Supporting Information

Catalytic Enantioselective Petasis-type Reaction of Quinolines Catalyzed by a Newly Designed Thiourea Catalyst

Yousuke Yamaoka, Hideto Miyabe, and Yoshiji Takemoto

Graduate School of Pharmaceutical Sciences, Kyoto University, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan. FAX: +81-75-753-4569; E-mail: takemoto@pharm.kyoto-u.ac.jp

Table of contents

Experimental procedure for preparation of catalyst 1b and its characterization data:		
Characterization data of catalysts 1c-i:	S4.	
The results of Petasis-type reaction of 2a, 2b and 3 with 4A using catalysts 1a-i:	S6.	
General procedure for Petasis-type reaction of 2a-f :	S7.	
Characterization data of obtained compounds 5a-6aF:	S7.	
Conversion of the adduct 6aC to (+)-galipinine 7 and characterization data:	S10.	
Copies of ¹ H and ¹³ C NMR spectrum of all obtained compounds:	S12.	
Copies of HPLC of 5a-6aF :	S68.	

General. Melting points were taken on a YANAGIMOTO micromelting point apparatus and are uncorrected. ¹H and ¹³C NMR spectra were recorded in CDCl₃ at 500 or 400 MHz, and at 125 or 100 MHz, respectively; Tetramethylsilane (TMS) was used as an internal standard. IR spectra were recorded on a JASCO FT/IR-410 Fourier-transfer infrared spectrometer. Low and high resolution mass spectra were obtained by EI or FAB method. Optical rotations were recorded on a JASCO DIP-360 polarimeter with a path length of 1 cm; concentrations are quoted in mg (2 mL). $[\alpha]^{D}$ values are measured in 10⁻¹ deg cm² g⁻¹. Enantiomeric excess was determined by high performance liquid chromatography (HPLC) analysis.

Amide 9: To a solution of amine 8 (4.7 g, 30 mmol), Et₃N (6.3 mL, 45 mmol) and DMAP (0.4 g, 3.0 mmol) in CH₂Cl₂ (30 mL) was added *o*-NsCl (6.3 g, 33 mmol) under argon atmosphere at 0 °C. After being stirred at the room temperature for 5 h, the reaction mixture was diluted with CHCl₃. The organic phase was washed with 1N HCl and saturated NaHCO₃, dried over MgSO₄ and concentrated at reduced pressure. Purification of the residue by column chromatography (CHCl₃:MeOH=20:1-10:1) afforded product 9 (10.2 g, quant.) as an amorphous. IR (CHCl₃) 1665 cm⁻¹. ¹H NMR (CDCl₃) δ 8.12 (1H, dd, *J* = 7.0, 1.6 Hz), 7.81 (1H, dd, *J* = 7.6, 1.5 Hz), 7.78-7.68 (2H, m), 5.97 (1H, br s), 5.80 (1H, br s), 3.72 (1H, m), 3.23 (1H, m), 2.04 (1H, br m), 1.88

(1H, br m), 1.85 (3H, s), 1.69 (2H, br m), 1.43-1.15 (4H, br m). ¹³C NMR (CDCl₃) δ 171.0, 147.8, 135.2, 133.4, 132.7, 130.2, 125.0, 58.7, 52.6, 33.4, 32.5, 24.7, 24.3, 23.1. MS (EI⁺) m/z: 341 (M⁺, 3), 96 (100). HRMS calcd for C₁₄H₁₉N₃O₅S: 341.1045, Found: 341.1043. [α]²⁶_D –66.2 (*c* 1.3, CHCl₃).

Acetate 10: A solution of amide 9 (10.2 g, 30 mmol), 2-bromoethyl acetate (6.6 mL, 60 mmol) and CsCO₃ (11.6 g, 60 mmol) in MeCN (60 mL) was stirred at 80 °C for 6 h. The reaction mixture was diluted with CHCl₃, washed with water, dried over K₂CO₃ and concentrated at reduced pressure. Purification of the residue by column chromatography (CHCl₃:MeOH=20:1-10:1) afforded product 10 (17.3 g, 74%) as an amorphous. IR (CHCl₃) 1739, 1667 cm⁻¹. ¹H NMR (CDCl₃) δ 8.11 (1H, br m), 7.77-7.71 (2H, br m), 7.68 (1H, br m), 5.96 (1H, br d, *J* = 8.5 Hz), 4.03 (2H, br m), 3.92 (1H, br m), 3.72 (1H, br m), 3.61-3.45 (2H, m), 2.13 (1H, br d, *J* = 10.7 Hz), 1.98 (3H, s), 1.88 (3H, s), 1.82 (2H, br m), 1.73 (1H, br d, *J* = 10.7 Hz), 1.52 (1H, m), 1.44-1.20 (3H, br m). ¹³C NMR (CDCl₃) δ 170.5, 169.8, 147.7, 134.1, 133.8, 132.1, 131.0, 124.3, 62.2, 61.4, 49.6, 42.0, 33.5, 31.0, 25.4, 24.5, 23.2, 20.6. MS (FAB⁺) m/z: 428 (M+H⁺, 100). HRMS calcd for C₁₈H₂₆N₃O₇S (M+H⁺): 428.1491, Found: 428.1497. [α]²⁶_D+148.3 (*c* 1.7, CHCl₃).

