Supporting Information

Novel 7- and 8-Endo 2-Indolylacyl Radical Cyclizations: Efficient Construction of Azepino- and Azocinoindoles

M.-Lluïsa Bennasar,* Tomàs Roca, and Davinia García-Díaz

Laboratory of Organic Chemistry, Faculty of Pharmacy, University of Barcelona, Barcelona 08028, Spain
bennasar@ub.edu

Contents

1. Preparation of the Starting Carboxylic Esters page S2
A. Methyl 3-Alkenylindole-2-carboxylates page S2B. Ethyl 3-(N-Alkenylamino)indole-2-carboxylates page S 5C. Methyl 3-(N-Alkenylaminomethyl)indole-2-carboxylates page S6
2. Preparation of Phenyl Selenoesters page S8
3. Cyclization Reactions page S11
4. NMR Data of Aldehydes page S15

Reaction courses and product mixtures were routinely monitored by TLC on silica gel (precoated F_{254} Merck plates). Drying of organic extracts during the workup of reactions was performed over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvents were evaporated under reduced pressure with a rotary evaporator. Flash chromatography was carried out on SiO_{2} (silica gel 60, $\mathrm{SDS}, 0.04-0.06$ $\mathrm{mm})$. Melting points are uncorrected. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded in CDCl_{3} solution, using TMS as an internal reference.

1. Preparation of the Starting Carboxylic Esters

A. Methyl 3-Alkenylindole-2-carboxylates (E1 and E7).

Methyl 3-(3-Butenyl)-1-(tert-butoxycarbonyl)indole-2-carboxylate (BE1). Allylmagnesium bromide (1 M in $\mathrm{Et}_{2} \mathrm{O}, 4 \mathrm{~mL}, 4.0 \mathrm{mmol}$) was added dropwise to a cooled $\left(-78^{\circ} \mathrm{C}\right)$ solution of $1-$ (tert-butoxycarbonyl)indole-3-carbaldehyde ${ }^{1}(0.75 \mathrm{~g}, 3.06 \mathrm{mmol})$ in anhydrous THF (30 mL) and the resulting mixture was stirred at $-78^{\circ} \mathrm{C}$ for 1 h . The reaction mixture was poured into a saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ solution (50 mL) and extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 40 \mathrm{~mL})$. The organic extracts were concentrated to give the crude carbinol. $\mathrm{Et}_{3} \mathrm{SiH}(0.97 \mathrm{~mL}, 6.12 \mathrm{mmol})$ and TFA $(0.47 \mathrm{~mL}, 6.12 \mathrm{mmol})$ were added to a cooled $\left(0^{\circ} \mathrm{C}\right)$ solution of the above carbinol in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(30 \mathrm{~mL})$. After stirring at $0^{\circ} \mathrm{C}$ for 2 h , the reaction mixture was washed with 2 M aqueous $\mathrm{Na}_{2} \mathrm{CO}_{3}$ solution ($3 \times 20 \mathrm{~mL}$), dried and concentrated. The crude product was chromatographed (98:2 hexanes-AcOEt) to give 1-(tert-butoxycarbonyl)-3-(3-butenyl)indole: $0.55 \mathrm{~g}(67 \%) ;{ }^{1} \mathrm{H}$ NMR (300 MHz) $\delta 1.66(\mathrm{~s}, 9 \mathrm{H}), 2.47(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.78(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 5.02(\mathrm{dq}, J=$ $1.2,1.2,1.2,10.2,1 \mathrm{H}), 5.09(\mathrm{dq}, J=1.5,1.5,1.5,16.8,1 \mathrm{H}), 5.92(\mathrm{~m}, 1 \mathrm{H}), 7.24(\mathrm{~m}, 1 \mathrm{H}), 7.30$ $(\mathrm{m}, 1 \mathrm{H}), 7.37(\mathrm{~s}, 1 \mathrm{H}), 7.52(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.11(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H})$.
n-BuLi (1.6 M in hexane, $2.45 \mathrm{~mL}, 3.93 \mathrm{mmol}$) was added under Ar to a cooled $\left(-78^{\circ} \mathrm{C}\right)$ solution of diisopropylamine $(0.55 \mathrm{~mL}, 3.93 \mathrm{mmol})$ in anhydrous THF (22 mL), and the resulting solution was stirred at $-78^{\circ} \mathrm{C}$ for 30 min . Then, the above 3 -substituted indole $(0.71 \mathrm{~g}$, 2.62 mmol) in anhydrous THF (22 mL) was added, and the resulting red mixture was stirred at $78^{\circ} \mathrm{C}$ for 40 min . Methyl chloroformate $(0.30 \mathrm{~mL}, 3.93 \mathrm{mmol})$ was added, and the mixture was allowed to slowly warm to rt . The reaction mixture was poured into a saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ solution (50 mL) and extracted with $\operatorname{AcOEt}(3 \mathrm{x} 45 \mathrm{~mL}$). The organic extracts were
concentrated. The crude product was chromatographed (98:2 hexanes-AcOEt) to give BE1 as a pale yellow oil: $0.65 \mathrm{~g}(75 \%) ;{ }^{1} \mathrm{H}$ NMR $(300 \mathrm{MHz}) \delta 1.61(\mathrm{~s}, 9 \mathrm{H}), 2.40(\mathrm{q}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.92$ (t, $J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.92(\mathrm{~s}, 3 \mathrm{H}), 4.97(\mathrm{dm}, J=10.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.03(\mathrm{dq}, J=1.8,1.8,1.8,17.1 \mathrm{~Hz}$, $1 \mathrm{H}), 5.85(\mathrm{~m}, 1 \mathrm{H}), 7.28(\mathrm{~m}, 1 \mathrm{H}), 7.40(\mathrm{~m}, 1 \mathrm{H}), 7.58(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.09(\mathrm{~d}, J=8.1 \mathrm{~Hz}$, $1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (75.4 MHz) $\delta 23.9\left(\mathrm{CH}_{2}\right), 27.9\left(\mathrm{CH}_{3}\right), 34.2\left(\mathrm{CH}_{2}\right), 52.0\left(\mathrm{CH}_{3}\right), 84.2(\mathrm{C}), 115.0$ $\left(\mathrm{CH}_{2}\right), 115.2\left(\mathrm{CH}_{2}\right), 120.1(\mathrm{CH}), 122.8(\mathrm{CH}), 126.6(\mathrm{CH}, \mathrm{C}), 126.7(\mathrm{C}), 128.5(\mathrm{C}), 136.7(\mathrm{C})$, $137.6(\mathrm{CH}), 149.3(\mathrm{C}), 163.0(\mathrm{C})$. Anal. Calcd for $\mathrm{C}_{19} \mathrm{H}_{23} \mathrm{NO}_{4}: \mathrm{C}, 69.28 ; \mathrm{H}, 7.04 ; \mathrm{N}, 4.25$. Found: C, 69.50; H, 7.15; N, 4.26.

Methyl 3-(3-Butenyl)-1-methylindole-2-carboxylate (E1). A solution of indole BE1 (0.49 g , $1.50 \mathrm{mmol})$ in TFA (9 mL) was stirred at rt for 2 h . The reaction mixture was concentrated to dryness and the residue was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(25 \mathrm{~mL})$. The organic solution was washed with 2 M aqueous $\mathrm{Na}_{2} \mathrm{CO}_{3}$ solution ($3 \times 20 \mathrm{~mL}$), dried and concentrated to give the crude N unsubstituted indole. A solution of the above indole in anhydrous DMF (6 mL) was added dropwise under Ar to a suspension of $\mathrm{NaH}(1.95 \mathrm{mmol})$ in anhydrous DMF (4 mL). After stirring at rt for 1 h , the mixture was cooled to $0^{\circ} \mathrm{C}$ and $\mathrm{MeI}(0.38 \mathrm{~mL}, 6.0 \mathrm{mmol})$ was added dropwise. The mixture was allowed to warm to rt for 5 h , then was quenched with cold $\mathrm{H}_{2} \mathrm{O}$ (20 $\mathrm{mL})$ and extracted with $\mathrm{AcOEt}(3 \times 20 \mathrm{~mL})$. The organic extracts were washed with $\mathrm{H}_{2} \mathrm{O}(5 \mathrm{x}$ 35 mL), dried and concentrated. The crude product was chromatographed ($9: 1$ hexanes-AcOEt) to give $\mathbf{E 1}$ as an oil: $0.22 \mathrm{~g}(62 \%)$; ${ }^{1} \mathrm{H}$ NMR (300 MHz) $\delta 2.38(\mathrm{q}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.15(\mathrm{~m}$, $2 \mathrm{H}), 3.94(\mathrm{~s}, 3 \mathrm{H}), 4.00(\mathrm{~s}, 3 \mathrm{H}), 4.96(\mathrm{dm}, J=10.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.05(\mathrm{dq}, J=1.8,1.8,1.8 .16 .8 \mathrm{~Hz}$, $1 \mathrm{H}), 5.91(\mathrm{~m}, 1 \mathrm{H}), 7.14(\mathrm{~m}, 1 \mathrm{H}), 7.35(\mathrm{~m}, 2 \mathrm{H}), 7.68(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (75.4 MHz) $\delta 25.1\left(\mathrm{CH}_{2}\right), 32.0\left(\mathrm{CH}_{3}\right), 35.4\left(\mathrm{CH}_{2}\right), 51.3\left(\mathrm{CH}_{3}\right), 110.1(\mathrm{CH}), 114.5\left(\mathrm{CH}_{2}\right), 119.7(\mathrm{CH}), 120.7$ (CH), 124.6 (C), 124.8 (C), 125.2 (CH), 126.5 (C), 138.6 (CH), 138.7 (C), 163.2 (C). Anal. Calcd for: $\mathrm{C}_{15} \mathrm{H}_{17} \mathrm{NO}_{2} \mathrm{C}, 74.05 ; \mathrm{H}, 7.04 ; \mathrm{N}, 5.76$. Found: C, $74.34 ; \mathrm{H}, 6.89 ; \mathrm{N}, 5.31$.

