Supporting Information

Catalytic Enantioselective Petasis-type Reaction of Quinolines Catalyzed by a Newly Designed Thiourea Catalyst

Yousuke Yamaoka, Hideto Miyabe, and Yoshiji Takemoto

Graduate School of Pharmaceutical Sciences, Kyoto University, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan. FAX: +81-75-753-4569; E-mail: takemoto@pharm.kyoto-u.ac.jp

Table of contents

Experimental procedure for preparation of catalyst $\mathbf{1 b}$ and its characterization data: S2.
Characterization data of catalysts $\mathbf{1 c - i}$: S4.
The results of Petasis-type reaction of 2a, 2b and $\mathbf{3}$ with $\mathbf{4 A}$ using catalysts 1a-i: S6.
General procedure for Petasis-type reaction of 2a-f: S7.
Characterization data of obtained compounds $\mathbf{5 a - 6 a F}$: S7.
Conversion of the adduct $\mathbf{6 a C}$ to $(+)$-galipinine 7 and characterization data: S10.
Copies of ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectrum of all obtained compounds: S12.
Copies of HPLC of 5a-6aF: S68.

General. Melting points were taken on a YANAGIMOTO micromelting point apparatus and are uncorrected. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded in CDCl_{3} at 500 or 400 MHz , and at 125 or 100 MHz , respectively; Tetramethylsilane (TMS) was used as an internal standard. IR spectra were recorded on a JASCO FT/IR-410 Fourier-transfer infrared spectrometer. Low and high resolution mass spectra were obtained by EI or FAB method. Optical rotations were recorded on a JASCO DIP-360 polarimeter with a path length of 1 cm ; concentrations are quoted in $\mathrm{mg}(2 \mathrm{~mL}) .[\alpha]^{\mathrm{D}}$ values are measured in $10^{-1} \mathrm{deg} \mathrm{cm}^{2} \mathrm{~g}^{-1}$. Enantiomeric excess was determined by high performance liquid chromatography (HPLC) analysis.

Experimental procedure for preparation of catalyst 1b and characterization data.

10
11
12

Scheme 1.

Amide 9: To a solution of amine $8(4.7 \mathrm{~g}, 30 \mathrm{mmol}), \mathrm{Et}_{3} \mathrm{~N}(6.3 \mathrm{~mL}, 45 \mathrm{mmol})$ and DMAP ($\left.0.4 \mathrm{~g}, 3.0 \mathrm{mmol}\right)$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(30 \mathrm{~mL})$ was added $o-\mathrm{NsCl}(6.3 \mathrm{~g}, 33 \mathrm{mmol})$ under argon atmosphere at $0{ }^{\circ} \mathrm{C}$. After being stirred at the room temperature for 5 h , the reaction mixture was diluted with CHCl_{3}. The organic phase was washed with 1 N HCl and saturated NaHCO_{3}, dried over MgSO_{4} and concentrated at reduced pressure. Purification of the residue by column chromatography $\left(\mathrm{CHCl}_{3}: \mathrm{MeOH}=20: 1-10: 1\right)$ afforded product 9 (10.2 g, quant.) as an amorphous. IR $\left(\mathrm{CHCl}_{3}\right) 1665 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 8.12(1 \mathrm{H}, \mathrm{dd}, J=7.0,1.6 \mathrm{~Hz}), 7.81(1 \mathrm{H}, \mathrm{dd}, J=7.6$, $1.5 \mathrm{~Hz}), 7.78-7.68(2 \mathrm{H}, \mathrm{m}), 5.97(1 \mathrm{H}, \mathrm{br}$ s $), 5.80(1 \mathrm{H}, \mathrm{br} \mathrm{s}), 3.72(1 \mathrm{H}, \mathrm{m}), 3.23(1 \mathrm{H}, \mathrm{m}), 2.04(1 \mathrm{H}, \mathrm{br}$ m$), 1.88$
$\left(1 \mathrm{H}\right.$, br m), $1.85(3 \mathrm{H}, \mathrm{s}), 1.69(2 \mathrm{H}$, br m$), 1.43-1.15(4 \mathrm{H}, \mathrm{br} m) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 171.0,147.8,135.2,133.4$, $132.7,130.2,125.0,58.7,52.6,33.4,32.5,24.7,24.3,23.1 . \mathrm{MS}^{\left(E I^{+}\right) \mathrm{m} / \mathrm{z}:} 341\left(\mathrm{M}^{+}, 3\right), 96(100)$. HRMS calcd for $\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{O}_{5} \mathrm{~S}: 341.1045$, Found: 341.1043. $[\alpha]^{26}{ }_{\mathrm{D}}-66.2\left(c \quad 1.3, \mathrm{CHCl}_{3}\right)$.

Acetate 10: A solution of amide $9(10.2 \mathrm{~g}, 30 \mathrm{mmol})$, 2-bromoethyl acetate ($6.6 \mathrm{~mL}, 60 \mathrm{mmol}$) and CsCO_{3} $(11.6 \mathrm{~g}, 60 \mathrm{mmol})$ in $\mathrm{MeCN}(60 \mathrm{~mL})$ was stirred at $80^{\circ} \mathrm{C}$ for 6 h . The reaction mixture was diluted with CHCl_{3}, washed with water, dried over $\mathrm{K}_{2} \mathrm{CO}_{3}$ and concentrated at reduced pressure. Purification of the residue by column chromatography $\left(\mathrm{CHCl}_{3}: \mathrm{MeOH}=20: 1-10: 1\right)$ afforded product $10(17.3 \mathrm{~g}, 74 \%)$ as an amorphous. IR $\left(\mathrm{CHCl}_{3}\right) 1739,1667 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 8.11(1 \mathrm{H}, \mathrm{br} \mathrm{m}), 7.77-7.71(2 \mathrm{H}, \mathrm{br} \mathrm{m}), 7.68(1 \mathrm{H}, \mathrm{br} \mathrm{m}), 5.96(1 \mathrm{H}$, br d, $J=8.5 \mathrm{~Hz}), 4.03(2 \mathrm{H}$, br m), $3.92(1 \mathrm{H}, \mathrm{br} \mathrm{m}), 3.72(1 \mathrm{H}, \mathrm{br} \mathrm{m}), 3.61-3.45(2 \mathrm{H}, \mathrm{m}), 2.13(1 \mathrm{H}, \mathrm{br} \mathrm{d}, J=10.7$ $\mathrm{Hz}), 1.98(3 \mathrm{H}, \mathrm{s}), 1.88(3 \mathrm{H}, \mathrm{s}), 1.82(2 \mathrm{H}, \mathrm{br} \mathrm{m}), 1.73(1 \mathrm{H}, \mathrm{br} \mathrm{d}, J=10.7 \mathrm{~Hz}), 1.52(1 \mathrm{H}, \mathrm{m}), 1.44-1.20(3 \mathrm{H}, \mathrm{br}$ m). ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 170.5,169.8,147.7,134.1,133.8,132.1,131.0,124.3,62.2,61.4,49.6,42.0,33.5$, 31.0, 25.4, 24.5, 23.2, 20.6. MS $\left(\mathrm{FAB}^{+}\right) \mathrm{m} / \mathrm{z}: 428\left(\mathrm{M}+\mathrm{H}^{+}, 100\right)$. HRMS calcd for $\mathrm{C}_{18} \mathrm{H}_{26} \mathrm{~N}_{3} \mathrm{O}_{7} \mathrm{~S}\left(\mathrm{M}+\mathrm{H}^{+}\right)$: 428.1491, Found: 428.1497. $[\alpha]^{26}{ }_{\mathrm{D}}+148.3\left(c 1.7, \mathrm{CHCl}_{3}\right)$.

Amine 11: To a solution of acetate $10(10 \mathrm{~g}, 23.4 \mathrm{mmol})$ in $\mathrm{MeCN}(50 \mathrm{~mL})$ were added benzenethiol (2.9 mL , $28 \mathrm{mmol})$ and $\mathrm{CsCO}_{3}(7.9 \mathrm{~g}, 28 \mathrm{mmol})$ under argon atmosphere at the room temperature. After being stirred at the same temperature for 2.5 h , the reaction mixture was diluted with CHCl_{3}, washed with water, dried over $\mathrm{K}_{2} \mathrm{CO}_{3}$ and concentrated at reduced pressure. Purification of the residue by column chromatography $\left(\mathrm{CHCl}_{3}: \mathrm{MeOH}=5: 1\right)$ afforded product $11(4.4 \mathrm{~g}, 78 \%)$ as an amorphous. IR $\left(\mathrm{CHCl}_{3}\right) 1734,1665 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 5.75(1 \mathrm{H}, \mathrm{br} \mathrm{d}, J=6.7 \mathrm{~Hz}), 4.26(1 \mathrm{H}, \mathrm{m}), 4.04(1 \mathrm{H}, \mathrm{m}), 3.57(1 \mathrm{H}, \mathrm{m}), 2.95(1 \mathrm{H}, \mathrm{m}), 2.79(1 \mathrm{H}, \mathrm{m})$, $2.34(1 \mathrm{H}, \mathrm{m}), 2.15(1 \mathrm{H}$, br m$), 2.08(3 \mathrm{H}, \mathrm{s}), 2.05(1 \mathrm{H}$, br m$), 1.99(3 \mathrm{H}, \mathrm{s}), 1.90(1 \mathrm{H}$, br m$), 1.74(1 \mathrm{H}, \mathrm{br} \mathrm{m})$, $1.68(1 \mathrm{H}, \mathrm{br} \mathrm{m}), 1.38-1.08(4 \mathrm{H}, \mathrm{br} m) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 171.4,170.4,63.9,60.1,53.0,44.5,32.6,31.5,24.6$ (2C), 23.5, 21.0. MS $\left(\mathrm{FAB}^{+}\right) \mathrm{m} / \mathrm{z}: 243\left(\mathrm{M}+\mathrm{H}^{+}, 100\right)$. HRMS calcd for $\mathrm{C}_{12} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O}_{3}\left(\mathrm{M}+\mathrm{H}^{+}\right): 243.1709$, Found: 243.1705. $[\alpha]^{26}{ }_{\mathrm{D}}-25.3\left(c 1.0, \mathrm{CHCl}_{3}\right)$.