Amine 11: To a solution of acetate 10 (10 g, 23.4 mmol) in MeCN (50 mL) were added benzenethiol (2.9 mL, 28 mmol) and CsCO₃ (7.9 g, 28 mmol) under argon atmosphere at the room temperature. After being stirred at the same temperature for 2.5 h, the reaction mixture was diluted with CHCl₃, washed with water, dried over K₂CO₃ and concentrated at reduced pressure. Purification of the residue by column chromatography (CHCl₃:MeOH=5:1) afforded product 11 (4.4 g, 78%) as an amorphous. IR (CHCl₃) 1734, 1665 cm⁻¹. ¹H NMR (CDCl₃) δ 5.75 (1H, br d, *J* = 6.7 Hz), 4.26 (1H, m), 4.04 (1H, m), 3.57 (1H, m), 2.95 (1H, m), 2.79 (1H, m), 2.34 (1H, m), 2.15 (1H, br m), 2.08 (3H, s), 2.05 (1H, br m), 1.99 (3H, s), 1.90 (1H, br m), 1.74 (1H, br m), 1.68 (1H, br m), 1.38-1.08 (4H, br m). ¹³C NMR (CDCl₃) δ 171.4, 170.4, 63.9, 60.1, 53.0, 44.5, 32.6, 31.5, 24.6 (2C), 23.5, 21.0. MS (FAB⁺) m/z: 243 (M+H⁺, 100). HRMS calcd for C₁₂H₂₃N₂O₃ (M+H⁺): 243.1709, Found: 243.1705. [α]²⁶_D -25.3 (*c* 1.0, CHCl₃).

Alcohol 13: A solution of amine 11 (4.4 g, 18 mmol) and formaldehyde solution (3.4 mL, 45 mmol) in MeCN (60 mL) was stirred at the room temperature for 15 min. To the reaction mixture was added NaBH₃CN (1.3 g, 20 mmol) at the room temperature. After being stirred at the same temperature for 15 min, AcOH (3.3 mL) was added to the reaction mixture at the room temperature. After being stirred at the same temperature for 2 h, the reaction mixture was concentrated at reduced pressure. The residue was diluted with AcOEt, washed with 1N NaOH, water and brine, dried over K₂CO₃ and concentrated at reduced pressure to afford 12 as a colorless oil. IR (CHCl₃) 1733, 1660 cm⁻¹. ¹H NMR (CDCl₃) δ 6.25 (1H, br m), 4.22 (1H, m), 4.04 (1H, m), 3.49 (1H, m), 2.70 (1H, m), 2.63 (1H, m), 2.48 (1H, br d, *J* = 12.2 Hz), 2.32 (1H, m), 2.22 (3H, s), 2.07 (3H, s), 1.97 (3H, s), 1.81 (2H, br m), 1.65 (1H, br d, *J* = 13.4 Hz), 1.36-1.12 (3H, m), 1.04 (1H, m). ¹³C NMR (CDCl₃) δ 171.2,

170.2, 65.5, 62.4, 51.7, 50.8, 36.8, 32.6, 25.2, 24.4, 23.3, 22.4, 20.8. MS (EI⁺) m/z: 256 (M⁺, 2), 43 (100). HRMS calcd for C₁₃H₂₄N₂O₃: 256.1787, Found: 256.1790. [α]²⁶_D -40.8 (*c* 1.6, CHCl₃). A solution of the crude product **12** in 4N HCl (30 mL) was refluxed for 12 h. After being cooling to ambient temperature, the reaction mixture was basic with 4N NaOH, extracted with CHCl₃, dried over K₂CO₃ and concentrated at reduced pressure to afford **13** (2.46 g, 78% from amine **11**) as a pale yellow oil, which was used in next reaction without purification. IR (CHCl₃) 3370 cm⁻¹. ¹H NMR (CDCl₃) δ 3.70-3.50 (2H, br m), 2.85-2.53 (5H, br m), 2.44 (1H, br m), 2.29 (3H, s), 2.13 (1H, br m), 1.93 (1H, br m), 1.78 (2H, br m), 1.66 (1H, br m), 1.26-1.04 (4H, br m). ¹³C NMR (CDCl₃) δ 69.2, 59.3, 54.4, 51.5, 37.0, 35.6, 25.5, 25.0, 22.4. MS (FAB⁺) m/z: 173 (M+H⁺, 100). HRMS calcd for C₉H₂₀N₂O (M+H⁺): 173.1654, Found: 173.1656. [α]²⁷_D -34.6 (*c* 1.5, CHCl₃).

Catalyst 1b: To a solution of alcohol **13** (2.5 g, 14 mmol) in THF (20 mL) was added 3,5-bis(triflouoromethyl)phenyl isothiocyanate (2.6 mL, 14 mmol) under argon atmosphere at the room temperature. After being stirred at the same temperature for 3 h, the reaction mixture was concentrated at reduced pressure. Purification of the residue by column chromatography (CHCl₃:MeOH=9:1) afforded product **1b** (3.8 g, 60%) as a colorless crystal. mp 167-170 °C (hexane/AcOEt). IR (CHCl₃) 3320, 1534, 1470 cm⁻¹. ¹H NMR (CDCl₃) δ 7.98 (2H, s), 7.61 (1H, s), 4.07 (1H, br s), 3.62 (2H, br m), 2.71 (1H, m), 2.60-2.41 (3H, m), 2.28 (3H, s), 1.86 (2H, br m), 1.73 (1H, br m), 1.30 (2H, m), 1.27-1.06 (2H, m). ¹³C NMR (CDCl₃) δ 180.4, 140.3, 132.1 (q, *J* = 33 Hz), 123.3, 123.0 (q, *J* = 271 Hz), 118.1, 66.6, 58.7, 55.7, 54.9, 36.4, 32.7, 24.9, 24.5, 22.9. MS (FAB⁺) m/z: 444 (M+H⁺, 100). HRMS calcd for C₁₈H₂₄F₆N₃OS (M+H⁺): 444.1544, Found: 444.1547. Anal. Calcd for C₁₈H₂₃F₆N₃OS: C, 48.75; H, 5.23; F, 25.71, N, 9.48. Found: C, 48.77; H, 5.10; F, 25.50, N, 9.52. [α]²⁷_D -20.5 (*c* 1.0, CHCl₃).

Characterization data of catalysts 1c-i.

