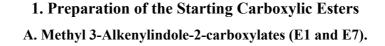
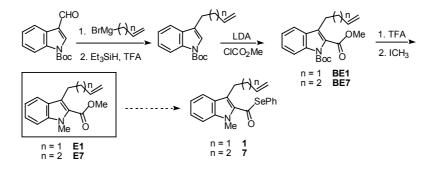

Supporting Information

Novel 7- and 8-Endo 2-Indolylacyl Radical Cyclizations: Efficient Construction of Azepino- and Azocinoindoles

M.-Lluïsa Bennasar,* Tomàs Roca, and Davinia García-Díaz

Laboratory of Organic Chemistry, Faculty of Pharmacy, University of Barcelona, Barcelona 08028, Spain


bennasar@ub.edu



Contents

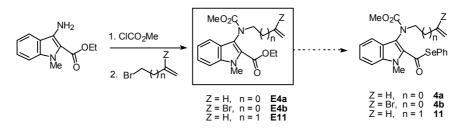
1. Preparation of the Starting Carboxylic Esters		page S2
	A. Methyl 3-Alkenylindole-2-carboxylates	page S2
	B. Ethyl 3-(N-Alkenylamino)indole-2-carboxylates	page S5
	C. Methyl 3-(N-Alkenylaminomethyl)indole-2-carboxylates	page S6
2.	Preparation of Phenyl Selenoesters	page S8
3.	Cyclization Reactions	page S11
4.	NMR Data of Aldehydes	page S15

Reaction courses and product mixtures were routinely monitored by TLC on silica gel (precoated F_{254} Merck plates). Drying of organic extracts during the workup of reactions was performed over anhydrous Na₂SO₄. The solvents were evaporated under reduced pressure with a rotary evaporator. Flash chromatography was carried out on SiO₂ (silica gel 60, SDS, 0.04-0.06 mm). Melting points are uncorrected. ¹H and ¹³C NMR spectra were recorded in CDCl₃ solution, using TMS as an internal reference.

Methyl 3-(3-Butenyl)-1-(*tert***-butoxycarbonyl)indole-2-carboxylate** (**BE1**). Allylmagnesium bromide (1 M in Et₂O, 4 mL, 4.0 mmol) was added dropwise to a cooled (-78° C) solution of 1-(*tert*-butoxycarbonyl)indole-3-carbaldehyde¹ (0.75 g, 3.06 mmol) in anhydrous THF (30 mL) and the resulting mixture was stirred at -78° C for 1 h. The reaction mixture was poured into a saturated aqueous NH₄Cl solution (50 mL) and extracted with Et₂O (3 x 40 mL). The organic extracts were concentrated to give the crude carbinol. Et₃SiH (0.97 mL, 6.12 mmol) and TFA (0.47 mL, 6.12 mmol) were added to a cooled (0° C) solution of the above carbinol in CH₂Cl₂ (30 mL). After stirring at 0° C for 2 h, the reaction mixture was washed with 2 M aqueous Na₂CO₃ solution (3 x 20 mL), dried and concentrated. The crude product was chromatographed (98:2 hexanes-AcOEt) to give **1-(***tert***-butoxycarbonyl)-3-(3-butenyl)indole**: 0.55 g (67%); ¹H NMR (300 MHz) δ 1.66 (s, 9H), 2.47 (q, *J* = 7.2 Hz, 2H), 2.78 (t, *J* = 7.2 Hz, 2H), 5.02 (dq, *J* = 1.2, 1.2, 1.2, 10.2, 1H), 5.09 (dq, *J* = 1.5, 1.5, 1.5, 16.8, 1H), 5.92 (m, 1H), 7.24 (m, 1H), 7.30 (m, 1H), 7.37 (s, 1H), 7.52 (d, *J* = 7.8 Hz, 1H), 8.11 (d, *J* = 7.5 Hz, 1H).

n-BuLi (1.6 M in hexane, 2.45 mL, 3.93 mmol) was added under Ar to a cooled (-78° C) solution of diisopropylamine (0.55 mL, 3.93 mmol) in anhydrous THF (22 mL), and the resulting solution was stirred at -78° C for 30 min. Then, the above 3-substituted indole (0.71 g, 2.62 mmol) in anhydrous THF (22 mL) was added, and the resulting red mixture was stirred at -78° C for 40 min. Methyl chloroformate (0.30 mL, 3.93 mmol) was added, and the mixture was allowed to slowly warm to rt. The reaction mixture was poured into a saturated aqueous NH₄Cl solution (50 mL) and extracted with AcOEt (3 x 45 mL). The organic extracts were