Alcohol 13: A solution of amine $11(4.4 \mathrm{~g}, 18 \mathrm{mmol})$ and formaldehyde solution ($3.4 \mathrm{~mL}, 45 \mathrm{mmol}$) in MeCN $(60 \mathrm{~mL})$ was stirred at the room temperature for 15 min . To the reaction mixture was added $\mathrm{NaBH}_{3} \mathrm{CN}(1.3 \mathrm{~g}$, $20 \mathrm{mmol})$ at the room temperature. After being stirred at the same temperature for $15 \mathrm{~min}, \mathrm{AcOH}(3.3 \mathrm{~mL})$ was added to the reaction mixture at the room temperature. After being stirred at the same temperature for 2 h , the reaction mixture was concentrated at reduced pressure. The residue was diluted with AcOEt, washed with 1 N NaOH , water and brine, dried over $\mathrm{K}_{2} \mathrm{CO}_{3}$ and concentrated at reduced pressure to afford $\mathbf{1 2}$ as a colorless oil. IR $\left(\mathrm{CHCl}_{3}\right) 1733,1660 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 6.25(1 \mathrm{H}, \mathrm{br} \mathrm{m}), 4.22(1 \mathrm{H}, \mathrm{m}), 4.04(1 \mathrm{H}, \mathrm{m}), 3.49(1 \mathrm{H}, \mathrm{m})$, $2.70(1 \mathrm{H}, \mathrm{m}), 2.63(1 \mathrm{H}, \mathrm{m}), 2.48(1 \mathrm{H}, \mathrm{br} \mathrm{d}, J=12.2 \mathrm{~Hz}), 2.32(1 \mathrm{H}, \mathrm{m}), 2.22(3 \mathrm{H}, \mathrm{s}), 2.07(3 \mathrm{H}, \mathrm{s}), 1.97(3 \mathrm{H}, \mathrm{s})$, $1.81(2 \mathrm{H}, \mathrm{br} \mathrm{m}), 1.65(1 \mathrm{H}, \mathrm{br} \mathrm{d}, J=13.4 \mathrm{~Hz}), 1.36-1.12(3 \mathrm{H}, \mathrm{m}), 1.04(1 \mathrm{H}, \mathrm{m}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 171.2$,
$170.2,65.5,62.4,51.7,50.8,36.8,32.6,25.2,24.4,23.3,22.4,20.8 . \mathrm{MS}^{\left(E I^{+}\right) \mathrm{m} / \mathrm{z}:} 256\left(\mathrm{M}^{+}, 2\right), 43(100)$. HRMS calcd for $\mathrm{C}_{13} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{3}$: 256.1787, Found: 256.1790. $[\alpha]^{26}{ }_{\mathrm{D}}-40.8\left(c \quad 1.6, \mathrm{CHCl}_{3}\right)$. A solution of the crude product 12 in $4 \mathrm{~N} \mathrm{HCl}(30 \mathrm{~mL})$ was refluxed for 12 h . After being cooling to ambient temperature, the reaction mixture was basic with 4 N NaOH , extracted with CHCl_{3}, dried over $\mathrm{K}_{2} \mathrm{CO}_{3}$ and concentrated at reduced pressure to afford $13(2.46 \mathrm{~g}, 78 \%$ from amine 11$)$ as a pale yellow oil, which was used in next reaction without purification. IR $\left(\mathrm{CHCl}_{3}\right) 3370 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 3.70-3.50(2 \mathrm{H}, \mathrm{br} \mathrm{m}), 2.85-2.53(5 \mathrm{H}, \mathrm{br} \mathrm{m}), 2.44(1 \mathrm{H}$, br m), $2.29(3 H, s), 2.13(1 H$, br m), $1.93(1 \mathrm{H}$, br m), $1.78(2 \mathrm{H}, \mathrm{br} m), 1.66(1 \mathrm{H}, \mathrm{br} m), 1.26-1.04(4 \mathrm{H}, \mathrm{br} \mathrm{m})$. ${ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 69.2,59.3,54.4,51.5,37.0,35.6,25.5,25.0,22.4 . \mathrm{MS}\left(\mathrm{FAB}^{+}\right) \mathrm{m} / \mathrm{z}: 173\left(\mathrm{M}+\mathrm{H}^{+}, 100\right)$. HRMS calcd for $\mathrm{C}_{9} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}\left(\mathrm{M}+\mathrm{H}^{+}\right)$: 173.1654, Found: 173.1656. $[\alpha]^{27}{ }_{\mathrm{D}}-34.6\left(c 1.5, \mathrm{CHCl}_{3}\right)$.

Catalyst 1b: To a solution of alcohol $13(2.5 \mathrm{~g}, 14 \mathrm{mmol})$ in THF (20 mL) was added 3,5-bis(triflouoromethyl)phenyl isothiocyanate ($2.6 \mathrm{~mL}, 14 \mathrm{mmol}$) under argon atmosphere at the room temperature. After being stirred at the same temperature for 3 h , the reaction mixture was concentrated at reduced pressure. Purification of the residue by column chromatography $\left(\mathrm{CHCl}_{3}: \mathrm{MeOH}=9: 1\right)$ afforded product $\mathbf{1 b}(3.8 \mathrm{~g}, 60 \%)$ as a colorless crystal. mp $167-170{ }^{\circ} \mathrm{C}$ (hexane/AcOEt). IR $\left(\mathrm{CHCl}_{3}\right) 3320,1534,1470 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.98(2 \mathrm{H}, \mathrm{s}), 7.61(1 \mathrm{H}, \mathrm{s}), 4.07(1 \mathrm{H}, \mathrm{br} \mathrm{s}), 3.62(2 \mathrm{H}$, br m$), 2.71(1 \mathrm{H}, \mathrm{m}), 2.60-2.41(3 \mathrm{H}, \mathrm{m})$, $2.28(3 \mathrm{H}, \mathrm{s}), 1.86(2 \mathrm{H}, \mathrm{br} \mathrm{m}), 1.73(1 \mathrm{H}, \mathrm{br} \mathrm{m}), 1.30(2 \mathrm{H}, \mathrm{m}), 1.27-1.06(2 \mathrm{H}, \mathrm{m}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 180.4$, $140.3,132.1(\mathrm{q}, ~ J=33 \mathrm{~Hz}), 123.3,123.0(\mathrm{q}, J=271 \mathrm{~Hz}), 118.1,66.6,58.7,55.7,54.9,36.4,32.7,24.9$, 24.5, 22.9. MS $\left(\mathrm{FAB}^{+}\right) \mathrm{m} / \mathrm{z}: 444\left(\mathrm{M}+\mathrm{H}^{+}, 100\right)$. HRMS calcd for $\mathrm{C}_{18} \mathrm{H}_{24} \mathrm{~F}_{6} \mathrm{~N}_{3} \mathrm{OS}\left(\mathrm{M}+\mathrm{H}^{+}\right)$: 444.1544, Found: 444.1547. Anal. Calcd for $\mathrm{C}_{18} \mathrm{H}_{23} \mathrm{~F}_{6} \mathrm{~N}_{3} \mathrm{OS}$: C, 48.75; H, 5.23; F, 25.71, N, 9.48. Found: C, 48.77; H, 5.10; F, 25.50, N, 9.52. $[\alpha]^{27}{ }_{\mathrm{D}}-20.5\left(c \quad 1.0, \mathrm{CHCl}_{3}\right)$.

Characterization data of catalysts $\mathbf{1 c - i}$.