Catalyst 1c: Amorphous. IR (CHCl₃) 3319, 1531, 1471 cm⁻¹. ¹H NMR (CDCl₃) δ 7.95 (2H, s), 7.47 (1H, s), 4.46 (1H, br s), 3.85 (2H, br m), 2.87 (1H, br m), 2.73 (1H, br m), 2.61 (1H, br m), 2.41 (1H, br m), 2.35 (3H, s), 1.98-1.05 (9H, m). ¹³C NMR (CDCl₃) δ 180.8, 141.5, 131.4 (q, *J* = 33 Hz), 123.2 (q, *J* = 273 Hz), 122.1, 116.7, 66.6, 56.6, 55.5, 50.2, 44.9, 35.7, 32.4, 25.0, 24.3, 22.4. MS (FAB⁺) m/z: 458 (M+H⁺, 100). HRMS calcd for C₁₉H₂₆F₆N₃OS (M+H⁺): 458.1701, Found: 458.1707. [α]²⁸_D -2.2 (*c* 1.2, CHCl₃).

Catalyst 1d: Amorphous. IR (CHCl₃) 3289, 1518, 1469 cm⁻¹. ¹H NMR (CDCl₃) δ 8.11 (2H, s), 7.56 (1H, s), 3.79 (1H, br s), 2.67 (1H, br m), 2.58-2.20 (5H, br m), 2.28 (3H, s), 2.24 (6H, s), 1.85 (2H, br t, J = 12.8 Hz), 1.72 (1H, br d, J = 12.8 Hz), 1.37-1.10 (4H, m). The presence of rotamers precluded a comprehensive assignment of all proton resonances. ¹³C NMR (CDCl₃) δ 180.7, 141.5, 131.4 (q, J = 33 Hz), 123.2 (q, J = 272 Hz), 122.1, 116.7, 66.6, 56.6, 55.5, 50.1, 44.9, 35.7, 32.4, 25.0, 24.3, 22.4. MS (FAB⁺) m/z: 471 (M+H⁺, 100).

HRMS calcd for $C_{20}H_{29}F_6N_4S$ (M+H⁺): 471.2017, Found: 471.2026. [α]²⁷_D -1.5 (*c* 0.9, CHCl₃).

Catalyst 1e: Amorphous. IR (CHCl₃) 3350, 1495, 1471, 1451 cm⁻¹. ¹H NMR (CDCl₃) δ 7.48-7.15 (18H, m), 3.87 (1H, br s), 3.27 (1H, br m), 3.12 (1H, br m), 2.90-2.65 (3H, br m), 2.64 (1H, br m), 2.25 (3H, s), 1.92-1.65 (3H, m), 1.43-1.05 (4H, m). The presence of rotamers precluded a comprehensive assignment of all proton resonances. ¹³C NMR (CDCl₃) δ 181.0, 143.7, 140.1, 131.5 (q, *J* = 34 Hz), 128.6, 128.1, 127.3, 123.0 (q, *J* = 273 Hz), 122.7, 117.5, 86.7, 67.3, 61.3, 55.8, 54.4, 35.8, 32.2, 25.1, 24.3, 23.4. MS (FAB⁺) m/z: 686 (M+H⁺, 6), 243 (100). HRMS calcd for C₃₇H₃₈F₆N₃OS (M+H⁺): 686.2640, Found: 686.2632. [α]²⁸_D+10.8 (*c* 1.5, CHCl₃).

Catalyst 1f: Amorphous. IR (CHCl₃) 3404, 1496, 1471, 1381 cm⁻¹. ¹H NMR (CDCl₃) δ 7.96 (2H, br s), 7.63 (1H, br s), 3.80-3.30 (2H, br m), 2.40-2.00 (3H, br m), 1.85-1.65 (2H, br m), 1.50-1.10 (4H, br m). The presence of rotamers precluded a comprehensive assignment of all proton resonances. ¹³C NMR (CDCl₃) δ 181.7, 140.7, 131.9 (q, *J* = 32 Hz), 123.5, 123.0 (q, *J* = 273 Hz), 118.3, 75.7, 60.5, 34.2, 31.2, 24.2, 23.6. MS (FAB⁺) m/z: 387 (M+H⁺, 100). HRMS calcd for C₁₅H₁₇F₆N₂OS (M+H⁺): 387.0966, Found: 387.0971. [α]²⁸_D +46.1 (*c* 2.5, CHCl₃).

Catalyst 1g: Amorphous. IR (CHCl₃) 3412, 1562, 1499 cm⁻¹. ¹H NMR (CDCl₃) δ 4.10 (1H, br s), 3.38 (1H, br m), 2.43 (1H, br m), 2.29 (6H, s), 2.26 (2H, br m), 2.02 (2H, br m), 1.89 (1H, d, *J* = 12.2 Hz), 1.82 (1H, d, *J* = 12.2 Hz), 1.74-1.65 (4H, m), 1.40-1.10 (8H, m). ¹³C NMR (CDCl₃) δ 182.1, 75.4, 67.2, 60.0, 56.4, 40.4, 34.0, 33.6, 31.9, 24.8, 24.7, 24.6, 24.1, 21.7. MS (FAB⁺) m/z: 300 (M+H⁺, 90), 125 (100). HRMS calcd for C₁₅H₃₀N₃OS (M+H⁺): 300.2110, Found: 300.2102. [α]²⁸_D +64.3 (*c* 1.7, CHCl₃).

Catalyst 1h: Amorphous. IR (CHCl₃) 3330, 1537, 1472, 1384 cm⁻¹. ¹H NMR (CDCl₃) δ 8.00 (2H, s), 7.59 (1H, s), 4.12 (1H, br m), 3.61 (1H, br d, J = 8.6 Hz), 3.39 (1H, br d, J = 8.6 Hz), 3.02 (1H, br m), 2.95 (1H, br m), 2.74 (1H, br m), 2.62 (1H, br m), 2.46 (1H, br m), 1.95-1.08 (12H, m). ¹³C NMR (CDCl₃) δ 181.1, 140.6, 132.0 (q, J = 33 Hz), 123.4, 123.1 (q, J = 273 Hz), 118.1, 62.4, 56.9, 46.0, 33.0, 28.2, 25.0, 24.6, 24.3, 23.4. Two carbon peaks were missing due to overlapping. MS (FAB⁺) m/z: 470 (M+H⁺, 100). HRMS calcd for C₂₀H₂₆F₆N₃OS (M+H⁺): 470.1701, Found: 470.1708. [α]²⁸_D+5.3 (*c* 1.1, CHCl₃).