Methyl 1-(tert-Butoxycarbonyl)-3-(4-pentenyl)indole-2-carboxylate (BE7). 4-Bromo-1butene ($1.55 \mathrm{~mL}, 15 \mathrm{mmol}$) was added dropwise at rt to a suspension of magnesium turnings ($0.45 \mathrm{~g}, 18 \mathrm{mmol}$) in anhydrous THF (18 mL), and the mixture was stirred at rt for 2 h .1 -(tert-Butoxycarbonyl)indole-3-carbaldehyde ${ }^{1}(0.75 \mathrm{~g}, 3.06 \mathrm{mmol})$ was dissolved in anhydrous THF $(10 \mathrm{~mL})$ and cooled to $-40^{\circ} \mathrm{C}$. The freshly prepared Grignard reagent was added dropwise to the aldehyde solution and the mixture was allowed to slowly warm to rt for 4 h . The reaction mixture was poured into a saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ solution (50 mL) and extracted with $\mathrm{Et}_{2} \mathrm{O}$ ($3 \times 40 \mathrm{~mL}$). The organic extracts were concentrated to give the crude carbinol. $\mathrm{Et}_{3} \mathrm{SiH}(0.97$ $\mathrm{mL}, 6.12 \mathrm{mmol})$ and TFA $(0.47 \mathrm{~mL}, 6.12 \mathrm{mmol})$ were added to a cooled $\left(0^{\circ} \mathrm{C}\right)$ solution of the above carbinol in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(30 \mathrm{~mL})$. After stirring at $0^{\circ} \mathrm{C}$ for 30 min , the reaction mixture was washed with 2 M aqueous $\mathrm{Na}_{2} \mathrm{CO}_{3}$ solution ($3 \times 20 \mathrm{~mL}$), dried and concentrated. The crude
product was chromatographed (95:5 hexanes-AcOEt) to give 1-(tert-butoxycarbonyl)-3-(4pentenyl)indole: $0.70 \mathrm{~g}(80 \%)$) ${ }^{1} \mathrm{H}$ NMR (300 MHz) $\delta 1.66(\mathrm{~s}, 9 \mathrm{H}), 1.81(\mathrm{~m}, 2 \mathrm{H}), 2.16(\mathrm{q}, J=$ $6.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.69(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 5.02(\mathrm{~m}, 2 \mathrm{H}), 5.86(\mathrm{~m}, 1 \mathrm{H}), 7.22(\mathrm{~m}, 1 \mathrm{H}), 7.30(\mathrm{~m}, 1 \mathrm{H})$, $7.35(\mathrm{~s}, 1 \mathrm{H}), 7.51(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.11(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H})$.
$n-\mathrm{BuLi}(1.6 \mathrm{M}$ in hexane, $1.55 \mathrm{~mL}, 2.48 \mathrm{mmol})$ was added under Ar to a cooled $\left(-78^{\circ} \mathrm{C}\right)$ solution of diisopropylamine ($0.35 \mathrm{~mL}, 2.48 \mathrm{mmol}$) in anhydrous THF (14 mL), and the resulting solution was stirred at $-78^{\circ} \mathrm{C}$ for 30 min . Then, the above 3 -substituted indole $(0.47 \mathrm{~g}$, 1.66 mmol) in anhydrous THF (14 mL) was added, and the resulting red mixture was stirred at $78^{\circ} \mathrm{C}$ for 40 min . Methyl chloroformate ($0.19 \mathrm{~mL}, 2.48 \mathrm{mmol}$) was added, and the mixture was allowed to slowly warm to rt. The reaction mixture was poured into a saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ solution (40 mL) and extracted with AcOEt (3 x 35 mL). The organic extracts were concentrated. The crude product was chromatographed (98:2 hexanes-AcOEt) to give BE7 as a pale yellow oil: $0.35 \mathrm{~g}(62 \%) ;{ }^{1} \mathrm{H}$ NMR (300 MHz) $\delta 1.61(\mathrm{~s}, 9 \mathrm{H}), 1.76(\mathrm{~m}, 2 \mathrm{H}), 2.13(\mathrm{q}, J=6.9$ $\mathrm{Hz}, 2 \mathrm{H}$), 2.84 (t, $J=7.8 \mathrm{~Hz}, 2 \mathrm{H}$), 3.92 (s, 3H), 5.01 (m, 2H), 5.83 (m, 1H), 7.26 (ddd, $J=1.2,6$, $8.1 \mathrm{~Hz}, 1 \mathrm{H}$), 7.40 (ddd, $J=1.2,6.9,8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.58(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 8.08(\mathrm{~d}, J=8.4 \mathrm{~Hz}$, $1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (75.4 MHz) $\delta 23.7\left(\mathrm{CH}_{2}\right), 27.9\left(\mathrm{CH}_{3}\right), 29.3\left(\mathrm{CH}_{2}\right), 33.4\left(\mathrm{CH}_{2}\right), 52.1\left(\mathrm{CH}_{3}\right), 84.2$ (C), $114.8\left(\mathrm{CH}_{2}\right), 115.0(\mathrm{CH}), 120.2(\mathrm{CH}), 122.8(\mathrm{CH}), 126.5(\mathrm{C}), 126.6(\mathrm{CH}), 127.3(\mathrm{C}), 128.6$ (C), 136.8 (C), 138.2 (CH), 149.4 (C), 163.1 (C). Anal. Calcd for $\mathrm{C}_{20} \mathrm{H}_{25} \mathrm{NO}_{4}$: C, 69.95; H, 7.34; N, 4.08. Found: C, 70.07; H, 7.48; N, 4.02.

Methyl 1-Methyl-3-(4-pentenyl)indole-2-carboxylate (E7). A solution of indole BE7 (0.51 g , $1.50 \mathrm{mmol})$ in TFA (9 mL) was stirred at rt for 2 h . The reaction mixture was concentrated to dryness and the residue was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(25 \mathrm{~mL})$. The organic solution was washed with 2 M aqueous $\mathrm{Na}_{2} \mathrm{CO}_{3}$ solution ($3 \times 20 \mathrm{~mL}$), dried and concentrated to give the crude N unsubstituted indole. A solution of the above indole in anhydrous DMF (6 mL) was added dropwise under Ar to a suspension of $\mathrm{NaH}(1.95 \mathrm{mmol})$ in anhydrous DMF (4 mL). After stirring at rt for 1 h , the mixture was cooled to $0^{\circ} \mathrm{C}$ and $\mathrm{MeI}(0.38 \mathrm{~mL}, 6.0 \mathrm{mmol})$ was added dropwise. The mixture was allowed to warm to rt for 5 h , then was quenched with cold $\mathrm{H}_{2} \mathrm{O}$ (20 $\mathrm{mL})$ and extracted with $\mathrm{AcOEt}(3 \times 20 \mathrm{~mL})$. The organic extracts were washed with $\mathrm{H}_{2} \mathrm{O}(5 \mathrm{x}$ 35 mL), dried and concentrated. The crude product was chromatographed ($9: 1$ hexanes-AcOEt) to give $\mathbf{E} 7$ as an oil: $0.30 \mathrm{~g}(78 \%)$; ${ }^{1} \mathrm{H}$ NMR (300 MHz) $\delta 1.97(\mathrm{~m}, 2 \mathrm{H}), 2.37(\mathrm{q}, J=6.6 \mathrm{~Hz}$, $2 \mathrm{H}), 3.30(\mathrm{~m}, 2 \mathrm{H}), 4.14(\mathrm{~s}, 3 \mathrm{H}), 4.20(\mathrm{~s}, 3 \mathrm{H}), 5.23(\mathrm{~m}, 2 \mathrm{H}), 6.09(\mathrm{~m}, 1 \mathrm{H}), 7.35(\mathrm{~m}, 1 \mathrm{H}), 7.55(\mathrm{~m}$, $2 \mathrm{H}), 7.89(\mathrm{dt}, J=1.2,1.2,7.8 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (75.4 MHz) $\delta 24.8\left(\mathrm{CH}_{2}\right), 30.4\left(\mathrm{CH}_{2}\right), 32.0$ $\left(\mathrm{CH}_{3}\right), 33.8\left(\mathrm{CH}_{2}\right), 51.3\left(\mathrm{CH}_{3}\right), 110.0(\mathrm{CH}), 114.5\left(\mathrm{CH}_{2}\right), 119.6(\mathrm{CH}), 120.7(\mathrm{CH}), 124.5(\mathrm{C})$, 125.2 (CH), 125.5 (C), 126.6 (C), 138.8 (CH, C), 163.2 (C). Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{19} \mathrm{NO}_{2}: \mathrm{C}$, 74.68; H, 7.44; N, 5.44. Found: C, 74.44; H, 7.67; N, 5.42.

B. Ethyl 3-(N-Alkenylamino)indole-2-carboxylates (E4a, E4b, and E11)

General Procedure. Methyl chloroformate ($0.38 \mathrm{~mL}, 4.90 \mathrm{mmol}$) in anhydrous THF (5 mL) was added dropwise to a solution of ethyl 3-amino-1-methylindole-2-carboxylate ${ }^{2}$ ($1.0 \mathrm{~g}, 4.59$ $\mathrm{mmol})$ and anhydrous pyridine ($0.85 \mathrm{~mL}, 9.63 \mathrm{mmol}$) in anhydrous THF (15 mL). After stirring at rt for 12 h , the reaction mixture was concentrated and the resulting residue was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(80 \mathrm{~mL})$. The organic solution was washed with 2 N aqueous HCl solution ($2 \times 50 \mathrm{~mL}$), dried and concentrated to give crude methylcarbamate. $\mathrm{Cs}_{2} \mathrm{CO}_{3}(4.48 \mathrm{~g}, 13.77 \mathrm{mmol})$ and TBAI $(5.12 \mathrm{~g}, 13.77 \mathrm{mmol})$ were added to a solution of the above methyl carbamate in anhydrous DMF (50 mL). After stirring at rt for 30 min , the respective alkylbromide (13.77 mmol) was added to the suspension. The reaction mixture was stirred at rt for 5 h , poured into $\mathrm{H}_{2} \mathrm{O}(50 \mathrm{~mL})$ and extracted with AcOEt ($3 \times 70 \mathrm{~mL}$). The combined organic extracts were washed with $\mathrm{H}_{2} \mathrm{O}$ (3 x 50 mL) and brine $(50 \mathrm{~mL})$, dried, and concentrated, and the resulting residue was chromatographed. Eluents, yields, NMR data and elemental analyses are given below.

Ethyl 3-[N-Allyl- N-(methoxycarbonyl)amino]-1-methylindole-2-carboxylate (E4a): alkylating agent, allyl bromide; elution with 6:4 hexanes-AcOEt, oil; yield 78\%; ${ }^{1} \mathrm{H}$ NMR (300 MHz , major rotamer) $\delta 1.39(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}), 3.59(\mathrm{~s}, 3 \mathrm{H}), 4.05(\mathrm{~s}, 3 \mathrm{H}), 4.19$, (m, 1H), 4.36 $(\mathrm{m}, 1 \mathrm{H}), 4.34(\mathrm{q}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 5.05(\mathrm{~m}, 2 \mathrm{H}), 5.95(\mathrm{~m}, 1 \mathrm{H}), 7.18(\mathrm{~m}, 1 \mathrm{H}), 7.38(\mathrm{~m}, 2 \mathrm{H}), 7.56$ $(\mathrm{d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (75.4 MHz , major rotamer) $\delta 14.3\left(\mathrm{CH}_{3}\right), 32.0\left(\mathrm{CH}_{3}\right), 52.9\left(\mathrm{CH}_{3}\right)$, $53.9\left(\mathrm{CH}_{2}\right), 60.8\left(\mathrm{CH}_{2}\right), 110.3(\mathrm{CH}), 117.9\left(\mathrm{CH}_{2}\right), 119.9(\mathrm{CH}), 120.9(\mathrm{CH}), 123.1(\mathrm{C}), 123.5$ (C), $125.5(\mathrm{CH}), 133.6(\mathrm{CH}), 137.2(\mathrm{C}), 156.8(\mathrm{C}), 161.5(\mathrm{C}), \mathrm{C}-2$ not observed. Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{4}$: C, 64.54; H, 6.37; N, 8.85. Found: C, 64.36; H, 6.45; N, 8.71.
Ethyl 3-[N-(2-Bromo-2-propenyl)- N-(methoxycarbonyl)amino]-1-methylindole-2carboxylate (E4b): alkylating agent, 2,3-dibromopropene; elution with 96:4 hexanes-AcOEt, oil; yield 85%; ${ }^{1} \mathrm{H}$ NMR (300 MHz , major rotamer) $\delta 1.39(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}$), $3.62(\mathrm{~s}, 3 \mathrm{H}), 4.06$ $(\mathrm{s}, 3 \mathrm{H}), 4.20(\mathrm{~d}, J=15.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.39(\mathrm{~m}, 2 \mathrm{H}), 4.90(\mathrm{~d}, J=15.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.49(\mathrm{~d}, J=1.5 \mathrm{~Hz}$, $1 \mathrm{H}), 5.70(\mathrm{as}, 1 \mathrm{H}), 7.18(\mathrm{~m}, 1 \mathrm{H}), 7.38(\mathrm{~m}, 2 \mathrm{H}), 7.72(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR (75.4 MHz , major rotamer) $\delta 14.2\left(\mathrm{CH}_{3}\right), 32.0\left(\mathrm{CH}_{3}\right), 53.1\left(\mathrm{CH}_{3}\right), 59.3\left(\mathrm{CH}_{2}\right), 60.9\left(\mathrm{CH}_{2}\right), 110.2(\mathrm{CH})$, $119.9\left(\mathrm{CH}_{2}\right), 120.5(\mathrm{CH}), 120.9(\mathrm{CH}), 122.7(\mathrm{C}), 123.6(\mathrm{C}), 123.7(\mathrm{C}), 125.5(\mathrm{CH}), 128.7(\mathrm{C})$, 137.0 (C), 156.9 (C), 161.2 (C). Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{BrN}_{2} \mathrm{O}_{4}: \mathrm{C}, 51.66 ; \mathrm{H}, 4.85 ; \mathrm{N}, 7.09$. Found: C, 51.43; H, 4.98; N, 7.26.