Catalyst 1c: Amorphous. IR $\left(\mathrm{CHCl}_{3}\right) 3319,1531,1471 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 7.95(2 \mathrm{H}, \mathrm{s}), 7.47(1 \mathrm{H}, \mathrm{s})$, $4.46(1 \mathrm{H}, \mathrm{br}$ s), $3.85(2 \mathrm{H}, \mathrm{br} \mathrm{m}), 2.87(1 \mathrm{H}, \mathrm{br} \mathrm{m}), 2.73(1 \mathrm{H}, \mathrm{br} \mathrm{m}), 2.61(1 \mathrm{H}, \mathrm{br}$ m$), 2.41(1 \mathrm{H}, \mathrm{br} \mathrm{m}), 2.35(3 \mathrm{H}$, s), 1.98-1.05 (9H, m). ${ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 180.8,141.5,131.4$ (q, $J=33 \mathrm{~Hz}$), 123.2 ($\mathrm{q}, J=273 \mathrm{~Hz}$), 122.1, $116.7,66.6,56.6,55.5,50.2,44.9,35.7,32.4,25.0,24.3,22.4 . \mathrm{MS}\left(\mathrm{FAB}^{+}\right) \mathrm{m} / \mathrm{z}: 458\left(\mathrm{M}+\mathrm{H}^{+}, 100\right) . \operatorname{HRMS}$ calcd for $\mathrm{C}_{19} \mathrm{H}_{26} \mathrm{~F}_{6} \mathrm{~N}_{3} \mathrm{OS}\left(\mathrm{M}+\mathrm{H}^{+}\right)$: 458.1701, Found: 458.1707. $[\alpha]^{28}{ }_{\mathrm{D}}-2.2\left(c 1.2, \mathrm{CHCl}_{3}\right)$.

Catalyst 1d: Amorphous. IR $\left(\mathrm{CHCl}_{3}\right) 3289,1518,1469 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 8.11(2 \mathrm{H}, \mathrm{s}), 7.56(1 \mathrm{H}, \mathrm{s})$, $3.79(1 \mathrm{H}, \mathrm{br} \mathrm{s}), 2.67(1 \mathrm{H}, \mathrm{br} \mathrm{m}), 2.58-2.20(5 \mathrm{H}, \mathrm{br} \mathrm{m}), 2.28(3 \mathrm{H}, \mathrm{s}), 2.24(6 \mathrm{H}, \mathrm{s}), 1.85(2 \mathrm{H}, \mathrm{br} \mathrm{t}, J=12.8 \mathrm{~Hz})$, $1.72(1 \mathrm{H}$, br $\mathrm{d}, J=12.8 \mathrm{~Hz}), 1.37-1.10(4 \mathrm{H}, \mathrm{m})$. The presence of rotamers precluded a comprehensive assignment of all proton resonances. ${ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 180.7,141.5,131.4(\mathrm{q}, J=33 \mathrm{~Hz}), 123.2(\mathrm{q}, J=272$ $\mathrm{Hz}), 122.1,116.7,66.6,56.6,55.5,50.1,44.9,35.7,32.4,25.0,24.3,22.4 . \mathrm{MS}\left(\mathrm{FAB}^{+}\right) \mathrm{m} / \mathrm{z}: 471\left(\mathrm{M}+\mathrm{H}^{+}, 100\right)$.

HRMS calcd for $\mathrm{C}_{20} \mathrm{H}_{29} \mathrm{~F}_{6} \mathrm{~N}_{4} \mathrm{~S}\left(\mathrm{M}+\mathrm{H}^{+}\right)$: 471.2017, Found: 471.2026. $[\alpha]^{27}{ }_{\mathrm{D}}$-1.5 (c 0.9, $\left.\mathrm{CHCl}_{3}\right)$.

Catalyst 1e: Amorphous. IR $\left(\mathrm{CHCl}_{3}\right) 3350,1495,1471,1451 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 7.48-7.15(18 \mathrm{H}, \mathrm{m})$, $3.87(1 \mathrm{H}, \mathrm{br} \mathrm{s}), 3.27(1 \mathrm{H}, \mathrm{br} \mathrm{m}), 3.12(1 \mathrm{H}, \mathrm{br} \mathrm{m}), 2.90-2.65(3 \mathrm{H}, \mathrm{br} \mathrm{m}), 2.64(1 \mathrm{H}, \mathrm{br} \mathrm{m}), 2.25(3 \mathrm{H}, \mathrm{s}), 1.92-1.65$ $(3 \mathrm{H}, \mathrm{m})$, 1.43-1.05 $(4 \mathrm{H}, \mathrm{m})$. The presence of rotamers precluded a comprehensive assignment of all proton resonances. ${ }^{13} \mathrm{C}^{\mathrm{NMR}}\left(\mathrm{CDCl}_{3}\right) \delta 181.0,143.7,140.1,131.5(\mathrm{q}, J=34 \mathrm{~Hz}), 128.6,128.1,127.3,123.0(\mathrm{q}, J=$ 273 Hz), 122.7, 117.5, 86.7, 67.3, 61.3, 55.8, 54.4, 35.8, 32.2, 25.1, 24.3, 23.4. MS (FAB ${ }^{+}$m/z: $686\left(\mathrm{M}^{+} \mathrm{H}^{+}, 6\right)$, 243 (100). HRMS calcd for $\mathrm{C}_{37} \mathrm{H}_{38} \mathrm{~F}_{6} \mathrm{~N}_{3} \mathrm{OS}\left(\mathrm{M}+\mathrm{H}^{+}\right)$: 686.2640, Found: 686.2632. $[\alpha]^{28}{ }_{\mathrm{D}}+10.8\left(c 1.5, \mathrm{CHCl}_{3}\right)$.

Catalyst 1f: Amorphous. IR $\left(\mathrm{CHCl}_{3}\right) 3404,1496,1471,1381 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.96(2 \mathrm{H}, \mathrm{br} \mathrm{s}), 7.63$ $(1 \mathrm{H}, \mathrm{br}$ s), $3.80-3.30(2 \mathrm{H}, \mathrm{br} \mathrm{m}), 2.40-2.00(3 \mathrm{H}, \mathrm{br} \mathrm{m}), 1.85-1.65(2 \mathrm{H}, \mathrm{br} \mathrm{m}), 1.50-1.10(4 \mathrm{H}, \mathrm{br} \mathrm{m})$. The presence of rotamers precluded a comprehensive assignment of all proton resonances. ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta$ 181.7, 140.7, 131.9 ($\mathrm{q}, J=32 \mathrm{~Hz}$), 123.5, $123.0(\mathrm{q}, J=273 \mathrm{~Hz}$), 118.3, 75.7, $60.5,34.2,31.2,24.2,23.6$. MS $\left(\mathrm{FAB}^{+}\right) \mathrm{m} / \mathrm{z}: 387\left(\mathrm{M}+\mathrm{H}^{+}, 100\right)$. HRMS calcd for $\mathrm{C}_{15} \mathrm{H}_{17} \mathrm{~F}_{6} \mathrm{~N}_{2} \mathrm{OS}\left(\mathrm{M}+\mathrm{H}^{+}\right): 387.0966$, Found: 387.0971. $[\alpha]^{28}{ }_{\mathrm{D}}$ $+46.1\left(\right.$ c 2.5, $\left.\mathrm{CHCl}_{3}\right)$.

Catalyst 1g: Amorphous. IR $\left(\mathrm{CHCl}_{3}\right) 3412,1562,1499 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 4.10(1 \mathrm{H}, \mathrm{br} \mathrm{s}), 3.38(1 \mathrm{H}, \mathrm{br}$ m), $2.43(1 \mathrm{H}, \mathrm{br}$ m), $2.29(6 \mathrm{H}, \mathrm{s}), 2.26(2 \mathrm{H}, \mathrm{br} \mathrm{m}), 2.02(2 \mathrm{H}, \mathrm{br} \mathrm{m}), 1.89(1 \mathrm{H}, \mathrm{d}, J=12.2 \mathrm{~Hz}), 1.82(1 \mathrm{H}, \mathrm{d}, J=$ $12.2 \mathrm{~Hz}), 1.74-1.65(4 \mathrm{H}, \mathrm{m}), 1.40-1.10(8 \mathrm{H}, \mathrm{m}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 182.1,75.4,67.2,60.0,56.4,40.4,34.0$, 33.6, 31.9, 24.8, 24.7, 24.6, 24.1, 21.7. MS (FAB^{+}) m/z: $300\left(\mathrm{M}+\mathrm{H}^{+}, 90\right), 125$ (100). HRMS calcd for $\mathrm{C}_{15} \mathrm{H}_{30} \mathrm{~N}_{3} \mathrm{OS}\left(\mathrm{M}+\mathrm{H}^{+}\right): 300.2110$, Found: 300.2102. $[\alpha]^{28}{ }_{\mathrm{D}}+64.3\left(c 1.7, \mathrm{CHCl}_{3}\right)$.