Catalyst 1i: A colorless oil. IR (CHCl₃) 3433, 1660 cm⁻¹. ¹H NMR (CDCl₃) δ 5.99 (1H, br m), 3.76 (1H, m), 3.57 (2H, t, J = 6.7 Hz), 2.70 (1H, m), 2.55 (1H, m), 2.31 (1H, m), 2.25 (3H, s), 2.22 (2H, br m), 1.97 (3H, s), 1.88-1.75 (2H, br m), 1.68 (1H, br m), 1.38-1.03 (4H, m). ¹³C NMR (CDCl₃) δ 170.2, 66.7, 58.3, 54.7, 50.3, 35.9, 33.4, 25.2, 24.8, 23.6, 23.4. MS (EI⁺) m/z: 214 (M⁺, 1), 114 (100). HRMS calcd for C₁₁H₂₂N₂O₂: 214.1681, Found: 214.1677. [α]²⁸_D -6.7 (*c* 1.0, CHCl₃).

The results of Petasis-type reaction of 2a, 2b and 3 with 4A using catalysts 1a-I under various conditions.

Table 1. Reaction of 2a, 2b and 3 with 4A in the presence of catalyst 1a-i.^a

1	1a	2a	none	34	-9
2	1b	2a	none	70	90
3	1b	3a	none	88	rac
4	1c	2a	none	47	27
5	1d	2a	none	31	4
6	1e	2a	none	44	rac
7	1f	2a	none	33	rac
8	1g	2a	none	57	rac
9	1h	2a	none	60	68
10	1i	2a	none	70	50
11	<i>rac</i> -1a and 1i	2a	none	28	20
12	1b	2a	$H_2O(56 \text{ eq})^b$	27	93
13	1b	2a	CF ₃ CH ₂ OH (1 eq)	77	46
14	1b	2a	H_2O $(2 eq)^b$ and	68	88
			NaHCO ₃ ^c		
15	1b	2a	H_2O $(10 eq)^b$ and	70	89
			NaHCO ₃ ^c		

16	1b	2a	H_2O $(28 eq)^b$ and 70	90
			NaHCO ₃ ^c	
17	1b	2a	H_2O (56 eq) ^b and 65	94
			NaHCO ₃ ^c	
18	1b	2a	H_2O (112 eq) ^b and 56	90
			NaHCO ₃ ^c	
19	1b	2b	none 70	86
20	1b	2b	$H_2O(56 eq)^b$ 32	95
21	1b	2b	H_2O (56 eq) ^b and 75	95
			NaHCO ₃ ^c	

^a Reaction was carried out in the presence of catalyst **1** (10 mol%) in CH₂Cl₂ by using PhOCOCl (2 equiv) for 24 h. ^b H₂O (2-112 equivalent) was added. ^c NaHCO₃ (2 equiv) was added.

General procedure for Petasis-type reaction of 2a-f.

To a solution of substrate **2a-f** (0.2 mmol), boronic acid **4A-F** (0.4 mmol), catalyst **1a-i** (0.02 mmol) and NaHCO₃ (34 mg, 0.4 mmol) in CH₂Cl₂ (2 mL) were added H₂O (0.2 mL) and phenyl chloroformate (0.051 mL, 0.4 mmol) under argon atmosphere at the temperature shown in text. After being stirred at the same temperature for 24 h, the reaction mixture was diluted with CHCl₃, washed with 1N NaOH, 1N HCl and water, dried over MgSO₄ and concentrated at reduced pressure. Purification of the residue by column chromatography (hexane:AcOEt=10:1) afforded products **5a-6aF**.

Characterization data of obtained compounds 5a-6aF

Adduct 5a: A colorless oil. IR (CHCl₃) 1712 cm⁻¹. ¹H NMR (CDCl₃) δ 7.73 (1H, br m), 7.39 (2H, t, *J* = 7.6 Hz), 7.31 (2H, d, *J* = 7.0 Hz), 7.28-7.18 (7H, m), 7.14 (1H, d, *J* = 6.4 Hz), 7.10 (1H, t, *J* = 7.3 Hz), 6.63 (1H, d, *J* = 9.8 Hz), 6.60 (1H, d, *J* = 16.2 Hz), 6.17-6.07 (2H, m), 5.82 (1H, br t, *J* = 5.8 Hz). ¹³C NMR (CDCl₃) δ 152.8, 151.1, 136.4, 134.2, 132.1, 129.4, 128.5, 127.9, 127.1, 126.6 (2C), 125.7 (2C), 125.1, 124.7, 124.4, 121.7, 115.3, 54.9. One carbon peak was missing due to overlapping. MS (EI⁺) m/z: 353 (M⁺, 44), 260 (100). HRMS calcd for C₂₄H₁₉NO₂: 353.1416, Found: 353.1410. HPLC (Chiralcel OD-H, hexane/2-propanol=95/5, 0.5 mL/min, 254 nm) t_r (minor) = 28.7 min, t_r (major) = 34.9 min. A sample of 94% ee by HPLC analysis gave [α]²⁸_D -454 (*c* 1.8, CHCl₃).