concentrated. The crude product was chromatographed (98:2 hexanes-AcOEt) to give **BE1** as a pale yellow oil: 0.65 g (75%); ¹H NMR (300 MHz) δ 1.61 (s, 9H), 2.40 (q, *J* = 7.8 Hz, 2H), 2.92 (t, *J* = 7.8 Hz, 2H), 3.92 (s, 3H), 4.97 (dm, *J* = 10.2 Hz, 1H), 5.03 (dq, *J* = 1.8, 1.8, 1.8, 17.1 Hz, 1H), 5.85 (m, 1H), 7.28 (m, 1H), 7.40 (m, 1H), 7.58 (d, *J* = 7.8 Hz, 1H), 8.09 (d, *J* = 8.1 Hz, 1H); ¹³C NMR (75.4 MHz) δ 23.9 (CH₂), 27.9 (CH₃), 34.2 (CH₂), 52.0 (CH₃), 84.2 (C), 115.0 (CH₂), 115.2 (CH₂), 120.1 (CH), 122.8 (CH), 126.6 (CH, C), 126.7 (C), 128.5 (C), 136.7 (C), 137.6 (CH), 149.3 (C), 163.0 (C). Anal. Calcd for C₁₉H₂₃NO₄: C, 69.28; H, 7.04; N, 4.25. Found: C, 69.50; H, 7.15; N, 4.26.

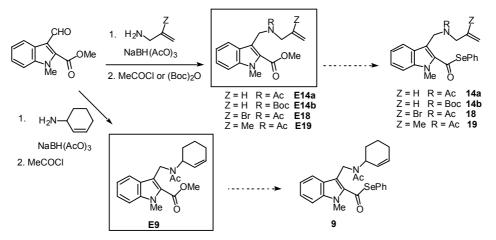

Methyl 3-(3-Butenyl)-1-methylindole-2-carboxylate (E1). A solution of indole BE1 (0.49 g, 1.50 mmol) in TFA (9 mL) was stirred at rt for 2 h. The reaction mixture was concentrated to dryness and the residue was dissolved in CH₂Cl₂ (25 mL). The organic solution was washed with 2 M aqueous Na₂CO₃ solution (3 x 20 mL), dried and concentrated to give the crude Nunsubstituted indole. A solution of the above indole in anhydrous DMF (6 mL) was added dropwise under Ar to a suspension of NaH (1.95 mmol) in anhydrous DMF (4 mL). After stirring at rt for 1 h, the mixture was cooled to 0°C and MeI (0.38 mL, 6.0 mmol) was added dropwise. The mixture was allowed to warm to rt for 5 h, then was quenched with cold H_2O (20 mL) and extracted with AcOEt (3 x 20 mL). The organic extracts were washed with H₂O (5 x 35 mL), dried and concentrated. The crude product was chromatographed (9:1 hexanes-AcOEt) to give E1 as an oil: 0.22 g (62%); ¹H NMR (300 MHz) δ 2.38 (q, J = 6.6 Hz, 2H), 3.15 (m, 2H), 3.94 (s, 3H), 4.00 (s, 3H), 4.96 (dm, J = 10.2 Hz, 1H), 5.05 (dq, J = 1.8, 1.8, 1.8, 1.8, 16.8 Hz, 1H), 5.91 (m, 1H), 7.14 (m, 1H), 7.35 (m, 2H), 7.68 (d, J = 8.1 Hz, 1H); ¹³C NMR (75.4 MHz) δ 25.1 (CH₂), 32.0 (CH₃), 35.4 (CH₂), 51.3 (CH₃), 110.1 (CH), 114.5 (CH₂), 119.7 (CH), 120.7 (CH), 124.6 (C), 124.8 (C), 125.2 (CH), 126.5 (C), 138.6 (CH), 138.7 (C), 163.2 (C). Anal. Calcd for: C₁₅H₁₇NO₂ C, 74.05; H, 7.04; N, 5.76. Found: C, 74.34; H, 6.89; N, 5.31.

Methyl 1-(*tert*-Butoxycarbonyl)-3-(4-pentenyl)indole-2-carboxylate (BE7). 4-Bromo-1butene (1.55 mL, 15 mmol) was added dropwise at rt to a suspension of magnesium turnings (0.45 g, 18 mmol) in anhydrous THF (18 mL), and the mixture was stirred at rt for 2 h. 1-(*tert*-Butoxycarbonyl)indole-3-carbaldehyde¹ (0.75 g, 3.06 mmol) was dissolved in anhydrous THF (10 mL) and cooled to -40° C. The freshly prepared Grignard reagent was added dropwise to the aldehyde solution and the mixture was allowed to slowly warm to rt for 4 h. The reaction mixture was poured into a saturated aqueous NH₄Cl solution (50 mL) and extracted with Et₂O (3 x 40 mL). The organic extracts were concentrated to give the crude carbinol. Et₃SiH (0.97 mL, 6.12 mmol) and TFA (0.47 mL, 6.12 mmol) were added to a cooled (0°C) solution of the above carbinol in CH₂Cl₂ (30 mL). After stirring at 0°C for 30 min, the reaction mixture was washed with 2 M aqueous Na₂CO₃ solution (3 x 20 mL), dried and concentrated. The crude product was chromatographed (95:5 hexanes-AcOEt) to give **1-(***tert***-butoxycarbonyl)-3-(4-pentenyl)indole**: 0.70 g (80%); ¹H NMR (300 MHz) δ 1.66 (s, 9H), 1.81 (m, 2H), 2.16 (q, J = 6.9 Hz, 2H), 2.69 (t, J = 7.2 Hz, 2H), 5.02 (m, 2H), 5.86 (m, 1H), 7.22 (m, 1H), 7.30 (m, 1H), 7.35 (s, 1H), 7.51 (d, J = 7.8 Hz, 1H), 8.11 (d, J = 7.8 Hz, 1H).