Catalyst 1h: Amorphous. IR $\left(\mathrm{CHCl}_{3}\right) 3330,1537,1472,1384 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 8.00(2 \mathrm{H}, \mathrm{s}), 7.59(1 \mathrm{H}$, s), $4.12(1 \mathrm{H}, \mathrm{br} \mathrm{m}), 3.61(1 \mathrm{H}, \mathrm{br} \mathrm{d}, J=8.6 \mathrm{~Hz}), 3.39(1 \mathrm{H}, \mathrm{br} \mathrm{d}, J=8.6 \mathrm{~Hz}), 3.02(1 \mathrm{H}, \mathrm{br} \mathrm{m}), 2.95(1 \mathrm{H}, \mathrm{br}$ m), $2.74(1 \mathrm{H}, \mathrm{br} \mathrm{m}), 2.62(1 \mathrm{H}, \mathrm{br} \mathrm{m}), 2.46(1 \mathrm{H}, \mathrm{br}$ m$), 1.95-1.08(12 \mathrm{H}, \mathrm{m}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 181.1,140.6,132.0$ ($\mathrm{q}, J=33 \mathrm{~Hz}$), 123.4, 123.1 ($\mathrm{q}, J=273 \mathrm{~Hz}$), 118.1, 62.4, 56.9, 46.0, 33.0, 28.2, 25.0, 24.6, 24.3, 23.4. Two carbon peaks were missing due to overlapping. MS (FAB^{+}) m/z: $470\left(\mathrm{M}+\mathrm{H}^{+}, 100\right)$. HRMS calcd for $\mathrm{C}_{20} \mathrm{H}_{26} \mathrm{~F}_{6} \mathrm{~N}_{3} \mathrm{OS}\left(\mathrm{M}+\mathrm{H}^{+}\right): 470.1701$, Found: 470.1708. $[\alpha]^{28}{ }_{\mathrm{D}}+5.3\left(c\right.$ 1.1, $\left.\mathrm{CHCl}_{3}\right)$.

Catalyst 1i: A colorless oil. IR $\left(\mathrm{CHCl}_{3}\right) 3433,1660 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 5.99(1 \mathrm{H}, \mathrm{br} \mathrm{m}), 3.76(1 \mathrm{H}, \mathrm{m})$, $3.57(2 \mathrm{H}, \mathrm{t}, J=6.7 \mathrm{~Hz}), 2.70(1 \mathrm{H}, \mathrm{m}), 2.55(1 \mathrm{H}, \mathrm{m}), 2.31(1 \mathrm{H}, \mathrm{m}), 2.25(3 \mathrm{H}, \mathrm{s}), 2.22(2 \mathrm{H}, \mathrm{br} \mathrm{m}), 1.97(3 \mathrm{H}, \mathrm{s})$, $1.88-1.75(2 \mathrm{H}, \mathrm{br} \mathrm{m}), 1.68(1 \mathrm{H}, \mathrm{br} \mathrm{m}), 1.38-1.03(4 \mathrm{H}, \mathrm{m}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 170.2,66.7,58.3,54.7,50.3$, 35.9, 33.4, 25.2, 24.8, 23.6, 23.4. MS (EI^{+}) m/z: $214\left(\mathrm{M}^{+}, 1\right)$, 114 (100). HRMS calcd for $\mathrm{C}_{11} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{2}$: 214.1681, Found: 214.1677. $[\alpha]^{28}{ }_{\mathrm{D}}-6.7\left(c 1.0, \mathrm{CHCl}_{3}\right)$.

The results of Petasis-type reaction of 2a, 2b and 3 with 4 A using catalysts 1 a-I under various conditions.

Table 1. Reaction of $\mathbf{2 a}, \mathbf{2 b}$ and $\mathbf{3}$ with $\mathbf{4 A}$ in the presence of catalyst 1a-i. ${ }^{a}$

entry	catalyst	substrate	additive	Yield (\%)	ee (\%)
1	$\mathbf{1 a}$	$\mathbf{2 a}$	none	34	-9
2	$\mathbf{1 b}$	$\mathbf{2 a}$	none	70	90
3	$\mathbf{1 b}$	$\mathbf{3 a}$	none	88	rac
4	$\mathbf{1 c}$	$\mathbf{2 a}$	none	47	27
5	$\mathbf{1 d}$	$\mathbf{2 a}$	none	31	4
6	$\mathbf{1 e}$	$\mathbf{2 a}$	none	44	rac
7	$\mathbf{1 f}$	$\mathbf{2 a}$	none	33	rac
8	$\mathbf{1 g}$	$\mathbf{2 a}$	none	57	rac
9	$\mathbf{1 h}$	$\mathbf{2 a}$	none	60	68
10	$\mathbf{1 i}$	$\mathbf{2 a}$	none	70	50
11	rac-1a and 1i	$\mathbf{2 a}$	none	28	20
12	$\mathbf{1 b}$	$\mathbf{2 a}$	$\mathrm{H}_{2} \mathrm{O}(56 \mathrm{eq})^{b}$	27	93
13	$\mathbf{1 b}$	$\mathbf{2 a}$	$\mathrm{CF}_{3} \mathrm{CH}_{2} \mathrm{OH}(1 \mathrm{eq})$	77	46
14	$\mathbf{1 b}$	$\mathbf{2 a}$	$\mathrm{H}_{2} \mathrm{O} \quad(2 \quad \text { eq) })^{b}$	and	68
		$\mathrm{NaHCO}_{3}{ }^{c}$		88	
15	$\mathbf{1 b}$	$\mathbf{2 a}$	$\mathrm{H}_{2} \mathrm{O} \quad(10 \quad \text { eq })^{b}$	and	70
		$\mathrm{NaHCO}_{3}{ }^{c}$		89	

16	1b	2 a	$\mathrm{H}_{2} \mathrm{O} \quad\left(\begin{array}{lll}28 & \mathrm{eq}\end{array}\right)^{b}$ and	70	90
17	1b	2 a	$\mathrm{NaHCO}_{3}{ }^{c}$		
			$\mathrm{H}_{2} \mathrm{O} \quad\left(\begin{array}{lll}56 & \mathrm{eq}\end{array}\right)^{b}$ and	65	94
18	1b	2a	$\mathrm{NaHCO}_{3}{ }^{c}$		
			$\mathrm{H}_{2} \mathrm{O} \quad(112 \mathrm{eq})^{b}$ and	56	90
			$\mathrm{NaHCO}_{3}{ }^{c}$		
19	1b	2b	none	70	86
20	1b	2b	$\mathrm{H}_{2} \mathrm{O}(56 \mathrm{eq})^{b}$	32	95
21	1b	2b	$\mathrm{H}_{2} \mathrm{O} \quad\left(\begin{array}{lll}56 & \mathrm{eq}\end{array}\right)^{b}$ and	75	95
			$\mathrm{NaHCO}_{3}{ }^{\text {c }}$		

${ }^{\text {a }}$ Reaction was carried out in the presence of catalyst $1\left(10 \mathrm{~mol} \%\right.$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ by using PhOCOCl (2 equiv) for 24 h . ${ }^{b}$ $\mathrm{H}_{2} \mathrm{O}$ (2-112 equivalent) was added. ${ }^{c} \mathrm{NaHCO}_{3}$ (2 equiv) was added.

General procedure for Petasis-type reaction of 2a-f.

To a solution of substrate 2a-f (0.2 mmol), boronic acid 4A-F (0.4 mmol), catalyst 1a-i (0.02 mmol) and $\mathrm{NaHCO}_{3}(34 \mathrm{mg}, 0.4 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ were added $\mathrm{H}_{2} \mathrm{O}(0.2 \mathrm{~mL})$ and phenyl chloroformate (0.051 mL , 0.4 mmol) under argon atmosphere at the temperature shown in text. After being stirred at the same temperature for 24 h , the reaction mixture was diluted with CHCl_{3}, washed with $1 \mathrm{~N} \mathrm{NaOH}, 1 \mathrm{~N} \mathrm{HCl}$ and water, dried over MgSO_{4} and concentrated at reduced pressure. Purification of the residue by column chromatography (hexane:AcOEt=10:1) afforded products 5a-6aF.

Characterization data of obtained compounds 5a-6aF

Adduct 5a: A colorless oil. IR $\left(\mathrm{CHCl}_{3}\right) 1712 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 7.73(1 \mathrm{H}, \mathrm{br} \mathrm{m}), 7.39(2 \mathrm{H}, \mathrm{t}, J=7.6$ $\mathrm{Hz}), 7.31(2 \mathrm{H}, \mathrm{d}, J=7.0 \mathrm{~Hz}), 7.28-7.18(7 \mathrm{H}, \mathrm{m}), 7.14(1 \mathrm{H}, \mathrm{d}, J=6.4 \mathrm{~Hz}), 7.10(1 \mathrm{H}, \mathrm{t}, J=7.3 \mathrm{~Hz}), 6.63(1 \mathrm{H}, \mathrm{d}$, $J=9.8 \mathrm{~Hz}), 6.60(1 \mathrm{H}, \mathrm{d}, J=16.2 \mathrm{~Hz}), 6.17-6.07(2 \mathrm{H}, \mathrm{m}), 5.82(1 \mathrm{H}, \mathrm{br} \mathrm{t}, J=5.8 \mathrm{~Hz}){ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta$ $152.8,151.1,136.4,134.2,132.1,129.4,128.5,127.9$, $127.1,126.6$ (2C), 125.7 (2C), 125.1, 124.7, 124.4, $121.7,115.3,54.9$. One carbon peak was missing due to overlapping. $\mathrm{MS}\left(\mathrm{EI}^{+}\right) \mathrm{m} / \mathrm{z}: 353\left(\mathrm{M}^{+}, 44\right), 260(100)$. HRMS calcd for $\mathrm{C}_{24} \mathrm{H}_{19} \mathrm{NO}_{2}$: 353.1416, Found: 353.1410. HPLC (Chiralcel OD-H, hexane/2-propanol=95/5, $0.5 \mathrm{~mL} / \mathrm{min}, 254 \mathrm{~nm}) \mathrm{t}_{\mathrm{r}}($ minor $)=28.7 \mathrm{~min}, \mathrm{t}_{\mathrm{r}}($ major $)=34.9 \mathrm{~min}$. A sample of 94% ee by HPLC analysis gave $[\alpha]^{28}{ }_{\mathrm{D}}-454\left(c 1.8, \mathrm{CHCl}_{3}\right)$.