Adduct 5b: A colorless oil. IR (CHCl₃) 1693 cm⁻¹. ¹H NMR (CDCl₃) δ 7.62 (1H, br m), 7.30-7.16 (6H, br m), 7.09 (1H, dd, J = 7.7, 1.9 Hz), 7.05 (1H, t, J = 7.6 Hz), 6.57 (1H, d, J = 9.8 Hz), 6.51 (1H, d, J = 15.9 Hz), 6.09-6.02 (2H, m), 5.70 (1H, br t, J = 6.1 Hz), 4.33 (1H, m), 4.26 (1H, m), 1.34 (3H, t, J = 7.0 Hz). ¹³C NMR

 (CDCl_3) δ 154.3, 136.4, 134.7, 131.4, 128.4, 127.7, 127.6, 127.1, 126.9, 126.5, 126.4, 125.6, 124.3, 124.0, 62.1, 54.2, 14.4. One carbon peak was missing due to overlapping. MS (EI⁺) m/z: 305 (M⁺, 31), 130 (100). HRMS calcd for C₂₀H₁₉NO₂: 305.1416, Found: 305.1411. HPLC (Chiralcel AD-H, hexane/2-propanol=90/10, 0.5 mL/min, 254 nm) t_r (major) = 15.2 min, t_r (minor) = 16.5 min. A sample of 42% ee by HPLC analysis gave $[\alpha]^{25}_{\text{ D}}$ -17.8 (*c* 0.64, CHCl₃).

Adduct 5c: A colorless oil. IR (CHCl₃) 1696 cm^{-1. 1}H NMR (CDCl₃) δ 7.65 (1H, br m), 7.42-7.12 (11H, m), 7.10-7.01 (2H, m), 6.55 (1H, d, J = 6.5 Hz), 6.48 (1H, d, J = 15.9 Hz), 6.09-5.97 (2H, m), 5.71 (1H, br m), 5.32 (1H, br d, J = 12.5 Hz), 5.24 (1H, br d, J = 12.5 Hz). ¹³C NMR (CDCl₃) δ 154.1, 136.4, 136.1, 134.5, 131.6, 128.6, 128.4, 128.2, 128.0, 127.8, 127.7, 126.9, 126.5, 126.4, 125.6, 125.4, 124.2, 67.8, 54.4. Two carbon peaks were missing due to overlapping. MS (EI⁺) m/z: 367 (M⁺, 4), 91 (100). HRMS calcd for C₂₅H₂₁NO₂: 367.1572, Found: 367.1575. HPLC (Chiralcel AD-H, hexane/2-propanol=95/5, 0.5 mL/min, 254 nm) t_r (minor) = 29.3 min, t_r (major) = 32.3 min. A sample of 67% ee by HPLC analysis gave [α]²⁵_D -56.4 (*c* 0.83, CHCl₃).

Adduct 6bA: A colorless crystal. mp 141-144 °C (hexane/AcOEt). IR (CHCl₃) 1696 cm⁻¹. ¹H NMR (CDCl₃) δ 7.61 (1H, br m), 7.37 (2H, t, *J* = 7.9 Hz), 7.29 (2H, d, *J* = 7.3 Hz), 7.26-7.17 (6H, m), 7.03 (1H, br d, *J* = 8.2 Hz), 6.94 (1H, s), 6.59 (1H, d, *J* = 15.8 Hz), 6.57 (1H, d, *J* = 9.1 Hz), 6.12 (1H, dd, *J* = 15.8, 6.7 Hz), 6.08 (1H, dd, *J* = 9.1, 6.1 Hz), 5.79 (1H, br t, *J* = 6.1 Hz), 2.30 (3H, s). ¹³C NMR (CDCl₃) δ 152.8, 151.2, 136.4, 134.2, 132.0, 131.7, 129.4, 128.5, 127.8, 127.0, 126.9, 126.6, 125.8, 125.6, 125.2, 124.2, 121.7, 54.9, 20.7. Two carbon peaks were missing due to overlapping. MS (EI⁺) m/z: 367 (M⁺, 50), 44 (100). HRMS calcd for C₂₅H₂₁NO₂: 367.1572, Found: 367.1570. Anal. Calcd for C₂₅H₂₁NO₂: C, 81.72; H, 5.76; N, 3.81. Found: C, 81.73; H, 5.67; N, 3.79. HPLC (Chiralcel OD-H, hexane/2-propanol=95/5, 0.5 mL/min, 254 nm) t_r (minor) = 25.4 min, t_r (major) = 35.1 min. A sample of 95% ee by HPLC analysis gave [α]²⁵_D -388 (*c* 1.1, CHCl₃).

Adduct 6cA: A colorless crystal. mp 161-164 °C (hexane/AcOEt). IR (CHCl₃) 1712 cm⁻¹. ¹H NMR (CDCl₃) δ 7.70 (1H, br m), 7.38 (2H, t, *J* = 7.9 Hz), 7.30 (2H, d, *J* = 7.0 Hz), 7.28-7.15 (10H, m), 7.09 (2H, m), 6.61 (1H, d, *J* = 15.6 Hz), 6.36 (1H, s), 6.07 (1H, dd, *J* = 15.6, 7.4 Hz), 5.55 (1H, d, *J* = 7.4 Hz). ¹³C NMR (CDCl₃) δ 152.7, 151.2, 136.4, 132.9, 132.5, 129.6, 129.5, 129.4, 128.5, 127.9, 126.9, 126.7, 125.8, 125.6, 124.7, 123.9, 121.7, 121.5, 120.9, 59.5, 20.6. MS (EI⁺) m/z: 367 (M⁺, 28), 246 (100). HRMS calcd for C₂₅H₂₁NO₂: 367.1572, Found: 367.1579. Anal. Calcd for C₂₅H₂₁NO₂: C, 81.72; H, 5.76; N, 3.81. Found: C, 81.61; H, 5.60; N, 3.70. HPLC (Chiralcel OD-H, hexane/2-propanol=95/5, 0.5 mL/min, 254 nm) t_r (minor) = 23.7 min, t_r (major) = 41.9 min. A sample of 96% ee by HPLC analysis gave [α]²⁵_D -482 (*c* 1.4, CHCl₃).