Ethyl 3-[N-(3-Butenyl)- N-(methoxycarbonyl)amino]-1-methylindole-2-carboxylate (E11): alkylating agent, 4-bromo-1-butene; elution with $9: 1$ hexanes-AcOEt, oil; yield $82 \% ;{ }^{1} \mathrm{H}$ NMR (300 MHz , major rotamer) $\delta 1.39(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 2.35(\mathrm{q}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.58(\mathrm{~s}, 3 \mathrm{H}), 3.64$ $(\mathrm{m}, 1 \mathrm{H}), 3.87(\mathrm{~m}, 1 \mathrm{H}), 4.06(\mathrm{~s}, 3 \mathrm{H}), 4.36,(\mathrm{~m}, 2 \mathrm{H}), 5.01(\mathrm{~m}, 2 \mathrm{H}), 5.73(\mathrm{~m}, 1 \mathrm{H}), 7.19(\mathrm{ddd}, J=$ $2.1,6.3,8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.40(\mathrm{~m}, 2 \mathrm{H}), 7.56(\mathrm{dt}, J=1.2,1.2,7.8 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (75.4 MHz, major rotamer) $\delta 14.3\left(\mathrm{CH}_{3}\right), 31.2\left(\mathrm{CH}_{3}\right), 32.6\left(\mathrm{CH}_{2}\right), 50.7\left(\mathrm{CH}_{2}\right), 52.8\left(\mathrm{CH}_{3}\right), 60.8\left(\mathrm{CH}_{2}\right), 110.4$ $(\mathrm{CH}), 116.4\left(\mathrm{CH}_{2}\right), 119.8(\mathrm{CH}), 120.9(\mathrm{CH}), 122.9(\mathrm{C}), 123.5(\mathrm{C}), 123.7(\mathrm{C}), 125.5(\mathrm{CH}), 135.2$ (CH), 137.2 (C), 156.7 (C), 161.4 (C). Anal. Calcd for $\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{4} \cdot 1 / 4 \mathrm{H}_{2} \mathrm{O}: \mathrm{C}, 64.55 ; \mathrm{H}, 6.77$; $\mathrm{N}, 8.36$. Found: C, 64.33; H, 6.73; $\mathrm{N}, 8.48$.

C. Methyl 3-(N-Alkenylaminomethyl)indole-2-carboxylates

N-Acetyl Derivatives E9, E14a, E18 and E19. General Procedure. A solution of methyl 3-formyl-1-methylindole-2-carboxylate ${ }^{3}(1.0 \mathrm{~g}, 4.61 \mathrm{mmol})$, the respective amine $(9.20 \mathrm{mmol})$, $\mathrm{NaBH}(\mathrm{AcO})_{3}(2.93 \mathrm{~g}, 13.82 \mathrm{mmol})$ and $\mathrm{AcOH}(0.25 \mathrm{~mL}, 4.61 \mathrm{mmol})$ in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(25$ mL) was stirred at rt for 12 h . The reaction mixture was washed with saturated aqueous $\mathrm{Na}_{2} \mathrm{CO}_{3}$ solution ($3 \times 20 \mathrm{~mL}$). The solvent was removed and the resulting residue (crude secondary amine) was dissolved in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(45 \mathrm{~mL})$. Acetyl chloride ($0.39 \mathrm{~mL}, 5.53 \mathrm{mmol}$) and $\mathrm{Et}_{3} \mathrm{~N}(0.70 \mathrm{~mL}, 5.07 \mathrm{mmol})$ were added to the above cooled $\left(0^{\circ} \mathrm{C}\right)$ solution. After stirring at rt until no starting amine was detected by TLC (2-4 h), the reaction mixture was poured into $\mathrm{H}_{2} \mathrm{O}$ $(25 \mathrm{~mL})$ and washed with 2 N aqueous HCl solution ($2 \times 25 \mathrm{~mL}$). The solvent was removed and the crude product was chromatographed. Eluents, yields, NMR data and elemental analyses are given below.

Methyl 3-[N-Acetyl- N-(2-cyclohexenyl)aminomethyl]-1-methylindole-2-carboxylate (E9): amine, 2-cyclohexenylamine; elution with 7:3 hexanes-AcOEt, oil; yield 70\%; ${ }^{1} \mathrm{H}$ NMR (300 $\mathrm{MHz}) \delta 1.45-1.75(\mathrm{~m}, 4 \mathrm{H}), 1.95(\mathrm{~m}, 2 \mathrm{H}), 2.05$ and $2.22(2 \mathrm{~s}, 3 \mathrm{H}), 3.95$ and $4.03(2 \mathrm{~s}, 3 \mathrm{H}), 3.98$ $(\mathrm{s}, 3 \mathrm{H}), 4.31$ and $5.30(2 \mathrm{~m}, 1 \mathrm{H}),[4.92(\mathrm{~d}, J=18.9 \mathrm{~Hz}), 5.03(\mathrm{~d}, J=18.9 \mathrm{~Hz}), 5.12(\mathrm{~d}, J=15.3$ $\mathrm{Hz})$ and $5.35(\mathrm{~d}, J=15.3 \mathrm{~Hz}), 2 \mathrm{H}],[5.30(\mathrm{~m})$ and $5.48(\mathrm{~d}, J=9 \mathrm{~Hz}), 1 \mathrm{H}], 5.65$ and $5.75(2 \mathrm{~m}$,
$1 \mathrm{H}), 7.12(\mathrm{~m}, 1 \mathrm{H}), 7.36(\mathrm{~m}, 2 \mathrm{H}),[7.72(\mathrm{~d}, J=8.4 \mathrm{~Hz})$ and $7.83(\mathrm{~d}, J=7.8 \mathrm{~Hz}), 1 \mathrm{H}],{ }^{13} \mathrm{C}$ NMR $(75.4 \mathrm{MHz}) \delta 21.3$ and $22.0\left(\mathrm{CH}_{2}\right), 22.7$ and $22.8\left(\mathrm{CH}_{3}\right), 24.2$ and $24.6\left(\mathrm{CH}_{2}\right), 27.0$ and 27.9 $\left(\mathrm{CH}_{2}\right), 32.1$ and $32.2\left(\mathrm{CH}_{3}\right), 38.3$ and $44.2\left(\mathrm{CH}_{2}\right), 51.6$ and $55.4(\mathrm{CH}), 51.7\left(\mathrm{CH}_{3}\right), 109.9$ and $110.4(\mathrm{CH}), 120.4$ and $120.9(\mathrm{CH}), 121.0$ and $121.4(\mathrm{C}), 121.6$ and $122.1(\mathrm{CH}), 123.6$ and 124.9 (C), 125.2 and $125.3(\mathrm{CH}), 126.0(\mathrm{C}), 127.7$ and $129.0(\mathrm{CH}), 129.4$ and $131.5(\mathrm{CH}), 138.7$ and 138.8 (C), 162.7 and 162.9 (C), 171.0 and 172.0 (C). Anal. Calcd for $\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{3}: \mathrm{C}, 70.56 ; \mathrm{H}$, 7.11 ; N, 8.23. Found: C, 70.34; H, 7.31; N, 8.02.

Methyl 3-(N-Acetyl- N-allylaminomethyl)-1-methylindole-2-carboxylate (E14a): amine, allylamine; elution with 6:4 hexanes-AcOEt; yield 68%; mp $92-3^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (300 MHz , major rotamer) $\delta 2.13(\mathrm{~s}, 3 \mathrm{H}), 3.75(\mathrm{~m}, 2 \mathrm{H}), 3.92(\mathrm{~s}, 3 \mathrm{H}), 4.01(\mathrm{~s}, 3 \mathrm{H}), 5.05(\mathrm{~m}, 1 \mathrm{H}), 5.16(\mathrm{~m}, 1 \mathrm{H})$, $5.22(\mathrm{~s}, 2 \mathrm{H}), 5.70(\mathrm{~m}, 1 \mathrm{H}), 7.16(\mathrm{~m}, 1 \mathrm{H}), 7.37(\mathrm{~m}, 2 \mathrm{H}), 7.89(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}),{ }^{13} \mathrm{C} \operatorname{NMR}(75.4$ MHz , major rotamer) $\delta 21.5\left(\mathrm{CH}_{3}\right), 32.1\left(\mathrm{CH}_{3}\right), 37.7\left(\mathrm{CH}_{2}\right), 48.4\left(\mathrm{CH}_{2}\right), 51.7\left(\mathrm{CH}_{3}\right), 109.9$ $(\mathrm{CH}), 115.4\left(\mathrm{CH}_{2}\right), 119.1(\mathrm{C}), 120.7(\mathrm{CH}), 121.9(\mathrm{CH}), 125.5(\mathrm{CH}), 126.4(\mathrm{C}), 126.6(\mathrm{C}), 132.9$ (CH), 138.6 (C) 162.7 (C), 170.6 (C). Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{3} \cdot 1 / 4 \mathrm{H}_{2} \mathrm{O}: \mathrm{C}, 66.98 ; \mathrm{H}, 6.78$; N, 9.19. Found: C, 66.72; H, 6.64; N, 9.11.
Methyl 3-[N-Acetyl- N -(2-bromo-2-propenyl)aminomethyl]-1-methylindole-2-carboxylate (E18): amine, 2-bromo-2-propenylamine; ${ }^{4}$ elution with 7:3 hexanes-AcOEt; yield 64\%; mp 65$7^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR (300 MHz , major rotamer) $\delta 2.14(\mathrm{~s}, 3 \mathrm{H}), 3.95(\mathrm{~s}, 3 \mathrm{H}), 3.96(\mathrm{~s}, 2 \mathrm{H}), 4.03(\mathrm{~s}, 3 \mathrm{H})$, $5.22(\mathrm{~s}, 2 \mathrm{H}), 5.63(\mathrm{~m}, 1 \mathrm{H}), 5.70(\mathrm{~m}, 1 \mathrm{H}), 7.18(\mathrm{~m}, 1 \mathrm{H}), 7.37(\mathrm{~m}, 2 \mathrm{H}), 7.88(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR $\left(75.4 \mathrm{MHz}\right.$, major rotamer) $\delta 21.4\left(\mathrm{CH}_{3}\right), 32.2\left(\mathrm{CH}_{3}\right), 37.6\left(\mathrm{CH}_{2}\right), 51.8\left(\mathrm{CH}_{2}\right), 53.7$ $\left(\mathrm{CH}_{3}\right), 110.0(\mathrm{CH}), 115.5\left(\mathrm{CH}_{2}\right), 118.2(\mathrm{C}), 120.9(\mathrm{CH}), 121.9(\mathrm{CH}), 125.6(\mathrm{CH}), 125.7(\mathrm{C})$, 126.8 (C), 128.5 (C), 138.7 (C) 162.6 (C), 170.7 (C). Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{BrN}_{2} \mathrm{O}_{3} \cdot 1 / 4 \mathrm{H}_{2} \mathrm{O}: \mathrm{C}$, 53.21; H, 5.12; N, 7.30. Found: C, 53.04; H, 4.89; N, 7.23.