Adduct 5b: A colorless oil. IR $\left(\mathrm{CHCl}_{3}\right) 1693 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 7.62(1 \mathrm{H}, \mathrm{br} \mathrm{m}), 7.30-7.16(6 \mathrm{H}, \mathrm{br} \mathrm{m})$, $7.09(1 \mathrm{H}, \mathrm{dd}, J=7.7,1.9 \mathrm{~Hz}), 7.05(1 \mathrm{H}, \mathrm{t}, J=7.6 \mathrm{~Hz}), 6.57(1 \mathrm{H}, \mathrm{d}, J=9.8 \mathrm{~Hz}), 6.51(1 \mathrm{H}, \mathrm{d}, J=15.9 \mathrm{~Hz})$, 6.09-6.02 $(2 \mathrm{H}, \mathrm{m}), 5.70(1 \mathrm{H}, \mathrm{br} \mathrm{t}, J=6.1 \mathrm{~Hz}), 4.33(1 \mathrm{H}, \mathrm{m}), 4.26(1 \mathrm{H}, \mathrm{m}), 1.34(3 \mathrm{H}, \mathrm{t}, J=7.0 \mathrm{~Hz}) .{ }^{13} \mathrm{C}$ NMR
$\left(\mathrm{CDCl}_{3}\right) \delta 154.3,136.4,134.7,131.4,128.4,127.7,127.6,127.1,126.9,126.5,126.4,125.6,124.3,124.0,62.1$, 54.2, 14.4. One carbon peak was missing due to overlapping. $\mathrm{MS}\left(\mathrm{EI}^{+}\right) \mathrm{m} / \mathrm{z}: 305\left(\mathrm{M}^{+}, 31\right), 130(100)$. HRMS calcd for $\mathrm{C}_{20} \mathrm{H}_{19} \mathrm{NO}_{2}$: 305.1416, Found: 305.1411. HPLC (Chiralcel AD-H, hexane/2-propanol=90/10, 0.5 $\mathrm{mL} / \mathrm{min}, 254 \mathrm{~nm}) \mathrm{t}_{\mathrm{r}}($ major $)=15.2 \mathrm{~min}, \mathrm{t}_{\mathrm{r}}($ minor $)=16.5 \mathrm{~min}$. A sample of 42% ee by HPLC analysis gave $[\alpha]_{\mathrm{D}}^{25}-17.8\left(c 0.64, \mathrm{CHCl}_{3}\right)$.

Adduct 5c: A colorless oil. IR $\left(\mathrm{CHCl}_{3}\right) 1696 \mathrm{~cm}^{-1}$. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.65(1 \mathrm{H}, \mathrm{br} \mathrm{m}), 7.42-7.12(11 \mathrm{H}, \mathrm{m})$, 7.10-7.01 ($2 \mathrm{H}, \mathrm{m}$), $6.55(1 \mathrm{H}, \mathrm{d}, J=6.5 \mathrm{~Hz}), 6.48(1 \mathrm{H}, \mathrm{d}, J=15.9 \mathrm{~Hz}), 6.09-5.97(2 \mathrm{H}, \mathrm{m}), 5.71(1 \mathrm{H}, \mathrm{br} \mathrm{m}), 5.32$ $(1 \mathrm{H}, \mathrm{br} \mathrm{d}, J=12.5 \mathrm{~Hz}), 5.24(1 \mathrm{H}, \operatorname{brd}, J=12.5 \mathrm{~Hz}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 154.1,136.4,136.1,134.5$, 131.6, $128.6,128.4,128.2,128.0,127.8,127.7,126.9,126.5,126.4,125.6,125.4,124.2,67.8,54.4$. Two carbon peaks were missing due to overlapping. $\mathrm{MS}\left(\mathrm{EI}^{+}\right) \mathrm{m} / \mathrm{z}: 367\left(\mathrm{M}^{+}, 4\right), 91$ (100). HRMS calcd for $\mathrm{C}_{25} \mathrm{H}_{21} \mathrm{NO}_{2}$: 367.1572, Found: 367.1575. HPLC (Chiralcel AD-H, hexane $/ 2-$ propanol $=95 / 5,0.5 \mathrm{~mL} / \mathrm{min}, 254 \mathrm{~nm}$) t_{r} (minor) $=29.3 \mathrm{~min}, \mathrm{t}_{\mathrm{r}}($ major $)=32.3 \mathrm{~min}$. A sample of 67% ee by HPLC analysis gave $[\alpha]_{\mathrm{D}}^{25}-56.4\left(c 0.83, \mathrm{CHCl}_{3}\right)$.

Adduct 6bA: A colorless crystal. mp 141-144 ${ }^{\circ} \mathrm{C}$ (hexane/AcOEt). IR $\left(\mathrm{CHCl}_{3}\right) 1696 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta$ $7.61(1 \mathrm{H}, \mathrm{br} \mathrm{m}), 7.37(2 \mathrm{H}, \mathrm{t}, J=7.9 \mathrm{~Hz}), 7.29(2 \mathrm{H}, \mathrm{d}, J=7.3 \mathrm{~Hz}), 7.26-7.17(6 \mathrm{H}, \mathrm{m}), 7.03(1 \mathrm{H}, \mathrm{br} \mathrm{d}, J=8.2$ $\mathrm{Hz}), 6.94(1 \mathrm{H}, \mathrm{s}), 6.59(1 \mathrm{H}, \mathrm{d}, J=15.8 \mathrm{~Hz}), 6.57(1 \mathrm{H}, \mathrm{d}, J=9.1 \mathrm{~Hz}), 6.12(1 \mathrm{H}, \mathrm{dd}, J=15.8,6.7 \mathrm{~Hz}), 6.08(1 \mathrm{H}$, $\mathrm{dd}, J=9.1,6.1 \mathrm{~Hz}), 5.79(1 \mathrm{H}, \mathrm{br} \mathrm{t}, J=6.1 \mathrm{~Hz}), 2.30(3 \mathrm{H}, \mathrm{s}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 152.8,151.2,136.4,134.2$, $132.0,131.7,129.4,128.5,127.8,127.0,126.9,126.6,125.8,125.6,125.2,124.2,121.7,54.9,20.7$. Two carbon peaks were missing due to overlapping. MS $\left(\mathrm{EI}^{+}\right) \mathrm{m} / \mathrm{z}: 367\left(\mathrm{M}^{+}, 50\right), 44$ (100). HRMS calcd for $\mathrm{C}_{25} \mathrm{H}_{21} \mathrm{NO}_{2}$: 367.1572, Found: 367.1570. Anal. Calcd for $\mathrm{C}_{25} \mathrm{H}_{21} \mathrm{NO}_{2}: \mathrm{C}, 81.72 ; \mathrm{H}, 5.76 ; \mathrm{N}, 3.81$. Found: C, 81.73; H, 5.67; N, 3.79. HPLC (Chiralcel OD-H, hexane/2-propanol=95/5, $0.5 \mathrm{~mL} / \mathrm{min}, 254 \mathrm{~nm}) \mathrm{t}_{\mathrm{r}}($ minor $)=$ $25.4 \mathrm{~min}, \mathrm{t}_{\mathrm{r}}($ major $)=35.1 \mathrm{~min}$. A sample of 95% ee by HPLC analysis gave $[\alpha]^{25}{ }_{\mathrm{D}}-388\left(c 1.1, \mathrm{CHCl}_{3}\right)$.