n-BuLi (1.6 M in hexane, 1.55 mL, 2.48 mmol) was added under Ar to a cooled (-78° C) solution of diisopropylamine (0.35 mL, 2.48 mmol) in anhydrous THF (14 mL), and the resulting solution was stirred at -78° C for 30 min. Then, the above 3-substituted indole (0.47 g, 1.66 mmol) in anhydrous THF (14 mL) was added, and the resulting red mixture was stirred at -78° C for 40 min. Methyl chloroformate (0.19 mL, 2.48 mmol) was added, and the mixture was allowed to slowly warm to rt. The reaction mixture was poured into a saturated aqueous NH₄Cl solution (40 mL) and extracted with AcOEt (3 x 35 mL). The organic extracts were concentrated. The crude product was chromatographed (98:2 hexanes-AcOEt) to give **BE7** as a pale yellow oil: 0.35 g (62%); ¹H NMR (300 MHz) δ 1.61 (s, 9H), 1.76 (m, 2H), 2.13 (q, *J* = 6.9 Hz, 2H), 2.84 (t, *J* = 7.8 Hz, 2H), 3.92 (s, 3H), 5.01 (m, 2H), 5.83 (m, 1H), 7.26 (ddd, *J* = 1.2, 6.9, 8.1 Hz, 1H), 7.58 (d, *J* = 8.1 Hz, 1H), 8.08 (d, *J* = 8.4 Hz, 1H); ¹³C NMR (75.4 MHz) δ 23.7 (CH₂), 27.9 (CH₃), 29.3 (CH₂), 33.4 (CH₂), 52.1 (CH₃), 84.2 (C), 114.8 (CH₂), 115.0 (CH), 120.2 (CH), 122.8 (CH), 126.5 (C), 126.6 (CH), 127.3 (C), 128.6 (C), 136.8 (C), 138.2 (CH), 149.4 (C), 163.1 (C). Anal. Calcd for C₂₀H₂₅NO₄: C, 69.95; H, 7.34; N, 4.08. Found: C, 70.07; H, 7.48; N, 4.02.

Methyl 1-Methyl-3-(4-pentenyl)indole-2-carboxylate (E7). A solution of indole BE7 (0.51 g, 1.50 mmol) in TFA (9 mL) was stirred at rt for 2 h. The reaction mixture was concentrated to dryness and the residue was dissolved in CH₂Cl₂ (25 mL). The organic solution was washed with 2 M aqueous Na₂CO₃ solution (3 x 20 mL), dried and concentrated to give the crude Nunsubstituted indole. A solution of the above indole in anhydrous DMF (6 mL) was added dropwise under Ar to a suspension of NaH (1.95 mmol) in anhydrous DMF (4 mL). After stirring at rt for 1 h, the mixture was cooled to 0°C and MeI (0.38 mL, 6.0 mmol) was added dropwise. The mixture was allowed to warm to rt for 5 h, then was quenched with cold H_2O (20 mL) and extracted with AcOEt (3 x 20 mL). The organic extracts were washed with H_2O (5 x 35 mL), dried and concentrated. The crude product was chromatographed (9:1 hexanes-AcOEt) to give E7 as an oil: 0.30 g (78%); ¹H NMR (300 MHz) δ 1.97 (m, 2H), 2.37 (q, J = 6.6 Hz, 2H), 3.30 (m, 2H), 4.14 (s, 3H), 4.20 (s, 3H), 5.23 (m, 2H), 6.09 (m, 1H), 7.35 (m, 1H), 7.55 (m, 2H), 7.89 (dt, J = 1.2, 1.2, 7.8 Hz, 1H); ¹³C NMR (75.4 MHz) δ 24.8 (CH₂), 30.4 (CH₂), 32.0 (CH₃), 33.8 (CH₂), 51.3 (CH₃), 110.0 (CH), 114.5 (CH₂), 119.6 (CH), 120.7 (CH), 124.5 (C), 125.2 (CH), 125.5 (C), 126.6 (C), 138.8 (CH, C), 163.2 (C). Anal. Calcd for C₁₆H₁₉NO₂: C, 74.68; H, 7.44; N, 5.44. Found: C, 74.44; H, 7.67; N, 5.42.