Adduct 6dA: A colorless crystal. mp 152-155 °C (hexane/AcOEt). IR (CHCl₃) 1715 cm⁻¹. ¹H NMR (CDCl₃) δ 7.69 (1H, br m), 7.40 (2H, t, *J* = 8.5 Hz), 7.34-7.12 (10H, m), 6.58 (1H, d, *J* = 16.2 Hz), 6.57 (1H, d, *J* = 9.4

Hz), 6.17 (1H, dd, J = 9.4, 6.1 Hz), 6.11 (1H, dd, J = 16.2, 7.2 Hz), 5.83 (1H, br t, J = 6.1 Hz). ¹³C NMR (CDCl₃) δ 152.6, 151.0, 136.2, 132.8, 132.5, 129.9, 129.5, 128.6, 128.1, 127.7, 126.7, 126.2, 125.9, 125.7, 124.8, 124.6, 121.7, 54.9. Two carbon peaks were missing due to overlapping. MS (EI⁺) m/z: 387 (M⁺, 21), 44 (100). HRMS calcd for C₂₄H₁₈ClNO₂: 387.1026, Found: 387.1033. Anal. Calcd for C₂₄H₁₈ClNO₂: C, 74.32; H, 4.68; Cl, 9.14; N, 3.61. Found: C, 74.54; H, 4.63; Cl, 8.99; N, 3.59. HPLC (Chiralcel OD-H, hexane/2-propanol=95/5, 0.5 mL/min, 254 nm) t_r (minor) = 27.3 min, t_r (major) = 37.3 min. A sample of 94% ee by HPLC analysis gave [α]²⁵_D -435 (*c* 0.75, CHCl₃).

Adduct 6eA: A colorless crystal. mp 143-145 °C (hexane/AcOEt). IR (CHCl₃) 1714 cm⁻¹. ¹H NMR (CDCl₃) δ 7.63 (1H, br m), 7.39 (2H, t, *J* = 7.6 Hz), 7.35-7.15 (10H, m), 6.58 (1H, d, *J* = 15.6 Hz), 6.56 (1H, d, *J* = 9.4 Hz), 6.15 (1H, dd, *J* = 9.4, 6.1 Hz), 6.11 (1H, dd, *J* = 15.6, 7.0 Hz), 5.82 (1H, br t, *J* = 7.0 Hz). ¹³C NMR (CDCl₃) δ 152.5, 150.9, 136.2, 133.3, 132.5, 130.6, 129.5, 129.2, 129.0, 128.6, 128.1, 126.7, 126.0, 125.9, 124.7, 124.6, 121.6, 117.6, 54.9. One carbon peak was missing due to overlapping. MS (EI⁺) m/z: 431 (M⁺, 22), 77 (100). HRMS calcd for C₂₄H₁₈⁷⁹BrNO₂: 431.0521, Found: 431.0515. Anal. Calcd for C₂₄H₁₈BrNO₂: C, 66.68; H, 4.20; Br, 18.48; N, 3.24. Found: C, 66.81; H, 4.19; Br, 18.46; N, 3.23. HPLC (Chiralcel OD-H, hexane/2-propanol=95/5, 0.5 mL/min, 254 nm) t_r (minor) = 25.3 min, t_r (major) = 35.1 min. A sample of 95% ee by HPLC analysis gave [α]²⁵_D -413 (*c* 1.6, CHCl₃).

Adduct 6fA: A colorless crystal. mp 129-131 °C (hexane/AcOEt). IR (CHCl₃) 1746, 1713 cm⁻¹. ¹H NMR (CDCl₃) δ 7.72 (1H, br m), 7.39 (2H, t, *J* = 7.6 Hz), 7.32 (2H, d, *J* = 7.3 Hz), 7.30-7.16 (6H, m), 6.95-6.90 (2H, m), 6.60 (1H, d, *J* = 15.9 Hz), 6.58 (1H, d, *J* = 9.7 Hz), 6.17-6.10 (2H, m), 5.83 (1H, br t, *J* = 6.4 Hz), 1.35 (9H, s). ¹³C NMR (CDCl₃) δ 177.2, 155.7, 152.8, 151.0, 147.7, 136.3, 132.4, 131.5, 129.6, 129.4, 128.5, 128.0, 126.7, 125.8, 125.2, 124.8, 121.7, 120.6, 119.2, 115.3, 55.0, 39.0, 27.1. MS (EI⁺) m/z: 453 (M⁺, 18), 207 (100). HRMS calcd for C₂₉H₂₇NO₄: 453.1940, Found: 453.1943. Anal. Calcd for C₂₉H₂₇NO₄: C, 76.80; H, 6.00; N, 3.09. Found: C, 76.95; H, 5.98; N, 2.93. HPLC (Chiralcel OD-H, hexane/2-propanol=95/5, 1.0 mL/min, 254 nm) t_r (minor) = 12.3 min, t_r (major) = 32.3 min. A sample of 96% ee by HPLC analysis gave [α]²⁵_D -533 (*c* 2.1, CHCl₃).

Adduct 6aB: Amorphous. IR (CHCl₃) 1712 cm^{-1.} ¹H NMR (CDCl₃) δ 7.72 (1H, br m), 7.39 (2H, t, *J* = 7.8 Hz), 7.27-7.07 (8H, m), 6.79 (2H, d, *J* = 8.7 Hz), 6.61 (1H, d, *J* = 9.5 Hz), 6.54 (1H, d, *J* = 15.6 Hz), 6.09 (1H, dd, *J* = 9.5, 6.1 Hz), 5.99 (1H, dd, *J* = 15.6, 7.1 Hz), 5.79 (1H, br t, *J* = 6.8 Hz), 3.77 (3H, s). ¹³C NMR (CDCl₃) δ 159.5, 152.8, 151.1, 134.3, 131.7, 129.4, 129.1, 127.9, 127.8, 127.2, 126.6, 125.7, 125.5, 124.7, 124.4, 122.8, 121.7, 113.9, 55.2, 55.0. One carbon peak was missing due to overlapping. MS (EI⁺) m/z: 383 (M⁺, 16), 262 (100). HRMS calcd for C₂₅H₂₁NO₃: 383.1521, Found: 383.1525. HPLC (Chiralcel OD-H, hexane/2-propanol=95/5, 0.5 mL/min, 254 nm) t_r (minor) = 27.5 min, t_r (major) = 41.6 min. A sample of 97% ee by HPLC analysis gave $[\alpha]^{25}_{D}$ -456 (*c* 1.3, CHCl₃).