Adduct 6cA: A colorless crystal. mp 161-164 ${ }^{\circ} \mathrm{C}$ (hexane/AcOEt). IR $\left(\mathrm{CHCl}_{3}\right) 1712 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta$ $7.70(1 \mathrm{H}, \mathrm{br} \mathrm{m}), 7.38(2 \mathrm{H}, \mathrm{t}, J=7.9 \mathrm{~Hz}), 7.30(2 \mathrm{H}, \mathrm{d}, J=7.0 \mathrm{~Hz}), 7.28-7.15(10 \mathrm{H}, \mathrm{m}), 7.09(2 \mathrm{H}, \mathrm{m}), 6.61(1 \mathrm{H}$, $\mathrm{d}, J=15.6 \mathrm{~Hz}), 6.36(1 \mathrm{H}, \mathrm{s}), 6.07(1 \mathrm{H}, \mathrm{dd}, J=15.6,7.4 \mathrm{~Hz}), 5.55(1 \mathrm{H}, \mathrm{d}, J=7.4 \mathrm{~Hz}){ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta$ $152.7,151.2,136.4,132.9,132.5,129.6,129.5,129.4,128.5,127.9,126.9,126.7,125.8,125.6,124.7,123.9$, $121.7,121.5,120.9,59.5,20.6 . \mathrm{MS}\left(\mathrm{EI}^{+}\right) \mathrm{m} / \mathrm{z}: 367\left(\mathrm{M}^{+}, 28\right), 246(100)$. HRMS calcd for $\mathrm{C}_{25} \mathrm{H}_{21} \mathrm{NO}_{2}: 367.1572$, Found: 367.1579. Anal. Calcd for $\mathrm{C}_{25} \mathrm{H}_{21} \mathrm{NO}_{2}$: C, 81.72; H, 5.76; N, 3.81. Found: C, 81.61; H, 5.60; N, 3.70. HPLC (Chiralcel OD-H, hexane/2-propanol=95/5, $0.5 \mathrm{~mL} / \mathrm{min}, 254 \mathrm{~nm}) \mathrm{t}_{\mathrm{r}}($ minor $)=23.7 \mathrm{~min}, \mathrm{t}_{\mathrm{r}}$ (major) $=41.9$ min. A sample of 96% ee by HPLC analysis gave $[\alpha]^{25}{ }_{\mathrm{D}}-482\left(c 1.4, \mathrm{CHCl}_{3}\right)$.

Adduct 6dA: A colorless crystal. mp 152-155 ${ }^{\circ} \mathrm{C}$ (hexane/AcOEt). IR $\left(\mathrm{CHCl}_{3}\right) 1715 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta$ $7.69(1 \mathrm{H}, \mathrm{br} \mathrm{m}), 7.40(2 \mathrm{H}, \mathrm{t}, J=8.5 \mathrm{~Hz}), 7.34-7.12(10 \mathrm{H}, \mathrm{m}), 6.58(1 \mathrm{H}, \mathrm{d}, J=16.2 \mathrm{~Hz}), 6.57(1 \mathrm{H}, \mathrm{d}, J=9.4$
$\mathrm{Hz}), 6.17(1 \mathrm{H}, \mathrm{dd}, J=9.4,6.1 \mathrm{~Hz}), 6.11(1 \mathrm{H}, \mathrm{dd}, J=16.2,7.2 \mathrm{~Hz}), 5.83(1 \mathrm{H}, \mathrm{br} \mathrm{t}, J=6.1 \mathrm{~Hz}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 152.6,151.0,136.2,132.8,132.5,129.9,129.5,128.6,128.1,127.7,126.7,126.2,125.9,125.7$, 124.8, 124.6, 121.7, 54.9. Two carbon peaks were missing due to overlapping. MS (EI^{+}) m/z: $387\left(\mathrm{M}^{+}, 21\right), 44$ (100). HRMS calcd for $\mathrm{C}_{24} \mathrm{H}_{18} \mathrm{ClNO}_{2}$: 387.1026, Found: 387.1033. Anal. Calcd for $\mathrm{C}_{24} \mathrm{H}_{18} \mathrm{ClNO}_{2}$: C, $74.32 ; \mathrm{H}$, 4.68; Cl, 9.14; N, 3.61. Found: C, 74.54; H, 4.63; Cl, 8.99; N, 3.59. HPLC (Chiralcel OD-H, hexane $/ 2$-propanol=95/5, $0.5 \mathrm{~mL} / \mathrm{min}, 254 \mathrm{~nm}) \mathrm{t}_{\mathrm{r}}($ minor $)=27.3 \mathrm{~min}, \mathrm{t}_{\mathrm{r}}($ major $)=37.3 \mathrm{~min}$. A sample of 94% ee by HPLC analysis gave $[\alpha]^{25}{ }_{\mathrm{D}}-435\left(c 0.75, \mathrm{CHCl}_{3}\right)$.

Adduct 6eA: A colorless crystal. mp 143-145 ${ }^{\circ} \mathrm{C}$ (hexane/AcOEt). IR $\left(\mathrm{CHCl}_{3}\right) 1714 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta$ $7.63(1 \mathrm{H}, \mathrm{br} \mathrm{m}), 7.39(2 \mathrm{H}, \mathrm{t}, J=7.6 \mathrm{~Hz}), 7.35-7.15(10 \mathrm{H}, \mathrm{m}), 6.58(1 \mathrm{H}, \mathrm{d}, J=15.6 \mathrm{~Hz}), 6.56(1 \mathrm{H}, \mathrm{d}, J=9.4$ $\mathrm{Hz}), 6.15(1 \mathrm{H}, \mathrm{dd}, J=9.4,6.1 \mathrm{~Hz}), 6.11(1 \mathrm{H}, \mathrm{dd}, J=15.6,7.0 \mathrm{~Hz}), 5.82(1 \mathrm{H}, \mathrm{br} \mathrm{t}, J=7.0 \mathrm{~Hz}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 152.5,150.9,136.2,133.3,132.5,130.6,129.5,129.2,129.0,128.6,128.1,126.7,126.0,125.9$,
 77 (100). HRMS calcd for $\mathrm{C}_{24} \mathrm{H}_{18}{ }^{79} \mathrm{BrNO}_{2}$: 431.0521 , Found: 431.0515. Anal. Calcd for $\mathrm{C}_{24} \mathrm{H}_{18} \mathrm{BrNO}_{2}$: C , 66.68; H, 4.20; Br, 18.48; N, 3.24. Found: C, 66.81; H, 4.19; Br, 18.46; N, 3.23. HPLC (Chiralcel OD-H, hexane $/ 2$-propanol $=95 / 5,0.5 \mathrm{~mL} / \mathrm{min}, 254 \mathrm{~nm}) \mathrm{t}_{\mathrm{r}}($ minor $)=25.3 \mathrm{~min}, \mathrm{t}_{\mathrm{r}}($ major $)=35.1 \mathrm{~min}$. A sample of 95% ee by HPLC analysis gave $[\alpha]^{25}{ }_{\mathrm{D}}-413\left(c 1.6, \mathrm{CHCl}_{3}\right)$.

Adduct 6fA: A colorless crystal. mp 129-131 ${ }^{\circ} \mathrm{C}$ (hexane/AcOEt). IR $\left(\mathrm{CHCl}_{3}\right) 1746,1713 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.72(1 \mathrm{H}, \mathrm{br} \mathrm{m}), 7.39(2 \mathrm{H}, \mathrm{t}, J=7.6 \mathrm{~Hz}), 7.32(2 \mathrm{H}, \mathrm{d}, J=7.3 \mathrm{~Hz}), 7.30-7.16(6 \mathrm{H}, \mathrm{m}), 6.95-6.90(2 \mathrm{H}$, m), $6.60(1 \mathrm{H}, \mathrm{d}, J=15.9 \mathrm{~Hz}), 6.58(1 \mathrm{H}, \mathrm{d}, J=9.7 \mathrm{~Hz}), 6.17-6.10(2 \mathrm{H}, \mathrm{m}), 5.83(1 \mathrm{H}, \mathrm{br} \mathrm{t}, J=6.4 \mathrm{~Hz}), 1.35(9 \mathrm{H}$, s). ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 177.2,155.7,152.8,151.0,147.7,136.3,132.4,131.5,129.6,129.4,128.5,128.0$, 126.7, 125.8, 125.2, 124.8, 121.7, 120.6, 119.2, 115.3, 55.0, 39.0, 27.1. MS (EI ${ }^{+}$m/z: $453\left(\mathrm{M}^{+}, 18\right), 207$ (100). HRMS calcd for $\mathrm{C}_{29} \mathrm{H}_{27} \mathrm{NO}_{4}$: 453.1940, Found: 453.1943. Anal. Calcd for $\mathrm{C}_{29} \mathrm{H}_{27} \mathrm{NO}_{4}: \mathrm{C}, 76.80 ; \mathrm{H}, 6.00 ; \mathrm{N}$, 3.09. Found: C, 76.95 ; H, 5.98; N, 2.93. HPLC (Chiralcel OD-H, hexane $/ 2$-propanol $=95 / 5,1.0 \mathrm{~mL} / \mathrm{min}, 254$ $\mathrm{nm}) \mathrm{t}_{\mathrm{r}}($ minor $)=12.3 \mathrm{~min}, \mathrm{t}_{\mathrm{r}}($ major $)=32.3 \mathrm{~min}$. A sample of 96% ee by HPLC analysis gave $[\alpha]^{25}{ }_{\mathrm{D}}-533(c 2.1$, CHCl_{3}).