B. Ethyl 3-(N-Alkenylamino)indole-2-carboxylates (E4a, E4b, and E11)



General Procedure. Methyl chloroformate (0.38 mL, 4.90 mmol) in anhydrous THF (5 mL) was added dropwise to a solution of ethyl 3-amino-1-methylindole-2-carboxylate² (1.0 g, 4.59 mmol) and anhydrous pyridine (0.85 mL, 9.63 mmol) in anhydrous THF (15 mL). After stirring at rt for 12 h, the reaction mixture was concentrated and the resulting residue was dissolved in CH₂Cl₂ (80 mL). The organic solution was washed with 2 N aqueous HCl solution (2 x 50 mL), dried and concentrated to give crude methylcarbamate. Cs₂CO₃ (4.48 g, 13.77 mmol) and TBAI (5.12 g, 13.77 mmol) were added to a solution of the above methyl carbamate in anhydrous DMF (50 mL). After stirring at rt for 30 min, the respective alkylbromide (13.77 mmol) was added to the suspension. The reaction mixture was stirred at rt for 5 h, poured into H₂O (50 mL) and extracted with AcOEt (3 x 70 mL). The combined organic extracts were washed with H₂O (3 x 50 mL) and brine (50 mL), dried, and concentrated, and the resulting residue was chromatographed. Eluents, yields, NMR data and elemental analyses are given below.

Ethyl 3-[*N*-Allyl-*N*-(methoxycarbonyl)amino]-1-methylindole-2-carboxylate (E4a): alkylating agent, allyl bromide; elution with 6:4 hexanes-AcOEt, oil; yield 78%; ¹H NMR (300 MHz, major rotamer) δ 1.39 (t, J = 7.5 Hz, 3H), 3.59 (s, 3H), 4.05 (s, 3H), 4.19, (m, 1H), 4.36 (m, 1H), 4.34 (q, J = 7.5 Hz, 2H), 5.05 (m, 2H), 5.95 (m, 1H), 7.18 (m, 1H), 7.38 (m, 2H), 7.56 (d, J = 8.4 Hz, 1H); ¹³C NMR (75.4 MHz, major rotamer) δ 14.3 (CH₃), 32.0 (CH₃), 52.9 (CH₃), 53.9 (CH₂), 60.8 (CH₂), 110.3 (CH), 117.9 (CH₂), 119.9 (CH), 120.9 (CH), 123.1 (C), 123.5 (C), 125.5 (CH), 133.6 (CH), 137.2 (C), 156.8 (C), 161.5 (C), C-2 not observed. Anal. Calcd for C₁₇H₂₀N₂O₄: C, 64.54; H, 6.37; N, 8.85. Found: C, 64.36; H, 6.45; N, 8.71.

Ethyl 3-[*N*-(2-Bromo-2-propenyl)-*N*-(methoxycarbonyl)amino]-1-methylindole-2carboxylate (E4b): alkylating agent, 2,3-dibromopropene; elution with 96:4 hexanes-AcOEt, oil; yield 85%; ¹H NMR (300 MHz, major rotamer) δ 1.39 (t, J = 7.5 Hz, 3H), 3.62 (s, 3H), 4.06 (s, 3H), 4.20 (d, J = 15.9 Hz, 1H), 4.39 (m, 2H), 4.90 (d, J = 15.3 Hz, 1H), 5.49 (d, J = 1.5 Hz, 1H), 5.70 (as, 1H), 7.18 (m, 1H), 7.38 (m, 2H), 7.72 (d, J = 8.1 Hz, 1H); ¹³C NMR (75.4 MHz, major rotamer) δ 14.2 (CH₃), 32.0 (CH₃), 53.1 (CH₃), 59.3 (CH₂), 60.9 (CH₂), 110.2 (CH), 119.9 (CH₂), 120.5 (CH), 120.9 (CH), 122.7 (C), 123.6 (C), 123.7 (C), 125.5 (CH), 128.7 (C), 137.0 (C), 156.9 (C), 161.2 (C). Anal. Calcd for C₁₇H₁₉BrN₂O₄: C, 51.66; H, 4.85; N, 7.09. Found: C, 51.43; H, 4.98; N, 7.26. **Ethyl 3-**[*N*-(**3**-**Butenyl**)-*N*-(**methoxycarbonyl**)**amino**]-1-**methylindole-2-carboxylate** (**E11**): alkylating agent, 4-bromo-1-butene; elution with 9:1 hexanes-AcOEt, oil; yield 82%; ¹H NMR (300 MHz, major rotamer) δ 1.39 (t, J = 7.2 Hz, 3H), 2.35 (q, J = 7.8 Hz, 2H), 3.58 (s, 3H), 3.64 (m, 1H), 3.87 (m, 1H), 4.06 (s, 3H), 4.36, (m, 2H), 5.01 (m, 2H), 5.73 (m, 1H), 7.19 (ddd, J = 2.1, 6.3, 8.4 Hz, 1H), 7.40 (m, 2H), 7.56 (dt, J = 1.2, 1.2, 7.8 Hz, 1H); ¹³C NMR (75.4 MHz, major rotamer) δ 14.3 (CH₃), 31.2 (CH₃), 32.6 (CH₂), 50.7 (CH₂), 52.8 (CH₃), 60.8 (CH₂), 110.4 (CH), 116.4 (CH₂), 119.8 (CH), 120.9 (CH), 122.9 (C), 123.5 (C), 123.7 (C), 125.5 (CH), 135.2 (CH), 137.2 (C), 156.7 (C), 161.4 (C). Anal. Calcd for C₁₈H₂₂N₂O₄·1/4 H₂O: C, 64.55; H, 6.77; N, 8.36. Found: C, 64.33; H, 6.73; N, 8.48.

