm{mmol})$ of $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$, and 61 mg ( 0.44 mmol ) of $\mathrm{K}_{2} \mathrm{CO}_{3}$ in 2 mL of MeCN , after 24 hours and were obtained 14 mg ( 40 $\%$ ) of ester $\mathbf{8 b}$ and $8 \mathrm{mg}(33 \%)$ of the indole $\mathbf{1 1}$.

Catalytic Reactions of enamine carbene complex $5 \mathbf{b}$ with palladium catalysts. A solution of the carbene complex $\mathbf{5 b}$ and the palladium catalysts in a 1:0.3 or 1:0.1 ratio
respectively were dissolved in MeCN or DMF together with $\mathrm{K}_{2} \mathrm{CO}_{3}$ in excess at room temperature. The mixture was stirred under argon atmosphere as specified for each case at room temperature. Then, for reactions carried out in MeCN , the solvent was eliminated in vacuo and the residue obtained disaggregated in AcOEt and filtered over a short pad of celite. For reactions in DMF, water was added to the reaction mixture that was further extracted with AcOEt. The organic layers were washed with brine and dried over magnesium sulphate and the solvent removed in vacuo. Further purification by flash column chromatography allowed getting pure compounds.
a) $\mathbf{1 0 \%}$ of $\mathrm{Pd}(\mathrm{OAc})_{2} / \mathrm{K}_{2} \mathrm{CO}_{3}$ in MeCN . Following the general method from a solution of $250 \mathrm{mg}(0.44 \mathrm{mmol})$ of carbene complex $\mathbf{5 b}, 10 \mathrm{mg}(0.044 \mathrm{mmol})$ of $\mathrm{Pd}(\mathrm{OAc})_{2}$, and $303 \mathrm{mg}(2.2 \mathrm{mmol})$ of $\mathrm{K}_{2} \mathrm{CO}_{3}$ in 10 mL of MeCN after 7 days were obtained 16 mg ( $8 \%$ ) of palladium carbene complex $\mathbf{7 b}$, $21 \mathrm{mg}(27 \%)$ of aldehyde $\mathbf{9 b}$ and $33 \mathrm{mg}(38 \%)$ of ester 8b. Aldehyde 9b: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right): \delta=5.46(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H})$, $6.47(\mathrm{~m}, 1 \mathrm{H}), 6.72(\mathrm{~m}, 1 \mathrm{H}), 6.94(\mathrm{~m}, 1 \mathrm{H}), 7.25-7.41(\mathrm{~m}, 5 \mathrm{H}), 7.83(\mathrm{~m}, 1 \mathrm{H}), 9.39(\mathrm{~d}, J=$ $2.3 \mathrm{~Hz}, 1 \mathrm{H}), 12.07(\mathrm{bs}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right): \delta=94.2,101.5,126.2,126.3$, $128.2,128.3,128.5,130.0,134.5,139.3,141.3,160.5,188.6$; $\operatorname{IR}(\mathrm{KBr}): v=2816,2741$, 1618, 1605, 1585, 1560, $1500 \mathrm{~cm}^{-1} ; \mathrm{C}_{15} \mathrm{H}_{12}$ INO: calcd C, $51.60 ; \mathrm{H}, 3.46 ; \mathrm{N}, 4.01$; found C, 51.88; H, 3.37.
b) $\mathbf{3 0 \%}$ of $\mathrm{Pd}(\mathrm{OAc})_{2} / \mathrm{K}_{2} \mathrm{CO}_{3}$ in MeCN . Following the general method, from a solution of $250 \mathrm{mg}(0.44 \mathrm{mmol})$ of carbene complex $5 \mathbf{5}, 30 \mathrm{mg}(0.044 \mathrm{mmol})$ of $\mathrm{Pd}(\mathrm{OAc})_{2}$, and $304 \mathrm{mg}(2.2 \mathrm{mmol})$ of $\mathrm{K}_{2} \mathrm{CO}_{3}$ in 10 mL of MeCN , after 12 h were obtained 40 mg ( $21 \%$ ) of palladium carbene complex $\mathbf{7 b}$ and $21 \mathrm{mg}(14 \%)$ of aldehyde $\mathbf{9 b}$.
c) $\mathbf{3 0 \%}$ of $\operatorname{Pd}(\mathbf{O A c})_{2} / \mathrm{K}_{2} \mathrm{CO}_{3}$ in DMF. Following the general method, a solution of 250 $\mathrm{mg}(0.44 \mathrm{mmol})$ of carbene complex $\mathbf{5 b}, 30 \mathrm{mg}(0.044 \mathrm{mmol})$ of $\mathrm{Pd}(\mathrm{OAc})_{2}$ and 304 mg ( 2.2 mmol ) of $\mathrm{K}_{2} \mathrm{CO}_{3}$ in 10 mL of DMF was stirred for 12 h . After extraction and
solvent elimination, the residue obtained was dissolved in 50 mL of (1:1) hexane:AcOEt and exposed to sunlight for 8 h and then, filtered over a short pad of celite. The products obtained were separated by flash column chromatography on silica gel to give 54 mg (49\%) of quinoline 10 and 44 mg ( $38 \%$ ) of indole 11.