Adduct 6aC: A colorless crystal. mp 165-167 °C (hexane/AcOEt). IR (CHCl₃) 1727 cm⁻¹. ¹H NMR (CDCl₃) δ 7.72 (1H, br m), 7.39 (2H, t, J = 7.7 Hz), 7.26-7.07 (6H, m), 6.84 (1H, s), 6.74 (1H, d, J = 8.0 Hz), 6.69 (1H, d, J = 8.0 Hz), 6.61 (1H, d, J = 9.5 Hz), 6.50 (1H, d, J = 15.9 Hz), 6.09 (1H, dd, J = 9.5, 6.1 Hz), 5.96 (1H, dd, J =15.9, 7.0 Hz), 5.91 (2H, s), 5.78 (1H, br t, J = 6.4 Hz). ¹³C NMR (CDCl₃) δ 152.8, 151.1, 148.0, 147.5, 134.2, 131.8, 130.9, 129.4, 127.9, 127.2, 126.6, 125.7, 125.6, 124.7, 124.4, 123.3, 121.7, 121.5, 108.2, 105.9, 101.1, 54.9, 29.6. MS (EI⁺) m/z: 397 (M⁺, 2), 45 (100). HRMS calcd for C₂₅H₁₉NO₄: 397.1314, Found: 397.1317. Anal. Calcd for C₂₅H₁₉NO₄: C, 75.55; H, 4.82; N, 3.52. Found: C, 75.32; H, 4.69; N, 3.43. HPLC (Chiralcel OD-H, hexane/2-propanol=95/5, 0.5 mL/min, 254 nm) t_r (minor) = 30.1 min, t_r (major) = 43.4 min. A sample of 83% ee by HPLC analysis gave [α]³⁰_D -470 (*c* 1.7, CHCl₃).

Adduct 6aD: A colorless crystal. mp 122-126 °C (hexane/AcOEt). IR (CHCl₃) 1712 cm⁻¹. ¹H NMR (CDCl₃) δ 7.74 (1H, br m), 7.39 (2H, t, *J* = 7.3 Hz), 7.26-7.17 (4H, m), 7.16-7.07 (2H, m), 6.86 (2H, m), 6.76 (1H, d, *J* = 8.8 Hz), 6.63 (1H, d, *J* = 9.5 Hz), 6.54 (1H, d, *J* = 15.8 Hz), 6.10 (1H, dd, *J* = 9.5, 6.1 Hz), 6.01 (1H, dd, *J* = 15.8, 7.0 Hz), 5.81 (1H, br t, *J* = 6.1 Hz), 3.86 (3H, s), 3.85 (3H, s). ¹³C NMR (CDCl₃) δ 152.8, 151.1, 149.1, 149.0, 134.2, 132.1, 129.4, 127.8, 127.4, 127.1, 126.5, 125.7, 125.5, 124.6, 124.4, 123.0, 121.7, 120.0, 111.0, 108.8, 55.8, 55.1. Two carbon peaks were missing due to overlapping. MS (EI⁺) m/z: 413 (M⁺, 20), 292 (100). HRMS calcd for C₂₆H₂₃NO₄: 413.1627, Found: 413.1631. HPLC (Chiralcel OD-H, hexane/2-propanol=95/5, 1.0 mL/min, 254 nm) t_r (minor) = 51.8 min, t_r (major) = 71.5 min. A sample of 89% ee by HPLC analysis gave [α]²⁵_D -476 (*c* 1.4, CHCl₃).

Adduct 6aE: A colorless crystal. mp 113-115 °C (hexane/AcOEt). IR (CHCl₃) 1713 cm⁻¹. ¹H NMR (CDCl₃) δ 7.73 (1H, br m), 7.37 (2H, t, *J* = 7.7 Hz), 7.24-7.04 (10H, m), 6.60 (1H, d, *J* = 9.5 Hz), 6.56 (1H, d, *J* = 15.6 Hz), 6.12-6.04 (2H, m), 5.80 (1H, br t, *J* = 6.4 Hz), 2.28 (3H, s). ¹³C NMR (CDCl₃) δ 152.8, 151.1, 137.8, 134.2, 133.6, 132.0, 129.4, 129.2, 127.8, 127.1, 126.5, 125.6, 125.5, 124.6, 124.3, 124.0, 121.7, 55.0, 21.1. Two carbon peaks were missing due to overlapping. MS (EI⁺) m/z: 367 (M⁺, 32), 246 (100). HRMS calcd for C₂₅H₂₁NO₂: 367.1572, Found: 367.1574. Anal. Calcd for C₂₅H₂₁NO₂: C, 81.72; H, 5.76; N, 3.81. Found: C, 81.90; H, 5.94; N, 3.74. HPLC (Chiralcel OD-H, hexane/2-propanol=95/5, 0.5 mL/min, 254 nm) t_r (minor) = 25.6 min, t_r (major) = 30.8 min. A sample of 91% ee by HPLC analysis gave [α]²⁸_D -364 (*c* 1.1, CHCl₃).