N-Acetyl Derivatives E9, E14a, E18 and E19. General Procedure. A solution of methyl 3formyl-1-methylindole-2-carboxylate³ (1.0 g, 4.61 mmol), the respective amine (9.20 mmol), NaBH(AcO)₃ (2.93 g, 13.82 mmol) and AcOH (0.25 mL, 4.61 mmol) in anhydrous CH₂Cl₂ (25 mL) was stirred at rt for 12 h. The reaction mixture was washed with saturated aqueous Na₂CO₃ solution (3 x 20 mL). The solvent was removed and the resulting residue (crude secondary amine) was dissolved in anhydrous CH₂Cl₂ (45 mL). Acetyl chloride (0.39 mL, 5.53 mmol) and Et₃N (0.70 mL, 5.07 mmol) were added to the above cooled (0°C) solution. After stirring at rt until no starting amine was detected by TLC (2-4 h), the reaction mixture was poured into H₂O (25 mL) and washed with 2 N aqueous HCl solution (2 x 25 mL). The solvent was removed and the crude product was chromatographed. Eluents, yields, NMR data and elemental analyses are given below.

Methyl 3-[*N*-Acetyl-*N*-(2-cyclohexenyl)aminomethyl]-1-methylindole-2-carboxylate (E9): amine, 2-cyclohexenylamine; elution with 7:3 hexanes-AcOEt, oil; yield 70%; ¹H NMR (300 MHz) δ 1.45-1.75 (m, 4H), 1.95 (m, 2H), 2.05 and 2.22 (2 s, 3H), 3.95 and 4.03 (2 s, 3H), 3.98 (s, 3H), 4.31 and 5.30 (2 m, 1H), [4.92 (d, *J*=18.9 Hz), 5.03 (d, *J*=18.9 Hz), 5.12 (d, *J*=15.3 Hz) and 5.35 (d, *J*=15.3 Hz), 2H], [5.30 (m) and 5.48 (d, *J*=9 Hz), 1H], 5.65 and 5.75 (2 m, 1H), 7.12 (m, 1H), 7.36 (m, 2H), [7.72 (d, J = 8.4 Hz) and 7.83 (d, J = 7.8 Hz), 1H]; ¹³C NMR (75.4 MHz) δ 21.3 and 22.0 (CH₂), 22.7 and 22.8 (CH₃), 24.2 and 24.6 (CH₂), 27.0 and 27.9 (CH₂), 32.1 and 32.2 (CH₃), 38.3 and 44.2 (CH₂), 51.6 and 55.4 (CH), 51.7 (CH₃), 109.9 and 110.4 (CH), 120.4 and 120.9 (CH), 121.0 and 121.4 (C), 121.6 and 122.1 (CH), 123.6 and 124.9 (C), 125.2 and 125.3 (CH), 126.0 (C), 127.7 and 129.0 (CH), 129.4 and 131.5 (CH), 138.7 and 138.8 (C), 162.7 and 162.9 (C), 171.0 and 172.0 (C). Anal. Calcd for C₂₀H₂₄N₂O₃: C, 70.56; H, 7.11; N, 8.23. Found: C, 70.34; H, 7.31; N, 8.02.

Methyl 3-(*N***-Acetyl-***N***-allylaminomethyl)-1-methylindole-2-carboxylate (E14a): amine, allylamine; elution with 6:4 hexanes-AcOEt; yield 68%; mp 92-3°C; ¹H NMR (300 MHz, major rotamer) \delta 2.13 (s, 3H), 3.75 (m, 2H), 3.92 (s, 3H), 4.01 (s, 3H), 5.05 (m, 1H), 5.16 (m, 1H), 5.22 (s, 2H), 5.70 (m, 1H), 7.16 (m, 1H), 7.37 (m, 2H), 7.89 (d,** *J* **= 7.8 Hz, 1H); ¹³C NMR (75.4 MHz, major rotamer) \delta 21.5 (CH₃), 32.1 (CH₃), 37.7 (CH₂), 48.4 (CH₂), 51.7 (CH₃), 109.9 (CH), 115.4 (CH₂), 119.1 (C), 120.7 (CH), 121.9 (CH), 125.5 (CH), 126.4 (C), 126.6 (C), 132.9 (CH), 138.6 (C) 162.7 (C), 170.6 (C). Anal. Calcd for C₁₇H₂₀N₂O₃·1/4H₂O: C, 66.98; H, 6.78; N, 9.19. Found: C, 66.72; H, 6.64; N, 9.11.**