Reaction of Palladium Carbene Complex 7b in THF. A solution of 29 mg ( 0.03 mmol ) of palladium carbene complex $\mathbf{7 b}$ in 2 mL of THF was heated in a bath at $30^{\circ} \mathrm{C}$, $40^{\circ} \mathrm{C}$ and $50^{\circ} \mathrm{C}$. In all cases, after 2 days complex $7 \mathbf{b}$ was recovered unaltered.

Reaction of Palladium Carbene Complex 7b with UV/visible light/air. A solution of $50 \mathrm{mg}(0.06 \mathrm{mmol})$ of palladium carbene complex $\mathbf{7 b}$ in a mixture of 25 mL of hexane and 25 mL of AcOEt was exposed to sunlight for 8 hours. Complex $7 \mathbf{b}$ was recovered unaltered. Then the same solution was irradiated through Pyrex with a 400 W mediumpressure mercury lamp for 5 days. Again complex 7b was recovered unaltered.

Reaction of Palladium Carbene Complex 7b with CAN. To a solution of $50 \mathrm{mg}(0.06$ mmol ) of palladium carbene complex $7 \mathbf{b}$ in 3.5 mL of MeCN at $-20^{\circ} \mathrm{C}$ were added slowly a solution of $102 \mathrm{mg}(0.18 \mathrm{mmol})$ of CAN in 1.4 mL . The temperature was up to $-5^{\circ} \mathrm{C}$ for 30 minutes and 5 mL of water were added. The solution was stirred at room temperature for 10 minutes. The reaction mixture was extracted with AcOEt and the organic layers were washed with water, dried over magnesium sulphate and the solvent removed in vacuo to yield a complex mixture of unidentified products.

Reaction of Palladium Carbene Complex 7b with iodine. To a solution of 13 mg ( 0.015 mmol ) of palladium carbene complex $7 \mathbf{b}$ in 8.5 mL of MeCN were added 4 mg ( 0.015 mmol ) of iodine. The solution was stirred at room temperature for 5 minutes. After removing the solvent in vacuo a complex mixture of unidentified products was obtained.

Reaction of Palladium Carbene Complex 7b with $\mathbf{E t}_{3} \mathbf{N}$. To a solution of 20 mg ( 0.023 mmol ) of palladium carbene complex $7 \mathbf{b}$ in 4 mL of DMF were added 0.1 mL ( 0.093 mmol ) of $\mathrm{Et}_{3} \mathrm{~N}$. The solution was stirred at room temperature for 25 hours. Then 0.1 mL of $\mathrm{Et}_{3} \mathrm{~N}$ were added again. After 2 days, complex $\mathbf{7 b}$ was recovered unaltered.

Reaction of Palladium Carbene Complex 7b with $\mathbf{P M e}_{3}$. To a solution of 5.4 mg ( 0.006 mmol ) of palladium carbene complex $\mathbf{7 b}$ in 1 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added a drop of $\mathrm{PMe}_{3}$. The solution was stirred at room temperature for 2 days. Complex 7b was recovered.