Adduct 6aB: Amorphous. IR $\left(\mathrm{CHCl}_{3}\right) 1712 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 7.72(1 \mathrm{H}, \mathrm{br} \mathrm{m}), 7.39(2 \mathrm{H}, \mathrm{t}, J=7.8 \mathrm{~Hz})$, $7.27-7.07(8 \mathrm{H}, \mathrm{m}), 6.79(2 \mathrm{H}, \mathrm{d}, J=8.7 \mathrm{~Hz}), 6.61(1 \mathrm{H}, \mathrm{d}, J=9.5 \mathrm{~Hz}), 6.54(1 \mathrm{H}, \mathrm{d}, J=15.6 \mathrm{~Hz}), 6.09(1 \mathrm{H}, \mathrm{dd}, J$ $=9.5,6.1 \mathrm{~Hz}), 5.99(1 \mathrm{H}, \mathrm{dd}, J=15.6,7.1 \mathrm{~Hz}), 5.79(1 \mathrm{H}, \mathrm{br} \mathrm{t}, J=6.8 \mathrm{~Hz}), 3.77(3 \mathrm{H}, \mathrm{s}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta$ $159.5,152.8,151.1,134.3,131.7,129.4,129.1,127.9,127.8,127.2,126.6,125.7,125.5,124.7,124.4,122.8$, $121.7,113.9,55.2,55.0$. One carbon peak was missing due to overlapping. $\mathrm{MS}\left(\mathrm{EI}^{+}\right) \mathrm{m} / \mathrm{z}: 383\left(\mathrm{M}^{+}, 16\right), 262$ (100). HRMS calcd for $\mathrm{C}_{25} \mathrm{H}_{21} \mathrm{NO}_{3}:$ 383.1521, Found: 383.1525. HPLC (Chiralcel OD-H, hexane $/ 2$-propanol $=95 / 5,0.5 \mathrm{~mL} / \mathrm{min}, 254 \mathrm{~nm}) \mathrm{t}_{\mathrm{r}}($ minor $)=27.5 \mathrm{~min}, \mathrm{t}_{\mathrm{r}}($ major $)=41.6 \mathrm{~min}$. A sample of 97%
ee by HPLC analysis gave $[\alpha]^{25}{ }_{\mathrm{D}}-456\left(c\right.$ 1.3, $\left.\mathrm{CHCl}_{3}\right)$.

Adduct 6aC: A colorless crystal. mp $165-167^{\circ} \mathrm{C}$ (hexane/AcOEt). IR $\left(\mathrm{CHCl}_{3}\right) 1727 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta$ $7.72(1 \mathrm{H}, \mathrm{br} \mathrm{m}), 7.39(2 \mathrm{H}, \mathrm{t}, J=7.7 \mathrm{~Hz}), 7.26-7.07(6 \mathrm{H}, \mathrm{m}), 6.84(1 \mathrm{H}, \mathrm{s}), 6.74(1 \mathrm{H}, \mathrm{d}, J=8.0 \mathrm{~Hz}), 6.69(1 \mathrm{H}, \mathrm{d}$, $J=8.0 \mathrm{~Hz}), 6.61(1 \mathrm{H}, \mathrm{d}, J=9.5 \mathrm{~Hz}), 6.50(1 \mathrm{H}, \mathrm{d}, J=15.9 \mathrm{~Hz}), 6.09(1 \mathrm{H}, \mathrm{dd}, J=9.5,6.1 \mathrm{~Hz}), 5.96(1 \mathrm{H}, \mathrm{dd}, J=$ $15.9,7.0 \mathrm{~Hz}), 5.91(2 \mathrm{H}, \mathrm{s}), 5.78(1 \mathrm{H}, \mathrm{br} \mathrm{t}, J=6.4 \mathrm{~Hz}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 152.8,151.1,148.0,147.5,134.2$, $131.8,130.9,129.4,127.9,127.2,126.6,125.7,125.6,124.7,124.4,123.3,121.7,121.5,108.2,105.9,101.1$, 54.9, 29.6. MS (EI') m/z: $397\left(\mathrm{M}^{+}, 2\right), 45$ (100). HRMS calcd for $\mathrm{C}_{25} \mathrm{H}_{19} \mathrm{NO}_{4}: 397.1314$, Found: 397.1317. Anal. Calcd for $\mathrm{C}_{25} \mathrm{H}_{19} \mathrm{NO}_{4}$: C, 75.55 ; H, 4.82; N, 3.52. Found: C, 75.32; H, 4.69; N, 3.43. HPLC (Chiralcel OD-H, hexane $/ 2$-propanol $=95 / 5,0.5 \mathrm{~mL} / \mathrm{min}, 254 \mathrm{~nm}) \mathrm{t}_{\mathrm{r}}($ minor $)=30.1 \mathrm{~min}, \mathrm{t}_{\mathrm{r}}($ major $)=43.4 \mathrm{~min}$. A sample of 83% ee by HPLC analysis gave $[\alpha]^{30}{ }_{\mathrm{D}}-470\left(c 1.7, \mathrm{CHCl}_{3}\right)$.

Adduct 6aD: A colorless crystal. mp 122-126 ${ }^{\circ} \mathrm{C}$ (hexane/AcOEt). IR $\left(\mathrm{CHCl}_{3}\right) 1712 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta$ $7.74(1 \mathrm{H}, \mathrm{br} \mathrm{m}), 7.39(2 \mathrm{H}, \mathrm{t}, J=7.3 \mathrm{~Hz}), 7.26-7.17(4 \mathrm{H}, \mathrm{m}), 7.16-7.07(2 \mathrm{H}, \mathrm{m}), 6.86(2 \mathrm{H}, \mathrm{m}), 6.76(1 \mathrm{H}, \mathrm{d}, J=$ $8.8 \mathrm{~Hz}), 6.63(1 \mathrm{H}, \mathrm{d}, J=9.5 \mathrm{~Hz}), 6.54(1 \mathrm{H}, \mathrm{d}, J=15.8 \mathrm{~Hz}), 6.10(1 \mathrm{H}, \mathrm{dd}, J=9.5,6.1 \mathrm{~Hz}), 6.01(1 \mathrm{H}, \mathrm{dd}, J=$ $15.8,7.0 \mathrm{~Hz}), 5.81(1 \mathrm{H}, \mathrm{br} \mathrm{t}, J=6.1 \mathrm{~Hz}), 3.86(3 \mathrm{H}, \mathrm{s}), 3.85(3 \mathrm{H}, \mathrm{s}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 152.8,151.1,149.1$, $149.0,134.2,132.1,129.4,127.8,127.4,127.1,126.5,125.7,125.5,124.6,124.4,123.0,121.7,120.0,111.0$, 108.8, 55.8, 55.1. Two carbon peaks were missing due to overlapping. MS (EI') m/z: $413\left(\mathrm{M}^{+}, 20\right), 292(100)$. HRMS calcd for $\mathrm{C}_{26} \mathrm{H}_{23} \mathrm{NO}_{4}: 413.1627$, Found: 413.1631. HPLC (Chiralcel OD-H, hexane/2-propanol=95/5, $1.0 \mathrm{~mL} / \mathrm{min}, 254 \mathrm{~nm}) \mathrm{t}_{\mathrm{r}}($ minor $)=51.8 \mathrm{~min}, \mathrm{t}_{\mathrm{r}}($ major $)=71.5 \mathrm{~min}$. A sample of 89% ee by HPLC analysis gave $[\alpha]^{25}{ }_{\mathrm{D}}-476\left(c\right.$ 1.4, $\left.\mathrm{CHCl}_{3}\right)$.

Adduct 6aE: A colorless crystal. mp 113-115 ${ }^{\circ} \mathrm{C}$ (hexane/AcOEt). IR $\left(\mathrm{CHCl}_{3}\right) 1713 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta$ $7.73(1 \mathrm{H}, \mathrm{br} \mathrm{m}), 7.37(2 \mathrm{H}, \mathrm{t}, J=7.7 \mathrm{~Hz}), 7.24-7.04(10 \mathrm{H}, \mathrm{m}), 6.60(1 \mathrm{H}, \mathrm{d}, J=9.5 \mathrm{~Hz}), 6.56(1 \mathrm{H}, \mathrm{d}, J=15.6$ $\mathrm{Hz}), 6.12-6.04(2 \mathrm{H}, \mathrm{m}), 5.80(1 \mathrm{H}, \mathrm{br} \mathrm{t}, J=6.4 \mathrm{~Hz}), 2.28(3 \mathrm{H}, \mathrm{s}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 152.8,151.1,137.8$, $134.2,133.6,132.0,129.4,129.2,127.8,127.1,126.5,125.6,125.5,124.6,124.3,124.0,121.7,55.0,21.1$. Two carbon peaks were missing due to overlapping. MS (EI^{+}) m/z: $367\left(\mathrm{M}^{+}, 32\right)$, 246 (100). HRMS calcd for $\mathrm{C}_{25} \mathrm{H}_{21} \mathrm{NO}_{2}$: 367.1572, Found: 367.1574. Anal. Calcd for $\mathrm{C}_{25} \mathrm{H}_{21} \mathrm{NO}_{2}$: C, 81.72; H, 5.76; N, 3.81. Found: C, 81.90; H, 5.94; N, 3.74. HPLC (Chiralcel OD-H, hexane $/ 2$-propanol $=95 / 5,0.5 \mathrm{~mL} / \mathrm{min}, 254 \mathrm{~nm}) \mathrm{t}_{\mathrm{r}}(\operatorname{minor})=$ $25.6 \mathrm{~min}, \mathrm{t}_{\mathrm{r}}$ (major) $=30.8 \mathrm{~min}$. A sample of 91% ee by HPLC analysis gave $[\alpha]^{28}{ }_{\mathrm{D}}-364\left(c 1.1, \mathrm{CHCl}_{3}\right)$.