Methyl 3-[*N*-Acetyl-*N*-(2-bromo-2-propenyl)aminomethyl]-1-methylindole-2-carboxylate (E18): amine, 2-bromo-2-propenylamine;⁴ elution with 7:3 hexanes-AcOEt; yield 64%; mp 65-7°C; ¹H NMR (300 MHz, major rotamer) δ 2.14 (s, 3H), 3.95 (s, 3H), 3.96 (s, 2H), 4.03 (s, 3H), 5.22 (s, 2H), 5.63 (m, 1H), 5.70 (m, 1H), 7.18 (m, 1H), 7.37 (m, 2H), 7.88 (d, *J* = 8.1 Hz, 1H); ¹³C NMR (75.4 MHz, major rotamer) δ 21.4 (CH₃), 32.2 (CH₃), 37.6 (CH₂), 51.8 (CH₂), 53.7 (CH₃), 110.0 (CH), 115.5 (CH₂), 118.2 (C), 120.9 (CH), 121.9 (CH), 125.6 (CH), 125.7 (C), 126.8 (C), 128.5 (C), 138.7 (C) 162.6 (C), 170.7 (C). Anal. Calcd for C₁₇H₁₉BrN₂O₃·1/4 H₂O: C, 53.21; H, 5.12; N, 7.30. Found: C, 53.04; H, 4.89; N, 7.23.

Methyl 3-[*N*-Acetyl-*N*-(2-methyl-2-propenyl)aminomethyl]-1-methylindole-2-carboxylate (E19): amine, 2-methyl-2-propenylamine; elution with 1:1 hexanes-AcOEt; yield 65%; mp 90- 1° C; ¹H NMR (300 MHz, major rotamer) δ 1.65 (s, 3H), 2.09 (s, 3H), 3.60 (s, 2H), 3.89 (s, 3H), 4.01 (s, 3H), 4.78 (s, 1H), 4.93 (s, 1H), 5.20 (s, 2H), 7.16 (m, 1H), 7.37 (m, 2H), 7.90 (d, *J* = 8.1 Hz, 1H); ¹³C NMR (75.4 MHz, major rotamer) δ 20.2 (CH₃), 21.3 (CH₃), 32.1 (CH₃), 37.7 (CH₂), 51.2 (CH₂), 51.5 (CH₃), 109.4 (CH₂), 109.9 (CH), 119.1 (C), 120.7 (CH), 121.9 (CH), 125.5 (CH), 126.4 (C), 126.7 (C), 138.6 (C), 139.9 (C), 162.7 (C), 170.8 (C). Anal. Calcd for C₁₈H₂₂N₂O₃: C, 68.77; H, 7.05; N, 8.91. Found: C, 68.41; H, 6.93; N, 8.84.

Methyl 3-(*N*-Allyl-*N*-*tert*-butoxycarbonylaminomethyl)-1-methylindole-2-carboxylate (E14b). Methyl 3-formyl-1-methylindole-2-carboxylate (1.0 g, 4.61 mmol) was allowed to react as above with allylamine (0.69 mL, 9.20 mmol). (Boc)₂O (1.31 g, 5.95 mmol), Et₃N (0.64 mL, 4.61 mmol) and DMAP (0.14 g, 1.14 mmol) were added to the crude amine in anhydrous

CH₂Cl₂ (40 mL). After stirring at rt for 5 h, the reaction mixture was poured into H₂O (25 mL) and washed with 2 N aqueous HCl solution (2 x 25 mL). The solvent was removed and the crude product was chromatographed (95:5 hexanes-AcOEt) to give **E14b** (1.17 g, 71% yield); mp 98-100°C; ¹H NMR (300 MHz) δ 1.50 (br s, 9H), 3.63 (br m, 2H), 3.92 (s, 3H), 4.01 (s, 3H), 5.01 (m, 2H), 5.03 (s, 2H), 5.69 (m, 1H), 7.15 (m, 1H), 7.37 (m, 2H), 7.88 (br m, 1H); ¹³C NMR (75.4 MHz) δ 28.4 (CH₃), 32.1 (CH₃), 39.4 and 41.0 (CH₂), 47.2 (CH₂), 51.6 (CH₃), 79.4 (C), 110.0 (CH), 115.2 (CH₂), 119.7 (C), 120.4 (CH), 121.8 (CH), 125.3 (CH), 126.3 (C), 126.5 (C), 134.0 (CH), 138.7 (C), 155.5 (C), 162.9 (C). Anal. Calcd for C₂₀H₂₆N₂O₄: C, 67.02; H, 7.31; N, 7.82. Found: C, 67.23; H, 7.36; N, 7.76.

2. Preparation of Phenyl Selenoesters

General Procedure. A solution of the respective carboxylic ester (1.0 mmol) and LiOH·H₂O (50 mg, 1.20 mmol) in a 3:1 mixture of THF-H₂O (10 mL) was stirred at 65°C for 5 h. The reaction mixture was concentrated and acidified with aqueous 1 N HCl solution. The precipitated carboxylic acid was collected by filtration. When no solid appeared, the solution was extracted with CH₂Cl₂ (3 x 15 mL), and the combined organic extracts were dried and concentrated. A suspension of the carboxylic acid (1.0 mmol) in anhydrous CH₂Cl₂ (7 mL) was treated with Et₃N (0.27 mL, 2.0 mmol). After 15 min at rt, the mixture was concentrated under reduced pressure to give the respective triethylammonium salt. In another flask, tributylphosphine (1.22 mL, 5.0 mmol) was added under Ar to a solution of PhSeCl (0.96 g, 5.0 mmol) in anhydrous THF (7 mL), and the mixture was stirred at rt for 10 min (yellow solution). The above triethylammonium salt in THF (7 mL) was added to this solution and the resulting mixture was stirred overnight. The reaction mixture was partitioned between Et₂O (25 mL) and H₂O (25 mL) and extracted with Et₂O (3 x 15 mL). The solvent was removed and the crude product was purified. Method of purification, yields, NMR data and elemental analyses are given below.