Adduct 6aF: Amorphous. IR (CHCl₃) 1712 cm^{-1.} ¹H NMR (CDCl₃) δ 7.74 (1H, br m), 7.50 (2H, d, *J* = 8.3 Hz), 7.42-7.35 (4H, m), 7.27-7.08 (6H, m), 6.65 (1H, d, *J* = 9.5 Hz), 6.60 (1H, d, *J* = 15.9 Hz), 6.23 (1H, dd, *J* = 15.9, 6.7 Hz), 6.10 (1H, dd, *J* = 9.5, 6.1 Hz), 5.84 (1H, br t, *J* = 6.5 Hz). ¹³C NMR (CDCl₃) δ 152.8, 151.0, 139.9, 134.1, 130.6, 129.7 (q, *J* = 32 Hz), 129.5, 128.0, 127.8, 127.0, 126.8, 126.7, 126.1, 125.4 (q, *J* = 4 Hz),

125.2, 124.8, 124.4 (q, J = 271 Hz), 124.3, 121.7, 54.7. One carbon peak was missing due to overlapping. MS (EI⁺) m/z: 421 (M⁺, 58), 328 (100). HRMS calcd for C₂₅H₁₈F₃NO₂: 421.1290, Found: 421.1284. HPLC (Chiralcel OD-H, hexane/2-propanol=95/5, 0.5 mL/min, 254 nm) t_r (minor) = 33.9 min, t_r (major) = 36.3 min. A sample of 95% ee by HPLC analysis gave $[\alpha]^{25}$ _D -396 (*c* 0.71, CHCl₃).

Conversion of the adduct 6aC to (+)-galipinine 7 and characterization data.¹⁾

A suspension of adduct 6aC (80 mg, 0.20 mmol) and 10% Pd-C (120 mg) in MeOH (4 mL) was stirred under a hydrogen atmosphere at 20 °C for 12 h. After the reaction mixture was filtered, the filtrate was concentrated at reduced pressure. Purification of the residue by column chromatography (hexane:AcOEt=10:1) afforded product (79 mg, 98%) as a colorless crystal. mp 119-121 °C (hexane/AcOEt). IR (CHCl₃) 1708 cm⁻¹. ¹H NMR (CDCl₃) & 7.57 (1H, br m), 7.37 (2H, t, *J* = 7.3 Hz), 7.23-7.10 (5H, m), 7.09 (1H, t, *J* = 7.3 Hz), 6.68 (1H, d, *J* = 7.9 Hz, 6.63-6.57 (2H, m), 5.88 (2H, AB q, J = 14.0 Hz), 4.73 (1H, m), 2.78 (2H, m), 2.63 (2H, m), 2.34 (1H, m), 1.91 (1H, m), 1.80-1.60 (2H, m). ¹³C NMR (CDCl₃) δ 153.4, 151.3, 147.6, 145.7, 136.2, 135.5, 129.3, 128.1, 126.2, 125.7, 125.4, 124.8, 121.7, 121.0, 108.8, 108.1, 100.7, 53.2, 34.8, 32.1, 28.6, 24.5. One carbon peak was missing due to overlapping. MS (EI⁺) m/z; 401 (M⁺, 19), 135 (100). HRMS calcd for $C_{25}H_{23}NO_4$: 401.1627, Found: 401.1632. Anal. Calcd for C25H23NO4: C, 74.79; H, 5.77; N, 3.49. Found: C, 74.57; H, 5.56; N, 3.26. HPLC (Chiralcel OD-H, hexane/2-propanol=95/5, 0.5 mL/min, 254 nm) t_r (minor) = 24.7 min, t_r (major) = 26.2 min. A sample of 83% ee by HPLC analysis gave $\left[\alpha\right]_{D}^{28}$ -97.2 (c 2.1, CHCl₃). To a stirred solution of product (39 mg, 0.097 mmol) in dry THF (5 mL) was LiAlH₄ (11 mg, 0.29 mmol) under argon atmosphere at 0 °C for 12 h. After being stirred at the room temperature for 12 h, the reaction mixture was slowly hydrolyzed with water. The solid residue was filtered and washed with diethyl ether. The filtration was dried over Na_2SO_4 and concentrated at reduced pressure. Purification of the residue by column chromatography (hexane:AcOEt=6:1) afforded product 7 (19 mg, 65%) as a colorless oil. IR (CHCl₃) 2940, 1501, 1442 cm⁻¹. ¹H NMR (CDCl₃) δ 7.07 (1H, t, J = 7.3 Hz), 6.97 (1H, d, J = 7.3 Hz), 6.72 (1H, d, J = 7.9 Hz), 6.68 (1H, s), 6.63 (1H, d, J = 7.3 Hz), 6.58 (1H, t, J = 7.3 Hz), 6.52 (1H, d, J = 7.9 Hz), 5.91 (2H, s), 3.26 (1H, m), 2.90 (3H, s), 2.83 (1H, m), 2.72-2.58 (2H, m), 2.50 (1H, m), 1.97-1.83 (3H, m), 1.71 (1H, m). ¹³C NMR (CDCl₃) & 147.7, 145.7, 145.3, 135.9, 128.7, 127.1, 121.8, 121.0, 115.5, 110.7, 108.7, 108.2, 100.8, 58.2, 38.0, 33.1, 32.0, 24.3, 23.5. MS (EI⁺) m/z: 295 (M⁺, 21), 146 (100). HRMS calcd for $C_{19}H_{21}NO_2$: 295.1572, Found: 295.1566. HPLC (Chiralcel OD-H, hexane/2-propanol=95/5, 0.5 mL/min, 254 nm) t_r (major) = 15.3 min, t_r (minor) = 18.1 min. A sample of 83% ee by HPLC analysis gave $\left[\alpha\right]_{D}^{31}$ +24.8 (c 0.8, CHCl₃).

References

1) Rueping, M.; Antonchick, A. P.; Theissmann, T. Angew. Chem. Int. Ed. 2006, 45, 3683.

Copies of ¹H and ¹³C NMR spectrum of all obtained compounds.

Copies of HPLC of 5a-6aF.