Adduct 6aF: Amorphous. IR $\left(\mathrm{CHCl}_{3}\right) 1712 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.74(1 \mathrm{H}, \mathrm{br} \mathrm{m}), 7.50(2 \mathrm{H}, \mathrm{d}, J=8.3 \mathrm{~Hz})$, $7.42-7.35(4 \mathrm{H}, \mathrm{m}), 7.27-7.08(6 \mathrm{H}, \mathrm{m}), 6.65(1 \mathrm{H}, \mathrm{d}, J=9.5 \mathrm{~Hz}), 6.60(1 \mathrm{H}, \mathrm{d}, J=15.9 \mathrm{~Hz}), 6.23(1 \mathrm{H}, \mathrm{dd}, J=$ $15.9,6.7 \mathrm{~Hz}), 6.10(1 \mathrm{H}, \mathrm{dd}, J=9.5,6.1 \mathrm{~Hz}), 5.84(1 \mathrm{H}, \mathrm{br} \mathrm{t}, J=6.5 \mathrm{~Hz}) .{ }^{13} \mathrm{C}^{\mathrm{NMR}}\left(\mathrm{CDCl}_{3}\right) \delta 152.8,151.0$, $139.9,134.1,130.6,129.7$ (q, $J=32 \mathrm{~Hz}), 129.5,128.0,127.8,127.0,126.8,126.7,126.1,125.4$ (q) $J=4 \mathrm{~Hz}$),
$125.2,124.8,124.4(\mathrm{q}, J=271 \mathrm{~Hz}), 124.3,121.7,54.7$. One carbon peak was missing due to overlapping. MS $\left(\mathrm{EI}^{+}\right) \mathrm{m} / \mathrm{z}: 421\left(\mathrm{M}^{+}, 58\right), 328$ (100). HRMS calcd for $\mathrm{C}_{25} \mathrm{H}_{18} \mathrm{~F}_{3} \mathrm{NO}_{2}$: 421.1290, Found: 421.1284. HPLC (Chiralcel OD-H, hexane/2-propanol $=95 / 5,0.5 \mathrm{~mL} / \mathrm{min}, 254 \mathrm{~nm}) \mathrm{t}_{\mathrm{r}}($ minor $)=33.9 \mathrm{~min}, \mathrm{t}_{\mathrm{r}}($ major $)=36.3 \mathrm{~min}$. A sample of 95% ee by HPLC analysis gave $[\alpha]^{25}{ }_{\mathrm{D}}-396\left(c 0.71, \mathrm{CHCl}_{3}\right)$.

Conversion of the adduct 6 aC to (+)-galipinine 7 and characterization data. ${ }^{\text {1) }}$

A suspension of adduct $\mathbf{6 a C}(80 \mathrm{mg}, 0.20 \mathrm{mmol})$ and $10 \% \mathrm{Pd}-\mathrm{C}(120 \mathrm{mg})$ in $\mathrm{MeOH}(4 \mathrm{~mL})$ was stirred under a hydrogen atmosphere at $20^{\circ} \mathrm{C}$ for 12 h . After the reaction mixture was filtered, the filtrate was concentrated at reduced pressure. Purification of the residue by column chromatography (hexane:AcOEt=10:1) afforded product ($79 \mathrm{mg}, 98 \%$) as a colorless crystal. mp $119-121{ }^{\circ} \mathrm{C}$ (hexane/AcOEt). IR $\left(\mathrm{CHCl}_{3}\right) 1708 \mathrm{~cm}^{-1}$. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.57(1 \mathrm{H}, \mathrm{br} \mathrm{m}), 7.37(2 \mathrm{H}, \mathrm{t}, J=7.3 \mathrm{~Hz}), 7.23-7.10(5 \mathrm{H}, \mathrm{m}), 7.09(1 \mathrm{H}, \mathrm{t}, J=7.3 \mathrm{~Hz}), 6.68(1 \mathrm{H}, \mathrm{d}, J$ $=7.9 \mathrm{~Hz}), 6.63-6.57(2 \mathrm{H}, \mathrm{m}), 5.88(2 \mathrm{H}, \mathrm{AB}$ q, $J=14.0 \mathrm{~Hz}), 4.73(1 \mathrm{H}, \mathrm{m}), 2.78(2 \mathrm{H}, \mathrm{m}), 2.63(2 \mathrm{H}, \mathrm{m}), 2.34$ $(1 \mathrm{H}, \mathrm{m}), 1.91(1 \mathrm{H}, \mathrm{m}), 1.80-1.60(2 \mathrm{H}, \mathrm{m}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 153.4,151.3,147.6,145.7,136.2,135.5,129.3$, $128.1,126.2,125.7,125.4,124.8,121.7,121.0,108.8,108.1,100.7,53.2,34.8,32.1,28.6,24.5$. One carbon peak was missing due to overlapping. MS $\left(\mathrm{EI}^{+}\right) \mathrm{m} / \mathrm{z}: 401\left(\mathrm{M}^{+}, 19\right), 135(100)$. HRMS calcd for $\mathrm{C}_{25} \mathrm{H}_{23} \mathrm{NO}_{4}$: 401.1627, Found: 401.1632. Anal. Calcd for $\mathrm{C}_{25} \mathrm{H}_{23} \mathrm{NO}_{4}$: C, 74.79 ; H, 5.77; $\mathrm{N}, 3.49$. Found: C, 74.57; H, 5.56; $\mathrm{N}, 3.26$. HPLC (Chiralcel OD-H, hexane $/ 2$-propanol $=95 / 5,0.5 \mathrm{~mL} / \mathrm{min}, 254 \mathrm{~nm}$) t_{r} (minor) $=24.7 \mathrm{~min}, \mathrm{t}_{\mathrm{r}}$ (major) $=26.2 \mathrm{~min}$. A sample of 83% ee by HPLC analysis gave $[\alpha]^{28}{ }_{\mathrm{D}}-97.2$ (c 2.1, CHCl_{3}). To a stirred solution of product ($39 \mathrm{mg}, 0.097 \mathrm{mmol}$) in dry THF (5 mL) was $\mathrm{LiAlH}_{4}(11 \mathrm{mg}, 0.29 \mathrm{mmol})$ under argon atmosphere at $0{ }^{\circ} \mathrm{C}$ for 12 h . After being stirred at the room temperature for 12 h , the reaction mixture was slowly hydrolyzed with water. The solid residue was filtered and washed with diethyl ether. The filtration was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated at reduced pressure. Purification of the residue by column chromatography (hexane:AcOEt=6:1) afforded product $7(19 \mathrm{mg}, 65 \%)$ as a colorless oil. IR $\left(\mathrm{CHCl}_{3}\right) 2940,1501,1442 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.07(1 \mathrm{H}, \mathrm{t}, J=7.3 \mathrm{~Hz}), 6.97(1 \mathrm{H}, \mathrm{d}, J=7.3 \mathrm{~Hz}), 6.72(1 \mathrm{H}, \mathrm{d}, J=7.9 \mathrm{~Hz}), 6.68(1 \mathrm{H}, \mathrm{s}), 6.63$ $(1 \mathrm{H}, \mathrm{d}, J=7.3 \mathrm{~Hz}), 6.58(1 \mathrm{H}, \mathrm{t}, J=7.3 \mathrm{~Hz}), 6.52(1 \mathrm{H}, \mathrm{d}, J=7.9 \mathrm{~Hz}), 5.91(2 \mathrm{H}, \mathrm{s}), 3.26(1 \mathrm{H}, \mathrm{m}), 2.90(3 \mathrm{H}, \mathrm{s})$, $2.83(1 \mathrm{H}, \mathrm{m}), 2.72-2.58(2 \mathrm{H}, \mathrm{m}), 2.50(1 \mathrm{H}, \mathrm{m}), 1.97-1.83(3 \mathrm{H}, \mathrm{m}), 1.71(1 \mathrm{H}, \mathrm{m}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 147.7$, $145.7,145.3,135.9,128.7,127.1,121.8,121.0,115.5,110.7,108.7,108.2,100.8,58.2,38.0,33.1,32.0,24.3$, 23.5. MS (EI $\left.{ }^{+}\right) \mathrm{m} / \mathrm{z}: 295\left(\mathrm{M}^{+}, 21\right), 146(100)$. HRMS calcd for $\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{NO}_{2}: 295.1572$, Found: 295.1566. HPLC (Chiralcel OD-H, hexane/2-propanol $=95 / 5,0.5 \mathrm{~mL} / \mathrm{min}, 254 \mathrm{~nm}) \mathrm{t}_{\mathrm{r}}($ major $)=15.3 \mathrm{~min}, \mathrm{t}_{\mathrm{r}}($ minor $)=18.1 \mathrm{~min}$. A sample of 83% ee by HPLC analysis gave $[\alpha]^{31}{ }_{\mathrm{D}}+24.8\left(c 0.8, \mathrm{CHCl}_{3}\right)$.

References

1) Rueping, M.; Antonchick, A. P.; Theissmann, T. Angew. Chem. Int. Ed. 2006, 45, 3683.

Copies of ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectrum of all obtained compounds.

Copies of HPLC of 5a-6aF.