Reaction of Palladium Carbene Complex 7a with $\mathbf{H}_{\mathbf{2}} \mathrm{SO}_{\mathbf{4}} \mathbf{( 1 0 \% )}$. Over a solution of $134 \mathrm{mg}(0.22 \mathrm{mmol})$ of palladium carbene complex $7 \mathbf{a}$ in 38 mL of THF was added 1 $\mathrm{mL} \mathrm{H}_{2} \mathrm{SO}_{4}(10 \%)$. After 5 minutes water was added to the reaction mixture that was further extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The organic layers were washed with $\mathrm{NaHCO}_{3}$, water, and dried over magnesium sulphate. Then, the solvent removed in vacuo and the products obtained were separated by flash column chromatography on silica gel to give $6 \mathrm{mg}(28 \%)$ of benzoyl ethyl acetate. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right): \delta=1.27(\mathrm{t}, J=7.2$ $\mathrm{Hz}, 3 \mathrm{H}), 4.00(\mathrm{~s}, 2 \mathrm{H}), 4.23(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.45-7.98(\mathrm{~m}, 5 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right.$, $50 \mathrm{MHz}): \delta=14.1,46.0,61.4,126.1,128.5,128.8,133.7,167.5,192.5 ; \operatorname{IR}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right): v$ $=2981,1737,1688 \mathrm{~cm}^{-1}$.

X-Ray Crystal Analysis Structure of complex 7b. Crystal data: $\mathrm{C}_{34} \mathrm{H}_{30} \mathrm{I}_{2} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{Pd}$, molecular mass $=858.80$, monoclinic, $\mathrm{P} 2(1) / \mathrm{c}, \mathrm{a}=16.8655(9) \AA, \mathrm{b}=12.4380(6) \AA$, $16.0200(8) \AA, \beta=94.150(1)^{\circ}, V=3351.8(3) \AA^{3}, Z=4, D c=1.702 \mathrm{Mg} / \mathrm{m}^{3}, \mathrm{~F}(000)=$ 1664, $\mu=2.427 \mathrm{~mm}^{-1}$. Data collection: SMART CCD-BRUKER diffractometer, with graphite-monochromated $\mathrm{Mo}-\mathrm{K} \alpha$ radiation $(\lambda=0.71073 \AA)$ operating at 50 kV and 25 mA . The intensity data were collected over an hemisphere of the reciprocal space by combination of three exposure sets. Each exposure of 20s covered 0.3 in $\omega$. Reflection range for the data collection were $1.21^{\circ}<\theta<28.95$. A 8322 independent reflections were measured and 4301 were considered observed [I>2 $\sigma(\mathrm{I})$ criterium]. Structure solution and refinement: The structure was solved by direct methods. The refinement was done by full matrix least-squares procedures on $\mathrm{F}^{2}$ (SHELXTL version 5.1). ${ }^{5}$ The nonhydrogen atoms were refined anisotropically. All hydrogen atoms were included in calculated position and refined riding on the respective carbon bonded atoms. Final $\mathrm{R}(\mathrm{Rw})$ value was $3.80(9.54)$.


Figure 1. ORTEP drawing of bis-palladacarbene 7b. The geometry around the Pd 1 is almost square planar. Selected bond lengths $[\AA \dot{\AA}]$ and angles [deg]: Pd1-N1 2.164(4), Pd1-N1' 2.145(4), Pd1-C3 1.994(4), Pd1-C3'1.984(4), C3-O1 1.339(5), O1-C4 1.444(5), C3'-O1' 1.334(5), O1'-C4' 1.452(5) N1-Pd1-C3 79.2(2), C3-Pd1-C3' 98.3(2), C3'-Pd1-N1' 79.1(2) and N1'-Pd1-N1 103.8(1).

## References

1. Aumann, R.; Hinterding, P. Chem. Ber. 1993, 126, 421.
2. Hegedus, L. S. Angew. Chem. Int. Ed. Eng. 1988, 27, 1113.
3. Penoni, A. A.; Nicholas, K. M. Chem. Commun. 2002, 484.
4. a) Kuo, S.-C.; Lee, J.-P.; Juang, H.-Z.; Lin, Y.-T.; Wu, T.-S.; Chang, J.-J.; Lednicer, D.; Paull, K. D.; Lin, C. M.; Hamel, E.; Lee, K.-H. J. Med. Chem. 1993, 36, 1146; b) Varma, S. R.; Kumar, D. Tetrahedron Lett. 1998, 39, 9113.
5. Sheldrick, G.M. "SHELXTL97", Program for Refinement of Crystal Structure', University of Göttingen, Göttingen, Germany, 1997

[^0]:    $\varnothing$ To whom enquires regarding the structure determination of complex $\mathbf{7 b}$ should be addressed.