Methyl 3-[N-Acetyl-N-(2-methyl-2-propenyl)aminomethyl]-1-methylindole-2-carboxylate (E19): amine, 2-methyl-2-propenylamine; elution with $1: 1$ hexanes-AcOEt; yield 65%; mp $90-$ $1^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR (300 MHz , major rotamer) $\delta 1.65(\mathrm{~s}, 3 \mathrm{H}), 2.09(\mathrm{~s}, 3 \mathrm{H}), 3.60(\mathrm{~s}, 2 \mathrm{H}), 3.89(\mathrm{~s}, 3 \mathrm{H})$, $4.01(\mathrm{~s}, 3 \mathrm{H}), 4.78(\mathrm{~s}, 1 \mathrm{H}), 4.93(\mathrm{~s}, 1 \mathrm{H}), 5.20(\mathrm{~s}, 2 \mathrm{H}), 7.16(\mathrm{~m}, 1 \mathrm{H}), 7.37(\mathrm{~m}, 2 \mathrm{H}), 7.90(\mathrm{~d}, J=8.1$ $\mathrm{Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (75.4 MHz , major rotamer) $\delta 20.2\left(\mathrm{CH}_{3}\right), 21.3\left(\mathrm{CH}_{3}\right), 32.1\left(\mathrm{CH}_{3}\right), 37.7$ $\left(\mathrm{CH}_{2}\right), 51.2\left(\mathrm{CH}_{2}\right), 51.5\left(\mathrm{CH}_{3}\right), 109.4\left(\mathrm{CH}_{2}\right), 109.9(\mathrm{CH}), 119.1(\mathrm{C}), 120.7(\mathrm{CH}), 121.9(\mathrm{CH})$, 125.5 (CH), 126.4 (C), 126.7 (C), 138.6 (C), 139.9 (C), 162.7 (C), 170.8 (C). Anal. Calcd for $\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{3}: \mathrm{C}, 68.77 ; \mathrm{H}, 7.05 ; \mathrm{N}, 8.91$. Found: C, $68.41 ; \mathrm{H}, 6.93 ; \mathrm{N}, 8.84$.

Methyl 3-(N-Allyl-N-tert-butoxycarbonylaminomethyl)-1-methylindole-2-carboxylate (E14b). Methyl 3-formyl-1-methylindole-2-carboxylate ($1.0 \mathrm{~g}, 4.61 \mathrm{mmol}$) was allowed to react as above with allylamine ($0.69 \mathrm{~mL}, 9.20 \mathrm{mmol})$. (Boc$)_{2} \mathrm{O}(1.31 \mathrm{~g}, 5.95 \mathrm{mmol}), \mathrm{Et}_{3} \mathrm{~N}(0.64 \mathrm{~mL}$, $4.61 \mathrm{mmol})$ and DMAP ($0.14 \mathrm{~g}, 1.14 \mathrm{mmol}$) were added to the crude amine in anhydrous
$\mathrm{CH}_{2} \mathrm{Cl}_{2}(40 \mathrm{~mL})$. After stirring at rt for 5 h , the reaction mixture was poured into $\mathrm{H}_{2} \mathrm{O}(25 \mathrm{~mL})$ and washed with 2 N aqueous HCl solution $(2 \times 25 \mathrm{~mL})$. The solvent was removed and the crude product was chromatographed (95:5 hexanes-AcOEt) to give E14b ($1.17 \mathrm{~g}, 71 \%$ yield); $\operatorname{mp} 98-100{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $(300 \mathrm{MHz}) \delta 1.50(\mathrm{br} \mathrm{s}, 9 \mathrm{H}), 3.63(\mathrm{br} \mathrm{m}, 2 \mathrm{H}), 3.92(\mathrm{~s}, 3 \mathrm{H}), 4.01(\mathrm{~s}, 3 \mathrm{H})$, $5.01(\mathrm{~m}, 2 \mathrm{H}), 5.03(\mathrm{~s}, 2 \mathrm{H}), 5.69(\mathrm{~m}, 1 \mathrm{H}), 7.15(\mathrm{~m}, 1 \mathrm{H}), 7.37(\mathrm{~m}, 2 \mathrm{H}), 7.88(\mathrm{br} \mathrm{m}, 1 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR $(75.4 \mathrm{MHz}) \delta 28.4\left(\mathrm{CH}_{3}\right), 32.1\left(\mathrm{CH}_{3}\right), 39.4$ and $41.0\left(\mathrm{CH}_{2}\right), 47.2\left(\mathrm{CH}_{2}\right), 51.6\left(\mathrm{CH}_{3}\right), 79.4(\mathrm{C})$, $110.0(\mathrm{CH}), 115.2\left(\mathrm{CH}_{2}\right), 119.7(\mathrm{C}), 120.4(\mathrm{CH}), 121.8(\mathrm{CH}), 125.3(\mathrm{CH}), 126.3(\mathrm{C}), 126.5(\mathrm{C})$, $134.0(\mathrm{CH}), 138.7(\mathrm{C}), 155.5(\mathrm{C}), 162.9(\mathrm{C})$. Anal. Calcd for $\mathrm{C}_{20} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{4}: \mathrm{C}, 67.02 ; \mathrm{H}, 7.31$; N, 7.82. Found: C, 67.23; H, 7.36; N, 7.76.

2. Preparation of Phenyl Selenoesters

General Procedure. A solution of the respective carboxylic ester (1.0 mmol) and $\mathrm{LiOH} \cdot \mathrm{H}_{2} \mathrm{O}$ $(50 \mathrm{mg}, 1.20 \mathrm{mmol})$ in a $3: 1$ mixture of $\mathrm{THF}-\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$ was stirred at $65^{\circ} \mathrm{C}$ for 5 h . The reaction mixture was concentrated and acidified with aqueous 1 N HCl solution. The precipitated carboxylic acid was collected by filtration. When no solid appeared, the solution was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 15 \mathrm{~mL})$, and the combined organic extracts were dried and concentrated. A suspension of the carboxylic acid (1.0 mmol) in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(7 \mathrm{~mL})$ was treated with $\mathrm{Et}_{3} \mathrm{~N}(0.27 \mathrm{~mL}, 2.0 \mathrm{mmol})$. After 15 min at rt , the mixture was concentrated under reduced pressure to give the respective triethylammonium salt. In another flask, tributylphosphine $(1.22 \mathrm{~mL}, 5.0 \mathrm{mmol})$ was added under Ar to a solution of $\mathrm{PhSeCl}(0.96 \mathrm{~g}, 5.0$ mmol) in anhydrous THF (7 mL), and the mixture was stirred at rt for 10 min (yellow solution). The above triethylammonium salt in THF (7 mL) was added to this solution and the resulting mixture was stirred overnight. The reaction mixture was partitioned between $\mathrm{Et}_{2} \mathrm{O}(25 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(25 \mathrm{~mL})$ and extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \mathrm{x} 15 \mathrm{~mL})$. The solvent was removed and the crude product was purified. Method of purification, yields, NMR data and elemental analyses are given below.
Se-Phenyl 1-Methyl-3-(3-butenyl)indole-2-carboselenoate (1): flash chromatography (9:1 hexanes-AcOEt); yield 75%; mp $63-5^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (300 MHz) $\delta 2.56(\mathrm{q}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}$), 3.36 $(\mathrm{m}, 2 \mathrm{H}), 3.86(\mathrm{~s}, 3 \mathrm{H}), 5.05(\mathrm{dm}, J=10.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.17(\mathrm{dq}, J=1.8,1.8,1.8,17.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.01$ $(\mathrm{m}, 1 \mathrm{H}), 7.16(\mathrm{~m}, 1 \mathrm{H}), 7.31(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.37(\mathrm{~m}, 1 \mathrm{H}), 7.44(\mathrm{~m}, 3 \mathrm{H}), 7.63(\mathrm{~m}, 2 \mathrm{H}), 7.70$ $(\mathrm{d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}(75.4 \mathrm{MHz}) \delta 25.4\left(\mathrm{CH}_{2}\right), 32.3\left(\mathrm{CH}_{3}\right), 35.9\left(\mathrm{CH}_{2}\right), 110.3(\mathrm{CH})$, $115.2\left(\mathrm{CH}_{2}\right), 120.2(\mathrm{CH}), 121.1(\mathrm{CH}), 123.5(\mathrm{C}), 126.0(\mathrm{CH}), 126.2(\mathrm{C}), 126.8(\mathrm{C}), 129.1(\mathrm{CH})$, 129.4 (CH), 133.3 (C), 136.3 (CH), 137.9 (CH), 138.7 (C), 185.4 (C). Anal. Calcd for $\mathrm{C}_{20} \mathrm{H}_{19}$ NOSe. $1 / 2 \mathrm{H}_{2} \mathrm{O}: \mathrm{C}, 63.66 ; \mathrm{H}, 5.34$; N, 3.71. Found: C, 63.77 ; H, 5.17; N, 3.44.

Se-Phenyl 3-[N-Allyl- N-(methoxycarbonyl)amino]-1-methylindole-2-carboselenoate (4a):
flash chromatography ($8: 2$ hexanes-AcOEt), oil; yield 68%; ${ }^{1} \mathrm{H}$ NMR (300 MHz) $\delta 3.71$ (br s, $3 \mathrm{H}), 3.95(\mathrm{~s}, 3 \mathrm{H}), 4.08(\mathrm{~m}, 1 \mathrm{H}), 4.77(\mathrm{~m}, 1 \mathrm{H}), 5.10(\mathrm{dm}, J=10.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.14(\mathrm{dq}, J=1.5,1.5$, $1.5,16.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.09(\mathrm{~m}, 1 \mathrm{H}), 7.18(\mathrm{ddd}, J=1.5,6,7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.35-7-45(\mathrm{~m}, 5 \mathrm{H}), 7.55-7.65$ (m, 3H); ${ }^{13} \mathrm{C}$ NMR $(75.4 \mathrm{MHz}) \delta 32.4\left(\mathrm{CH}_{3}\right), 53.4\left(\mathrm{CH}_{3}\right), 54.7\left(\mathrm{CH}_{2}\right), 110.5(\mathrm{CH}), 119.2\left(\mathrm{CH}_{2}\right)$, $120.5(\mathrm{CH}), 121.3(\mathrm{CH}), 123.7(\mathrm{C}), 124.4(\mathrm{C}), 125.7(\mathrm{C}), 126.6(\mathrm{CH}), 129.2(\mathrm{CH}), 129.3(\mathrm{CH})$, 129.8 (C), $133.0(\mathrm{CH}), 136.5(\mathrm{CH}), 137.2$ (C), 156.3 (C), 187.3 (C). Anal. Calcd for $\mathrm{C}_{21} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{Se}: \mathrm{C}, 59.02 ; \mathrm{H}, 4.72$; N, 6.56. Found: C, 58.67 ; H, 4.79; N, 6.35.
$\boldsymbol{S e}$-Phenyl $\quad 3$-[\boldsymbol{N}-(2-Bromo-2-propenyl)- \boldsymbol{N}-(methoxycarbonyl)amino]-1-methylindole-2carboselenoate (4b): flash chromatography ($9: 1$ hexanes-AcOEt), oil; yield $60 \% ;{ }^{1} \mathrm{H}$ NMR $(300 \mathrm{MHz}) \delta 3.76$ and $3.95(2 \mathrm{~s}, 3 \mathrm{H}), 3.93(\mathrm{~s}, 3 \mathrm{H}), 4.23(\mathrm{br} \mathrm{d}, J=12.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.24(\mathrm{br} \mathrm{d}, J=$ $14.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.49(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.70(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.20(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.37(\mathrm{~m}, 2 \mathrm{H})$, $7.45(\mathrm{~m}, 3 \mathrm{H}), 7.60(\mathrm{~m}, 2 \mathrm{H}), 7.80(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $(75.4 \mathrm{MHz}) \delta 32.3\left(\mathrm{CH}_{3}\right), 53.7$ $\left(\mathrm{CH}_{3}\right), 60.0\left(\mathrm{CH}_{2}\right), 110.4(\mathrm{CH}), 121.1(\mathrm{CH}), 121.3(\mathrm{CH}), 121.7\left(\mathrm{CH}_{2}\right), 123.6(\mathrm{C}), 124.1(\mathrm{C})$, 125.3 (C), $126.6(\mathrm{CH}), 128.1(\mathrm{C}), 129.1(\mathrm{C}), 129.3(\mathrm{CH}), 129.4(\mathrm{CH}), 136.4(\mathrm{CH}), 137.0(\mathrm{C})$, 156.4 (C), 184.5 (C). Anal. Calcd for $\mathrm{C}_{21} \mathrm{H}_{19} \mathrm{BrN}_{2} \mathrm{O}_{3} \mathrm{Se}$: C, 49.82; H, 3.78; N, 5.53. Found: 49.75; H, 3.86; N, 5.32.