Se-Phenyl 1-Methyl-3-(3-butenyl)indole-2-carboselenoate (1): flash chromatography (9:1 hexanes-AcOEt); yield 75%; mp 63-5°C; ¹H NMR (300 MHz) δ 2.56 (q, *J* = 6.6 Hz, 2H), 3.36 (m, 2H), 3.86 (s, 3H), 5.05 (dm, *J* = 10.5 Hz, 1H), 5.17 (dq, *J* = 1.8, 1.8, 1.8, 17.1 Hz, 1H), 6.01 (m, 1H), 7.16 (m, 1H), 7.31 (d, *J* = 8.4 Hz, 1H), 7.37 (m, 1H), 7.44 (m, 3H), 7.63 (m, 2H), 7.70 (d, *J* = 8.1 Hz, 1H); ¹³C NMR (75.4 MHz) δ 25.4 (CH₂), 32.3 (CH₃), 35.9 (CH₂), 110.3 (CH), 115.2 (CH₂), 120.2 (CH), 121.1 (CH), 123.5 (C), 126.0 (CH), 126.2 (C), 126.8 (C), 129.1 (CH), 129.4 (CH), 133.3 (C), 136.3 (CH), 137.9 (CH), 138.7 (C), 185.4 (C). Anal. Calcd for C₂₀H₁₉NOSe.1/2H₂O: C, 63.66; H, 5.34; N, 3.71. Found: C, 63.77; H, 5.17; N, 3.44.

Se-Phenyl 3-[N-Allyl-N-(methoxycarbonyl)amino]-1-methylindole-2-carboselenoate (4a):

flash chromatography (8:2 hexanes-AcOEt), oil; yield 68%; ¹H NMR (300 MHz) δ 3.71 (br s, 3H), 3.95 (s, 3H), 4.08 (m, 1H), 4.77 (m, 1H), 5.10 (dm, J = 10.2 Hz, 1H), 5.14 (dq, J = 1.5, 1.5, 1.5, 16.8 Hz, 1H), 6.09 (m, 1H), 7.18 (ddd, J = 1.5, 6, 7.8 Hz, 1H), 7.35-7-45 (m, 5H), 7.55-7.65 (m, 3H); ¹³C NMR (75.4 MHz) δ 32.4 (CH₃), 53.4 (CH₃), 54.7 (CH₂), 110.5 (CH), 119.2 (CH₂), 120.5 (CH), 121.3 (CH), 123.7 (C), 124.4 (C), 125.7 (C), 126.6 (CH), 129.2 (CH), 129.3 (CH), 129.8 (C), 133.0 (CH), 136.5 (CH), 137.2 (C), 156.3 (C), 187.3 (C). Anal. Calcd for C₂₁H₂₀N₂O₃Se: C, 59.02; H, 4.72; N, 6.56. Found: C, 58.67; H, 4.79; N, 6.35.

Se-Phenyl **3**-[*N*-(**2**-Bromo-2-propenyl)-*N*-(methoxycarbonyl)amino]-1-methylindole-2carboselenoate (4b): flash chromatography (9:1 hexanes-AcOEt), oil; yield 60%; ¹H NMR (300 MHz) δ 3.76 and 3.95 (2 s, 3H), 3.93 (s, 3H), 4.23 (br d, *J* = 12.9 Hz, 1H), 5.24 (br d, *J* = 14.7 Hz, 1H), 5.49 (d, *J* = 1.8 Hz, 1H), 5.70 (br s, 1H), 7.20 (t, *J* = 7.5 Hz, 1H), 7.37 (m, 2H), 7.45 (m, 3H), 7.60 (m, 2H), 7.80 (d, *J* = 8.1 Hz, 1H); ¹³C NMR (75.4 MHz) δ 32.3 (CH₃), 53.7 (CH₃), 60.0 (CH₂), 110.4 (CH), 121.1 (CH), 121.3 (CH), 121.7 (CH₂), 123.6 (C), 124.1 (C), 125.3 (C), 126.6 (CH), 128.1 (C), 129.1 (C), 129.3 (CH), 129.4 (CH), 136.4 (CH), 137.0 (C), 156.4 (C), 184.5 (C). Anal. Calcd for C₂₁H₁₉BrN₂O₃Se: C, 49.82; H, 3.78; N, 5.53. Found: 49.75; H, 3.86; N, 5.32.