Se-Phenyl 1-Methyl-3-(4-pentenyl)indole-2-carboselenoate (7): flash chromatography (hexanes); yield $77 \% ; \operatorname{mp} 60-1^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H} \operatorname{NMR}(300 \mathrm{MHz}) \delta 1.92(\mathrm{~m}, 2 \mathrm{H}), 2.27(\mathrm{q}, J=7.2 \mathrm{~Hz}$, $2 \mathrm{H}), 3.26(\mathrm{~m}, 2 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H}), 5.02(\mathrm{dq}, J=2.1,2.1,2.1,10.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.09(\mathrm{dq}, J=2.1,2.1$, $2.1,17.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.92(\mathrm{~m}, 1 \mathrm{H}), 7.15(\mathrm{~m}, 1 \mathrm{H}), 7.34(\mathrm{~m}, 2 \mathrm{H}), 7.45(\mathrm{~m}, 3 \mathrm{H}), 7.63(\mathrm{~m}, 2 \mathrm{H}), 7.69$ $(\mathrm{dt}, J=0.9,0.9,8.1 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}(75.4 \mathrm{MHz}) \delta 25.4\left(\mathrm{CH}_{2}\right), 31.0\left(\mathrm{CH}_{2}\right), 32.3\left(\mathrm{CH}_{3}\right), 34.0$ $\left(\mathrm{CH}_{2}\right), 110.3(\mathrm{CH}), 115.0\left(\mathrm{CH}_{2}\right), 120.1(\mathrm{CH}), 121.1(\mathrm{CH}), 124.3(\mathrm{C}), 126.0(\mathrm{CH}), 126.3(\mathrm{C})$, $126.8(\mathrm{C}), 129.1(\mathrm{CH}), 129.4(\mathrm{CH}), 133.2(\mathrm{C}), 136.3(\mathrm{CH}), 138.3(\mathrm{CH}), 138.8(\mathrm{C}), 185.4(\mathrm{C})$. Anal. Calcd for $\mathrm{C}_{21} \mathrm{H}_{21} \mathrm{NOSe}: ~ \mathrm{C}, 65.97 ; \mathrm{H}, 5.54 ; \mathrm{N}, 3.66$. Found: C, 66.08; H, 5.72; N, 3.48.

Se-Phenyl 3-[N-Acetyl- N-(2-cyclohexenyl)aminomethyl]-1-methylindole-2-carboselenoate (9): flash chromatography ($7: 3$ hexanes-AcOEt); yield 77%; mp $105-7{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (300 MHz) $\delta 1.51(\mathrm{~m}, 1 \mathrm{H}), 1.71(\mathrm{~m}, 2 \mathrm{H}), 1.85-2.0(\mathrm{~m}, 3 \mathrm{H}), 2.12$ and $2.23(2 \mathrm{~s}, 3 \mathrm{H}), 3.85$ and $3.96(2 \mathrm{~s}, 3 \mathrm{H})$, 4.31 and $5.27(2 \mathrm{br} \mathrm{m}, 1 \mathrm{H}),[5.00(\mathrm{~d}, J=18.9 \mathrm{~Hz}), 5.09(\mathrm{~d}, J=18.9 \mathrm{~Hz}), 5.27(\mathrm{~d}, J=15.3 \mathrm{~Hz})$ and $5.50(\mathrm{~d}, J=15.3 \mathrm{~Hz}), 2 \mathrm{H}], 5.27$ and $5.49(2 \mathrm{~m}, 1 \mathrm{H}), 5.63$ and $5.79(2 \mathrm{~m}, 1 \mathrm{H}), 7.15(\mathrm{t}, J=7.8 \mathrm{~Hz}$, $1 \mathrm{H}), 7.35(\mathrm{~m}, 2 \mathrm{H}), 7.47(\mathrm{~m}, 3 \mathrm{H}), 7.62(\mathrm{~m}, 2 \mathrm{H}),[7.74(\mathrm{~d}, J=8.1 \mathrm{~Hz})$ and $7.84(\mathrm{~d}, J=8.1 \mathrm{~Hz})$, $1 \mathrm{H}] ;{ }^{13} \mathrm{C}$ NMR $(75.4 \mathrm{MHz}) \delta 21.3$ and $21.9\left(\mathrm{CH}_{2}\right), 22.6$ and $23.0\left(\mathrm{CH}_{3}\right), 24.2$ and $24.6\left(\mathrm{CH}_{2}\right)$, 27.0 and $28.1\left(\mathrm{CH}_{2}\right), 32.5$ and $33.1\left(\mathrm{CH}_{3}\right), 38.1$ and $43.8\left(\mathrm{CH}_{2}\right), 52.3$ and $55.9(\mathrm{CH}), 110.5$ and $111.1(\mathrm{CH}), 119.3$ and $119.4(\mathrm{C}), 121.3$ and $121.7(\mathrm{CH}), 122.3$ and $122.8(\mathrm{CH}), 125.6$ and 126.2 $(\mathrm{C}), 126.1$ and $126.3(\mathrm{CH}), 126.7$ and $126.8(\mathrm{C}), 128.0$ and $128.9(\mathrm{CH}), 129.7(\mathrm{CH}), 129.9$ $(\mathrm{CH}), 130.5$ and $132.1(\mathrm{CH}), 133.7$ and $135.8(\mathrm{C}), 136.2$ and $136.5(\mathrm{CH}), 138.9$ and $139.4(\mathrm{C})$, 171.5 and 172.2 (C), 186.0 and 187.0 (C). Anal. Calcd for $\mathrm{C}_{25} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{Se} \cdot 1 / 2 \mathrm{H}_{2} \mathrm{O}: \mathrm{C}, 63.29$; H ,
5.74; N, 5.90. Found: C, 63.43; H, 5.61; N, 5.80.

Se-Phenyl 3-[N-(3-Butenyl)- N-(methoxycarbonyl)amino]-1-methylindole-2-carboselenoate (11): flash chromatography ($8: 2$ hexanes-AcOEt); yield 71%; mp $143-4{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (300 $\mathrm{MHz}) \delta 2.47(\mathrm{~m}, 2 \mathrm{H}), 3.52(\mathrm{~m}, 1 \mathrm{H}), 3.71(\mathrm{~s}, 3 \mathrm{H}), 3.96(\mathrm{~s}, 3 \mathrm{H}), 4.26(\mathrm{~m}, 1 \mathrm{H}), 5.06(\mathrm{~m}, 2 \mathrm{H}), 5.78$ $(\mathrm{m}, 1 \mathrm{H}), 7.21(\mathrm{ddd}, J=1.5,6.6,8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.45(\mathrm{~m}, 3 \mathrm{H}), 7.60(\mathrm{~m}, 5 \mathrm{H}),{ }^{13} \mathrm{C} \operatorname{NMR}(75.4 \mathrm{MHz})$ $\delta 32.4\left(\mathrm{CH}_{3}\right), 32.9\left(\mathrm{CH}_{2}\right), 51.7\left(\mathrm{CH}_{2}\right), 53.4\left(\mathrm{CH}_{3}\right), 110.6(\mathrm{CH}), 116.8\left(\mathrm{CH}_{2}\right), 120.2(\mathrm{CH}), 121.5$ $(\mathrm{CH}), 123.9(\mathrm{C}), 124.5(\mathrm{C}), 125.6(\mathrm{C}), 126.6(\mathrm{CH}), 129.2(\mathrm{CH}), 129.3(\mathrm{CH}), 129.7(\mathrm{C}), 134.7$ $(\mathrm{CH}), 137.2(\mathrm{C}), 136.5(\mathrm{CH}), 1.156 .3(\mathrm{C}), 184.4(\mathrm{C})$. Anal. Calcd for $\mathrm{C}_{22} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{Se}: \mathrm{C}, 59.87$; H, 5.02; N, 6.35. Found: 59.88; H, 4.83; N, 6.22.
Se-Phenyl 3-(N-Acetyl- N-allylaminomethyl)-1-methylindole-2-carboselenoate (14a): crystallization on standing in the fridge, then washed with hexanes; yield $85 \% ; \mathrm{mp} 120-2^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (300 MHz , major rotamer) $\delta 2.14(\mathrm{~s}, 3 \mathrm{H}), 3.73(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 3.87(\mathrm{~s}, 3 \mathrm{H}), 5.13(\mathrm{~m}, 2 \mathrm{H}), 5.32$ $(\mathrm{s}, 2 \mathrm{H}), 5.70(\mathrm{~m}, 1 \mathrm{H}), 7.19(\mathrm{~m}, 1 \mathrm{H}), 7.38(\mathrm{~m}, 2 \mathrm{H}), 7.47(\mathrm{~m}, 3 \mathrm{H}), 7.61(\mathrm{~m}, 2 \mathrm{H}), 7.86(\mathrm{~d}, J=8.4$ $\mathrm{Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (75.4 MHz, major rotamer) $\delta 21.5\left(\mathrm{CH}_{3}\right), 32.1\left(\mathrm{CH}_{3}\right), 38.0\left(\mathrm{CH}_{2}\right), 48.6$ $\left(\mathrm{CH}_{2}\right), 110.1(\mathrm{CH}), 116.4\left(\mathrm{CH}_{2}\right), 117.1(\mathrm{C}), 121.0(\mathrm{CH}), 122.1(\mathrm{CH}), 125.8(\mathrm{CH}), 126.1(\mathrm{C})$, $126.4(\mathrm{C}), 129.3(\mathrm{CH}), 129.5(\mathrm{CH}), 132.6(\mathrm{CH}), 135.8(\mathrm{CH}), 136.4(\mathrm{C}), 138.3(\mathrm{C}), 170.7(\mathrm{C})$, 187.2 (C). Anal. Calcd for $\mathrm{C}_{22} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{Se} \cdot 1 / 2 \mathrm{H}_{2} \mathrm{O}$: C, 60.83 ; H, 5.34; N, 6.45. Found: C, 60.83; H, 5.06; N, 6.37.
Se-Phenyl 3-(N-Allyl- N-tert-butoxycarbonylaminomethyl)-1-methylindole-2carboselenoate (14b): flash chromatography ($9: 1$ hexanes-AcOEt); yield 76%; mp $102-3^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (300 MHz) $\delta 1.52(\mathrm{~s}, 9 \mathrm{H}), 3.63(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 3.86(\mathrm{~s}, 3 \mathrm{H}), 5.03(\mathrm{~m}, 2 \mathrm{H}), 5.16(\mathrm{~s}, 2 \mathrm{H}), 5.69$ $(\mathrm{m}, 1 \mathrm{H}), 7.17(\mathrm{~m}, 1 \mathrm{H}), 7.36(\mathrm{~m}, 2 \mathrm{H}), 7.46(\mathrm{~m}, 3 \mathrm{H}), 7.60(\mathrm{~m}, 2 \mathrm{H}), 7.88(\mathrm{br} \mathrm{s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (75.4 $\mathrm{MHz}) \delta 28.5\left(\mathrm{CH}_{3}\right), 32.0\left(\mathrm{CH}_{3}\right), 39.6\left(\mathrm{CH}_{2}\right), 47.3\left(\mathrm{CH}_{2}\right), 79.7(\mathrm{C}), 110.1(\mathrm{CH}), 116.1\left(\mathrm{CH}_{2}\right)$, $117.1(\mathrm{C}), 120.8(\mathrm{CH}), 122.0(\mathrm{CH}), 125.7(\mathrm{CH}), 126.3(\mathrm{C}), 126.5(\mathrm{C}), 129.3(\mathrm{CH}), 129.5(\mathrm{CH})$, $133.7(\mathrm{CH}), 135.9(\mathrm{CH}, \mathrm{C}), 138.4(\mathrm{C}), 155.5(\mathrm{C}), 187.0(\mathrm{C})$. Anal. Calcd for $\mathrm{C}_{25} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{Se}: \mathrm{C}$, 62.11; H, 5.84; N, 5.79. Found: C, 62.13; H, 5.86; N, 5.72.

Se-Phenyl 3-[N-Acetyl- N-(2-bromo-2-propenyl)aminomethyl]-1-methylindole-2carboselenoate (18): flash chromatography ($8: 2$ hexanes-AcOEt); yield 85%; mp $93-5^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR (300 MHz , major rotamer) $\delta 2.18(\mathrm{~s}, 3 \mathrm{H}), 3.87(\mathrm{~s}, 3 \mathrm{H}), 3.93(\mathrm{~s}, 2 \mathrm{H}), 5.36(\mathrm{~s}, 2 \mathrm{H}), 5.60(\mathrm{~m}$, $1 \mathrm{H}), 5.67(\mathrm{~m}, 1 \mathrm{H}), 7.18(\mathrm{ddd}, J=1.2,6.6,8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.37(\mathrm{~m}, 2 \mathrm{H}), 7.46(\mathrm{~m}, 2 \mathrm{H}), 7.62(\mathrm{~m}$, $3 \mathrm{H}), 7.82(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (75.4 MHz , major rotamer) $\delta 21.6\left(\mathrm{CH}_{3}\right), 32.1\left(\mathrm{CH}_{3}\right)$, $37.8\left(\mathrm{CH}_{2}\right), 53.8\left(\mathrm{CH}_{2}\right), 110.2(\mathrm{CH}), 115.5(\mathrm{C}), 117.4\left(\mathrm{CH}_{2}\right), 121.2(\mathrm{CH}), 121.8(\mathrm{CH}), 125.9$ $(\mathrm{CH}), 126.0(\mathrm{C}), 126.3(\mathrm{C}), 128.3(\mathrm{C}), 129.4(\mathrm{CH}), 129.5(\mathrm{CH}), 135.9(\mathrm{CH}), 136.5(\mathrm{C}), 138.3$ (C) 170.8 (C), 187.2 (C). Anal. Calcd for $\mathrm{C}_{22} \mathrm{H}_{21} \mathrm{BrN}_{2} \mathrm{O}_{2} \mathrm{Se}: \mathrm{C}, 52.40$; H, 4.20; N, 5.56. Found: C, 52.38; H, 4.16; N, 5.45 .

Se-Phenyl $\quad 3$-[N-Acetyl- N-(2-methyl-2-propenyl)aminomethyl]-1-methylindole-2-
carboselenoate (19): flash chromatography ($75: 25$ hexanes-AcOEt); yield 72%; mp 109-11 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR (300 MHz , major rotamer) $\delta 1.64(\mathrm{~s}, 3 \mathrm{H}), 2.11(\mathrm{~s}, 3 \mathrm{H}), 3.58(\mathrm{~s}, 2 \mathrm{H}), 3.86(\mathrm{~s}, 3 \mathrm{H}), 4.80$ $(\mathrm{s}, 1 \mathrm{H}), 4.94(\mathrm{~s}, 1 \mathrm{H}), 5.34(\mathrm{~s}, 2 \mathrm{H}), 7.18(\mathrm{~m}, 1 \mathrm{H}), 7.35(\mathrm{~m}, 2 \mathrm{H}), 7.45(\mathrm{~m}, 3 \mathrm{H}), 7.59(\mathrm{~m}, 2 \mathrm{H}), 7.87$ (d, $J=7.8 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (75.4 MHz , major rotamer) $\delta 20.2\left(\mathrm{CH}_{3}\right), 21.4\left(\mathrm{CH}_{3}\right), 32.0\left(\mathrm{CH}_{3}\right)$, $38.1\left(\mathrm{CH}_{2}\right), 51.5\left(\mathrm{CH}_{2}\right), 110.0(\mathrm{CH}), 110.5\left(\mathrm{CH}_{2}\right), 116.4(\mathrm{C}), 121.0(\mathrm{CH}), 122.1(\mathrm{CH}), 125.8$ (CH), 126.2 (C), 126.4 (C), $129.5(\mathrm{CH}), 129.6(\mathrm{CH}), 135.8(\mathrm{CH}), 136.4$ (C), 138.3 (C), 139.8 (C), 171.0 (C), 187.3 (C). Anal. Calcd for $\mathrm{C}_{23} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{Se}: \mathrm{C}, 62.87 ; \mathrm{H}, 5.51 ; \mathrm{N}, 6.38$. Found: C, 62.84; H, 5.30; N, 6.21.

3. Cyclization Reactions

General Procedure. $n-\mathrm{Bu}_{3} \mathrm{SnH}(0.16 \mathrm{~mL}, 0.60 \mathrm{mmol})$ and $\mathrm{Et}_{3} \mathrm{~B}(1 \mathrm{M}$ in hexanes, 0.60 mmol$)$ were added to a solution of the respective phenyl selenoester (0.30 mmol , previously dried azeotropically with anhydrous $\mathrm{C}_{6} \mathrm{H}_{6}$) in anhydrous $\mathrm{C}_{6} \mathrm{H}_{6}$ (see the hydride concentration below). The reaction mixture was stirred at rt for 2-7 h with constant supply of dry air provided by passing compressed air through a short tube of Drierite. The reaction mixture was concentrated. The residue was eluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ through a $\mathrm{KF} / \mathrm{SiO}_{2}$ column to remove tin impurities ${ }^{5}$ (workup A). Alternatively, the residue was partitioned between hexanes (15 mL) and acetonitrile (15 mL), and the polar layer was washed with hexanes ($3 \times 15 \mathrm{~mL}$) (workup B). The solvent was removed, and the crude product was chromatographed. Hydride concentration, eluents, yields, NMR data, elemental analyses and HRMS are given below.

From selenoester 1: concn 0.07 M ; workup A; 95:5 hexanes-AcOEt

2,9-Dimethyl-2,3,4,9-tetrahydrocarbazol-1-one (2): yield 62%; mp $74-5^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR (300 $\mathrm{MHz}) \delta 1.29(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.98(\mathrm{~m}, 1 \mathrm{H}), 2.30(\mathrm{dddd}, J=3.9,4.5,4.8,13.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.68$ (m, 1H), 2.98 (ddd, $J=4.5,9.6,16.8 \mathrm{~Hz}, 1 \mathrm{H}$), 3.11 (ddd, $J=4.5,4.8,16.8 \mathrm{~Hz}, 1 \mathrm{H}$), 4.07 (s, $3 \mathrm{H}), 7.14(\mathrm{~m}, 1 \mathrm{H}), 7.37(\mathrm{~m}, 2 \mathrm{H}), 7.65(\mathrm{dt}, J=0.9,0.9,8.1 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100.6 MHz) δ $15.3\left(\mathrm{CH}_{3}\right), 20.7\left(\mathrm{CH}_{2}\right), 31.5\left(\mathrm{CH}_{3}\right), 32.8\left(\mathrm{CH}_{2}\right), 43.2(\mathrm{CH}), 110.2(\mathrm{CH}), 119.9(\mathrm{CH}), 121.2$ (CH), 124.6 (C), 126.4 (CH), 128.5 (C), 130.1 (C), 139.8 (C), 195.2 (C). Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{15} \mathrm{NO}: \mathrm{C}, 78.84 ; \mathrm{H}, 7.04$; N, 6.57. Found: C, 78.65; H, 7.18; N, 6.35.
5-Methyl-7,8,9,10-tetrahydro-5H-cyclohepta[b]indol-6-one (3): ${ }^{6}$ yield $11 \% ;{ }^{1} \mathrm{H}$ NMR (300 $\mathrm{MHz}) \delta 1.94(\mathrm{~m}, 4 \mathrm{H}), 2.82(\mathrm{~m}, 2 \mathrm{H}), 3.10(\mathrm{~m}, 2 \mathrm{H}), 4.02(\mathrm{~s}, 3 \mathrm{H}), 7.15(\mathrm{~m}, 1 \mathrm{H}), 7.37(\mathrm{~m}, 2 \mathrm{H})$, $7.69(\mathrm{dt}, J=0.9,0.9,8.1 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}(100.6 \mathrm{MHz}) \delta 21.8\left(\mathrm{CH}_{2}\right), 22.9\left(\mathrm{CH}_{2}\right), 25.3\left(\mathrm{CH}_{2}\right)$,
$31.9\left(\mathrm{CH}_{3}\right), 42.6\left(\mathrm{CH}_{2}\right), 110.2(\mathrm{CH}), 119.8(\mathrm{CH}), 120.8(\mathrm{CH}), 125.9(\mathrm{C}), 126.0(\mathrm{CH}), 126.8(\mathrm{C})$, 133.8 (C), 139.1 (C), 196.2 (C).

From selenoesters 4: concn 0.07 M ; workup B; 9:1 hexanes-AcOEt.

Methyl 3,5-Dimethyl-4-oxo-2,3,4,5-tetrahydropyrido[3,2-b]indole-1-carboxylate (5): yield 45% (from 4a), 19% (from 4b); mp $82-4{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H} \operatorname{NMR}(300 \mathrm{MHz}) \delta 1.26(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H})$, $2.82(\mathrm{~m}, 1 \mathrm{H}), 3.84(\mathrm{dd}, J=9.3,13.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.90(\mathrm{~s}, 3 \mathrm{H}), 4.05(\mathrm{~s}, 3 \mathrm{H}), 4.39(\mathrm{dd}, J=4.2,12.9$ $\mathrm{Hz}, 1 \mathrm{H}), 7.13$ (ddd, $J=1.2,6.9,8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.32(\mathrm{dt}, J=0.9,0.9,8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.40(\mathrm{ddd}, J=$ $1.2,6.6,8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.80(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $(75.4 \mathrm{MHz}) \delta 12.9\left(\mathrm{CH}_{3}\right), 31.3\left(\mathrm{CH}_{3}\right)$, $42.5(\mathrm{CH}), 53.2\left(\mathrm{CH}_{2}\right), 53.3\left(\mathrm{CH}_{3}\right), 110.2(\mathrm{CH}), 118.7(\mathrm{C}), 120.2(\mathrm{CH}), 121.8(\mathrm{C}), 124.1(\mathrm{CH})$, $127.1(\mathrm{CH}), 129.9$ (C), 139.0 (C), 154.4 (C), 190.7 (C). Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{3}: \mathrm{C}, 66.16$; H, 5.92; N, 10.29. Found: C, 66.20; H, 6.08; N, 10.00.

Methyl 6-Methyl-5-oxo-3,4,5,6-tetrahydro-2H-azepino[3,2-b]indole-1-carboxylate (6): oil; yield 29% (from 4a), 62% (from 4b); ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{HSQC}, \mathrm{HMBC}$) $\delta 1.85-2.45$ (br m, $2 \mathrm{H}, \mathrm{H}-3$), 2.78 (br m, 2H, H-4), 3.10-3.30 (br m, 1H, H-2), 3.74 and 3.90 ($2 \mathrm{br} \mathrm{s}, 3 \mathrm{H}, \mathrm{OMe}$), 4.03 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{NMe}$), 4.45-4.70 (br m, 1H, H-2), 7.17 (m, 1H, H-9), 7.39 (m, 2H, H-7,8), [7.52 (d, $J=8.1 \mathrm{~Hz}$) and $7.60(\mathrm{br} \mathrm{m}), 1 \mathrm{H}, \mathrm{H}-10] ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, 50^{\circ} \mathrm{C}$) $\delta 2.16(\mathrm{br} \mathrm{m}, 2 \mathrm{H}, \mathrm{H}-3)$, 2.77 (t, $J=6.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-4), 3.40-4.0(\mathrm{br} \mathrm{m}, 2 \mathrm{H}, \mathrm{H}-2), 3.76$ (br s, $3 \mathrm{H}, \mathrm{OMe}$), $4.02(\mathrm{~s}, 3 \mathrm{H}$, NMe), $7.16(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-9), 7.37(\mathrm{~m}, 2 \mathrm{H} ; \mathrm{H}-7,8), 7.54(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-10) ;{ }^{13} \mathrm{C}$ NMR (75.4 $\mathrm{MHz}, \mathrm{HSQC}, \mathrm{HMBC}) \delta 24.4(\mathrm{C}-3), 31.7(\mathrm{NMe}), 40.8$ (C-4), 48.2 (C-2), 53.3 (OMe), 110.4 (C7), 120.7 (C-9), 121.2 (C-10), 121.7 (C-10a), 126.4 (C-8), 127.5 (C-10b), 128.6 (C-5a), 138.1 (C-5b), 155.9 (NCO), 194.0 (C-5). Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{3} \cdot 3 / 4 \mathrm{H}_{2} \mathrm{O}: \mathrm{C}, 63.03 ; \mathrm{H}, 6.17$; N, 9.80. Found: C, 63.42; H, 5.97; N, 9.49.

From selenoester 11: concn 0.02 M ; workup B; 9:1 hexanes-AcOEt.

Methyl 7-Methyl-6-oxo-2,3,4,5,6,7-hexahydroazocino[3,2-b]indole-1-carboxylate (12): yield $54 \% ; \operatorname{mp} 112-4{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{HSQC}, \mathrm{HMBC}$) $\delta 1.45-1.85$ (br m, 2H, H-4), 1.90 (br $\mathrm{m}, 2 \mathrm{H}, \mathrm{H}-3$), 2.62 and 3.25 ($2 \mathrm{br} \mathrm{m}, 2 \mathrm{H}, \mathrm{H}-5$), 3.20 and 4.47 ($2 \mathrm{br} \mathrm{m}, 2 \mathrm{H}, \mathrm{H}-2$), 3.66 and 3.90 (2 $\mathrm{s}, 3 \mathrm{H}, \mathrm{Me}), 4.09$ and $4.11(2 \mathrm{~s}, 3 \mathrm{H}, \mathrm{NMe}), 7.18(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-10), 7.42(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-8,9), 7.46(\mathrm{~d}, J=$
8.1 Hz, 1H, H-11); ${ }^{13} \mathrm{C}$ NMR (100.6 MHz, HSQC, HMBC) $\delta 23.0(\mathrm{C}-3), 23.8(\mathrm{C}-4), 32.6$ (NMe), 40.7 (C-5), 47.6 (C-2), 53.3 (Me), 110.5 (C-8), 120.0 (C-11), 121.0 (C-10), 122.9 (C11b), 123.2 (C-11a), 126.5 (C-9), 131.0 (C-6a), 138.0 (C-7a), 156.4 (NCO), 194.3 (CO). Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{3}$: C, 67.12; H, 6.34; N, 9.78. Found: C, 66.90; H, 6.37; N, 9.60.

From selenoesters $14 \mathbf{a}$ (concn 0.005 M) or $\mathbf{1 8}$ (concn 0.02 M); workup B; 3:7 hexanes-AcOEt.

2-Acetyl-7-methyl-1,2,3,4,5,7-hexahydroazocino[4,3-b]indol-6-one (15a): oil; yield 55\% (from 14a), 75% (from 18); ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{HSQC}, \mathrm{HMBC}$) $\delta 1.94$ and $2.16(2 \mathrm{~s}, 3 \mathrm{H}, \mathrm{Me}$), 2.01 and $2.11(2 \mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-4), 2.91$ and $3.02(2 \mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-5),[3.53(\mathrm{t}, J=6 \mathrm{~Hz})$ and $3.79(\mathrm{t}, J=6$ Hz), 2H, H-3], 3.86 and $4.05(2 \mathrm{~s}, 3 \mathrm{H}, \mathrm{NMe}), 4.92$ and $5.13(2 \mathrm{~s}, 2 \mathrm{H}, \mathrm{H}-1), 7.20(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-10)$, $7.40(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-8,9),[7.61(\mathrm{~d}, J=8.1 \mathrm{~Hz})$ and $7.82(\mathrm{~d}, J=8.1 \mathrm{~Hz}), 1 \mathrm{H}, \mathrm{H}-11] ;{ }^{13} \mathrm{C}$ NMR $(75.4$ $\mathrm{MHz}, \mathrm{HSQC}, \mathrm{HMBC}) \delta 21.7$ and 22.1 (Me), 24.6 and 26.5 (C-4), 31.7 and 32.7 (NMe), 41.0 and 42.2 (C-5), 42.1 and $45.8(\mathrm{C}-1), 45.5$ and 46.7 (C-3), 110.2 and 110.5 (C-8), 117.8 and 118.4 (C-11b), 119.3 and 121.0 (C-11), 120.7 and 120.8 (C-10), 124.9 (C-11a), 125.5 and 126.5 (C-9), 133.4 and 134.1 (C-6a), 138.1 and 138.8 (C-6b), 169.9 and 171.0 (NCO), 194.2 and 198.1 (C-6); HRMS $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{16} \mathrm{H}_{19} \mathrm{~N}_{2} \mathrm{O}_{2} 271.1441$, found 271.1447.

2-Acetyl-4,6-dimethyl-2,3,4,6-tetrahydro-1 \boldsymbol{H}-azepino[4,3-b]indol-5-one (16a): oil; yield 8\% (from 14a); ${ }^{1} \mathrm{H}$ NMR $(300 \mathrm{MHz}) \delta[1.31(\mathrm{~d}, J=6.6 \mathrm{~Hz})$ and $1.34(\mathrm{~d}, J=6.9 \mathrm{~Hz}), 3 \mathrm{H}, \mathrm{Me}], 2.12$ and $2.14(2 \mathrm{~s}, 3 \mathrm{H}, \mathrm{MeCO}), 3.27(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-4)$, [3.47(dd, $J=11.1,13.2 \mathrm{~Hz}), 3.66(\mathrm{dd}, J=11.4$, $13.5 \mathrm{~Hz})$ and $3.80(\mathrm{~m}), 2 \mathrm{H}, \mathrm{H}-3], 3.99$ and $4.00(2 \mathrm{~s}, 3 \mathrm{H}, \mathrm{NMe})$, [4.73(d, $J=16.8 \mathrm{~Hz}), 4.82(\mathrm{~d}$, $J=17.1 \mathrm{~Hz}), 5.05(\mathrm{~d}, J=16.8 \mathrm{~Hz})$ and $5.59(\mathrm{~d}, J=16.8 \mathrm{~Hz}), 2 \mathrm{H}, \mathrm{H}-1], 7.21(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-9), 7.35-$ $7.45(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-7,8),[7.67(\mathrm{dt}, J=1.5,1.5,7.8 \mathrm{~Hz})$ and $7.80(\mathrm{dt}, J=1.2,1.2,7.8 \mathrm{~Hz}), 1 \mathrm{H}, \mathrm{H}-$ 10]; HRMS $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{16} \mathrm{H}_{19} \mathrm{~N}_{2} \mathrm{O}_{2}$ 271.1441, found 271.1449.

From selenoester 14b: concn 0.005 M ; workup B; 9:1 hexanes-AcOEt.

tert-Butyl 7-Methyl-6-oxo-1,3,4,5,6,7-hexahydroazocino[4,3-b]indole-2-carboxylate (15b): oil; yield 40%; ${ }^{1} \mathrm{H}$ NMR (300 MHz) $\delta 1.22$ and $1.47(2 \mathrm{~s}, 9 \mathrm{H}), 2.04(\mathrm{~m}, 2 \mathrm{H}), 2.96(\mathrm{~m}, 2 \mathrm{H}), 3.49$ and $3.60(2 \mathrm{~m}, 2 \mathrm{H}), 3.93$ and $3.97(2 \mathrm{~s}, 3 \mathrm{H}), 4.87$ and $4.97(2 \mathrm{~s}, 2 \mathrm{H}), 7.17(\mathrm{~m}, 1 \mathrm{H}), 7.38(\mathrm{~m}, 2 \mathrm{H})$, $[7.68(\mathrm{~d}, J=8.1 \mathrm{~Hz})$ and $7.76(\mathrm{~d}, J=7.8 \mathrm{~Hz}), 1 \mathrm{H}] ;{ }^{13} \mathrm{C}$ NMR (75.4 MHz) $\delta 25.5$ and 25.9 $\left(\mathrm{CH}_{2}\right), 28.3$ and $28.4\left(\mathrm{CH}_{3}\right), 32.0$ and $32.3\left(\mathrm{CH}_{3}\right), 41.6$ and $43.2\left(\mathrm{CH}_{2}\right), 41.6$ and $43.9\left(\mathrm{CH}_{2}\right)$, 44.6 and $47.1\left(\mathrm{CH}_{2}\right), 80.0(\mathrm{C}), 110.2(\mathrm{CH}), 118.7$ and $122.0(\mathrm{C}), 120.2$ and $120.7(\mathrm{CH}), 120.4$ and $120.6(\mathrm{CH}), 124.9(\mathrm{C}), 125.6$ and $126.9(\mathrm{CH}), 133.5$ and $134.0(\mathrm{C}), 138.3$ and $138.6(\mathrm{C})$, 154.9 and 155.1 (C), 196.2 and 197.3 (C); HRMS [M+Na] ${ }^{+}$calcd for $\mathrm{C}_{19} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{NaO}_{3} 351.1679$, found 351.1674 .

tert-Butyl 4,6-Dimethyl-5-oxo-3,4,5,6-tetrahydro-1H-azepino[4,3-b]indole-2-carboxylate

 (16b): oil; yield $11 \% ;{ }^{1} \mathrm{H}$ NMR (300 MHz) $\delta 1.28(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 1.38$ and $1.46(2 \mathrm{~s}, 9 \mathrm{H})$, $3.19(\mathrm{~m}, 1 \mathrm{H}),[3.45(\mathrm{~m})$ and $3.72(\mathrm{dd}, J=3.9,13.8 \mathrm{~Hz}), 2 \mathrm{H}], 3.96$ and $3.98(2 \mathrm{~s}, 3 \mathrm{H}),[4.72(\mathrm{~d}, J$ $=16.5 \mathrm{~Hz}), 4.87(\mathrm{~d}, J=17.1 \mathrm{~Hz}), 5.13(\mathrm{~d}, J=16.8 \mathrm{~Hz})$ and $5.18(\mathrm{~d}, J=16.5 \mathrm{~Hz}), 2 \mathrm{H}], 7.19(\mathrm{~m}$, 1H), $7.40(\mathrm{~m}, 2 \mathrm{H}), 7.65(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $(75.4 \mathrm{MHz}) \delta 14.4$ and $14.9\left(\mathrm{CH}_{3}\right), 28.3$ and 28.4 $\left(\mathrm{CH}_{3}\right), 32.1\left(\mathrm{CH}_{3}\right), 42.1$ and $42.3\left(\mathrm{CH}_{2}\right), 45.9$ and $46.5(\mathrm{CH}), 48.3$ and $48.6\left(\mathrm{CH}_{2}\right), 80.2(\mathrm{C})$, 110.5 and $110.7(\mathrm{CH}), 120.5$ and $120.6(\mathrm{CH}), 120.7$ and $121.0(\mathrm{CH}), 122.9$ and $123.2(\mathrm{C}), 124.9$ (C), 126.4 and $126.5(\mathrm{CH}), 133.2$ (C), 139.2 (C), 155.0 (C), 196.4 and 196.9 (C); HRMS $[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{19} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{NaO}_{3} 351.1679$, found 351.1676.From selenoester 19: concn 0.005 M ; workup B; 4:6 hexanes-AcOEt.

2-Acetyl-4,7-dimethyl-1,2,3,4,5,7-hexahydroazocino[4,3-b]indol-6-one (20): oil; yield 40\%; ${ }^{1} \mathrm{H}$ NMR (400 MHz, HSQC, HMBC) $\delta[1.04(\mathrm{~d}, J=7.2 \mathrm{~Hz})$ and $1.05(\mathrm{~d}, J=6.9 \mathrm{~Hz}), 3 \mathrm{H}, \mathrm{Me}]$, 1.96 and $2.17(2 \mathrm{~s}, 3 \mathrm{H}, \mathrm{COMe}), 2.32$ and $2.54(2 \mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-4)$, [2.74 (dd, $J=2.7,14.4 \mathrm{~Hz}), 2.90$ (m) and $3.07(\mathrm{dd}, J=4.5,13.5 \mathrm{~Hz}), 2 \mathrm{H}, \mathrm{H}-5],[3.18(\mathrm{dd}, J=9.6,15.3 \mathrm{~Hz}), 3.42(\mathrm{dd}, J=10.8$, $13.5 \mathrm{~Hz}), 3.50(\mathrm{dd}, J=4.2,15 \mathrm{~Hz})$, and $3.71(\mathrm{dd}, J=4.2,13.8 \mathrm{~Hz}), 2 \mathrm{H}, \mathrm{H}-3], 3.87$ and $4.06(2 \mathrm{~s}$, $3 \mathrm{H}, \mathrm{NMe}),[4.90(\mathrm{~d}, J=16.8, \mathrm{~Hz}), 4.95(\mathrm{~d}, J=16.8, \mathrm{~Hz}), 5.09(\mathrm{~d}, J=15.6 \mathrm{~Hz})$, and $5.20(\mathrm{~d}, J=$ $15.6 \mathrm{~Hz}), 2 \mathrm{H}, \mathrm{H}-1], 7.20(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-10), 7.40(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-8,9),[7.61(\mathrm{~d}, J=8.1 \mathrm{~Hz})$ and $7.79(\mathrm{~d}$, $J=8.1 \mathrm{~Hz}$), $1 \mathrm{H}, \mathrm{H}-11] ;{ }^{13} \mathrm{C}$ NMR (100.6 MHz, HSQC, HMBC) $\delta 18.2$ and $19.1(\mathrm{Me}), 21.7$ and 22.2 (MeCO), 31.0 and $32.6(\mathrm{C}-4), 31.7$ and $32.7(\mathrm{NMe}), 41.8$ and $46.0(\mathrm{C}-1), 48.0$ and 49.9 (C-
5), 50.7 and $52.6(\mathrm{C}-3), 110.3$ and $110.6(\mathrm{C}-8), 117.7$ and $118.1(\mathrm{C}-11 \mathrm{~b}), 119.3$ and $120.8(\mathrm{C}-$ $11), 120.9$ and $121.0(\mathrm{C}-10), 124.9$ and 126.5 (C-11a), 125.5 and 126.5 (C-9), 134.0 and 134.6 (C-6a), 138.2 and 138.9 (C-6b), 170.2 and $170.9(\mathrm{NCO}), 193.1$ and $197.0(\mathrm{C}-6) ;$ HRMS [M+H] ${ }^{+}$ calcd for $\mathrm{C}_{17} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{O}_{2} 285.1598$, found 285.1592.

References

1. Davies, J. R.; Kane, P. D.; Moody, C. J.; Slawin, A. M. Z. J. Org. Chem. 2005, 75, 5840-5851.
2. Unangst, P. C. J. Heterocyclic Chem. 1983, 20, 495-499.
3. Bennasar, M.-L.; Roca, T.; Ferrando, F. J. Org. Chem. 2005, 70, 9077-9080.
4. Bottini, A. T.; Dev, V.; Klinck, J. Org. Synth. 1963, 43, 6-9.
5. Harrowven, D. C.; Guy, I. L. Chem. Commun. 2004, 1968-1969.
6. Shioiri, T.; Ishizumi, K.; Yamada, S.-I. Chem. Pharm. Bull. 1967, 15, 1010-1014.

4. NMR Data of Aldehydes.

1-Methyl-3-(4-pentenyl)indole-2-carboxaldehyde (8): ${ }^{1} \mathrm{H}$ NMR (300 MHz) $\delta 1.85(\mathrm{~m}, 2 \mathrm{H})$, $2.15(\mathrm{~m}, 2 \mathrm{H}), 3.08(\mathrm{~m}, 2 \mathrm{H}), 4.06(\mathrm{~s}, 3 \mathrm{H}), 5.02(\mathrm{~m}, 2 \mathrm{H}), 5.83(\mathrm{~m}, 1 \mathrm{H}), 7.15(\mathrm{~m}, 1 \mathrm{H}), 7.39(\mathrm{~m}$, $2 \mathrm{H}), 7.71(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 10.13(\mathrm{~s}, 1 \mathrm{H})$.
3-[N-Acetyl- N-(2-cyclohexenyl)aminomethyl]-1-methylindole-2-carboxaldehyde (10): ${ }^{1} \mathrm{H}$ NMR (300 MHz) $\delta 1.50(\mathrm{~m}, 2 \mathrm{H}), 1.69(\mathrm{~m}, 2 \mathrm{H}), 1.92(\mathrm{~m}, 2 \mathrm{H}), 2.11$ and $2.23(2 \mathrm{~s}, 3 \mathrm{H}), 4.06(\mathrm{~s}$, $3 \mathrm{H}), 4.31$ and $5.30(2 \mathrm{br} \mathrm{m}, 1 \mathrm{H}),[4.86(\mathrm{br} \mathrm{s}), 5.00(\mathrm{~d}, J=15.9 \mathrm{~Hz}), 5.37(\mathrm{~d}, J=15.6 \mathrm{~Hz})$ and 5.45 (br s), 2H], 5.07 and $5.42(2 \mathrm{~m}, 1 \mathrm{H}), 5.50$ and $5.78(2 \mathrm{~m}, 1 \mathrm{H}), 7.15(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.38(\mathrm{~m}$, $2 \mathrm{H}),[7.72(\mathrm{~d}, J=9 \mathrm{~Hz})$ and $7.86(\mathrm{~d}, J=8.4 \mathrm{~Hz}), 1 \mathrm{H}], 10.25(\mathrm{~s}, 1 \mathrm{H})$.
3-[N-(3-Butenyl)-N-(methoxycarbonyl)amino]-1-methylindole-2-carboxaldehyde (13): ${ }^{1} \mathrm{H}$ NMR (300 MHz) $\delta 2.35(\mathrm{q}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.63(\mathrm{br} \mathrm{s}, 3 \mathrm{H}), 3.79(\mathrm{~m}, 2 \mathrm{H}), 4.09(\mathrm{~s}, 3 \mathrm{H}), 5.04$ $(\mathrm{m}, 2 \mathrm{H}), 5.74(\mathrm{~m}, 1 \mathrm{H}), 7.20(\mathrm{~m}, 1 \mathrm{H}), 7.42(\mathrm{~m}, 2 \mathrm{H}), 7.57(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 9.95(\mathrm{~s}, 1 \mathrm{H})$.
3-(N-Acetyl- N-allylaminomethyl)-1-methylindole-2-carboxaldehyde (17a): ${ }^{1} \mathrm{H}$ NMR (300 MHz , major rotamer) $\delta 2.14(\mathrm{~s}, 3 \mathrm{H}), 3.79(\mathrm{~m}, 2 \mathrm{H}), 4.09(\mathrm{~s}, 3 \mathrm{H}), 5.14(\mathrm{~s}, 2 \mathrm{H}), 5.24(\mathrm{~m}, 2 \mathrm{H}), 5.73$ $(\mathrm{m}, 1 \mathrm{H}), 7.18(\mathrm{~m}, 1 \mathrm{H}), 7.42(\mathrm{~m}, 2 \mathrm{H}), 7.85(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 10.20(\mathrm{~s}, 1 \mathrm{H})$.

3-(N-Allyl- N-tert-butoxycarbonylaminomethyl)-1-methylindole-2-carboxaldehyde (17b):

${ }^{1} \mathrm{H}$ NMR (300 MHz) $\delta 1.45$ (s, 9H), 3.64 (br s, 2H), $4.02(\mathrm{~s}, 3 \mathrm{H}), 4.91$ (s, 2H), $5.00(\mathrm{dq}, J=1.5$, $17.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.07(\mathrm{dm}, J=10.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.65(\mathrm{~m}, 1 \mathrm{H}), 7.11(\mathrm{~m}, 1 \mathrm{H}), 7.34(\mathrm{~m}, 2 \mathrm{H}), 7.79(\mathrm{br} \mathrm{d}$, $J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 10.13(\mathrm{~s}, 1 \mathrm{H})$.

3-[N-Acetyl- N-(2-methyl-2-propenyl)aminomethyl]-1-methylindole-2-carboxaldehyde (21): ${ }^{1} \mathrm{H}$ NMR (300 MHz) $\delta 1.69(\mathrm{~s}, 3 \mathrm{H}), 2.12(\mathrm{~s}, 3 \mathrm{H}), 3.66(\mathrm{~s}, 2 \mathrm{H}), 4.09(\mathrm{~s}, 3 \mathrm{H}), 4.83(\mathrm{~s}, 1 \mathrm{H}), 5.00(\mathrm{~s}$, $1 \mathrm{H}), 5.13(\mathrm{~s}, 2 \mathrm{H}), 7.18(\mathrm{~m}, 1 \mathrm{H}), 7.41(\mathrm{~m}, 2 \mathrm{H}), 7.84(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 10.17(\mathrm{~s}, 1 \mathrm{H})$.