Se-Phenyl 1-Methyl-3-(4-pentenyl)indole-2-carboselenoate (7): flash chromatography (hexanes); yield 77%; mp 60-1°C; ¹H NMR (300 MHz) δ 1.92 (m, 2H), 2.27 (q, *J* = 7.2 Hz, 2H), 3.26 (m, 2H), 3.85 (s, 3H), 5.02 (dq, *J* = 2.1, 2.1, 2.1, 10.2 Hz, 1H), 5.09 (dq, *J* = 2.1, 2.1, 2.1, 17.1 Hz, 1H), 5.92 (m, 1H), 7.15 (m, 1H), 7.34 (m, 2H), 7.45 (m, 3H), 7.63 (m, 2H), 7.69 (dt, *J* = 0.9, 0.9, 8.1 Hz, 1H); ¹³C NMR (75.4 MHz) δ 25.4 (CH₂), 31.0 (CH₂), 32.3 (CH₃), 34.0 (CH₂), 110.3 (CH), 115.0 (CH₂), 120.1 (CH), 121.1 (CH), 124.3 (C), 126.0 (CH), 126.3 (C), 126.8 (C), 129.1 (CH), 129.4 (CH), 133.2 (C), 136.3 (CH), 138.3 (CH), 138.8 (C), 185.4 (C). Anal. Calcd for C₂₁H₂₁NOSe: C, 65.97; H, 5.54; N, 3.66. Found: C, 66.08; H, 5.72; N, 3.48.

Se-Phenyl **3**-[*N*-Acetyl-*N*-(**2**-cyclohexenyl)aminomethyl]-1-methylindole-2-carboselenoate (**9**): flash chromatography (7:3 hexanes-AcOEt); yield 77%; mp 105-7°C; ¹H NMR (300 MHz) δ 1.51 (m, 1H), 1.71 (m, 2H), 1.85-2.0 (m, 3H), 2.12 and 2.23 (2 s, 3H), 3.85 and 3.96 (2 s, 3H), 4.31 and 5.27 (2 br m, 1H), [5.00 (d, *J*=18.9 Hz), 5.09 (d, *J*=18.9 Hz), 5.27 (d, *J*=15.3 Hz) and 5.50 (d, *J*=15.3 Hz), 2H], 5.27 and 5.49 (2 m, 1H), 5.63 and 5.79 (2 m, 1H), 7.15 (t, *J* = 7.8 Hz, 1H), 7.35 (m, 2H), 7.47 (m, 3H), 7.62 (m, 2H), [7.74 (d, *J* = 8.1 Hz) and 7.84 (d, *J* = 8.1 Hz), 1H]; ¹³C NMR (75.4 MHz) δ 21.3 and 21.9 (CH₂), 22.6 and 23.0 (CH₃), 24.2 and 24.6 (CH₂), 27.0 and 28.1 (CH₂), 32.5 and 33.1 (CH₃), 38.1 and 43.8 (CH₂), 52.3 and 55.9 (CH), 110.5 and 111.1 (CH), 119.3 and 119.4 (C), 121.3 and 121.7 (CH), 122.3 and 122.8 (CH), 125.6 and 126.2 (C), 126.1 and 126.3 (CH), 126.7 and 126.8 (C), 138.0 and 138.9 (CH), 129.7 (CH), 129.9 (CH), 130.5 and 132.1 (CH), 133.7 and 135.8 (C), 136.2 and 136.5 (CH), 138.9 and 139.4 (C), 171.5 and 172.2 (C), 186.0 and 187.0 (C). Anal. Calcd for C₂₅H₂₆N₂O₂Se·1/2H₂O: C, 63.29; H,

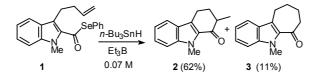
5.74; N, 5.90. Found: C, 63.43; H, 5.61; N, 5.80.

Se-Phenyl 3-[*N*-(3-Butenyl)-*N*-(methoxycarbonyl)amino]-1-methylindole-2-carboselenoate (11): flash chromatography (8:2 hexanes-AcOEt); yield 71%; mp 143-4°C; ¹H NMR (300 MHz) δ 2.47 (m, 2H), 3.52 (m, 1H), 3.71 (s, 3H), 3.96 (s, 3H), 4.26 (m, 1H), 5.06 (m, 2H), 5.78 (m, 1H), 7.21 (ddd, *J* = 1.5, 6.6, 8.1 Hz, 1H), 7.45 (m, 3H), 7.60 (m, 5H); ¹³C NMR (75.4 MHz) δ 32.4 (CH₃), 32.9 (CH₂), 51.7 (CH₂), 53.4 (CH₃), 110.6 (CH), 116.8 (CH₂), 120.2 (CH), 121.5 (CH), 123.9 (C), 124.5 (C), 125.6 (C), 126.6 (CH), 129.2 (CH), 129.3 (CH), 129.7 (C), 134.7 (CH), 137.2 (C), 136.5 (CH), 1.156.3 (C), 184.4 (C). Anal. Calcd for C₂₂H₂₂N₂O₃Se: C, 59.87; H, 5.02; N, 6.35. Found: 59.88; H, 4.83; N, 6.22.

Se-Phenyl **3**-(*N*-Acetyl-*N*-allylaminomethyl)-1-methylindole-2-carboselenoate (14a): crystallization on standing in the fridge, then washed with hexanes; yield 85%; mp 120-2°C; ¹H NMR (300 MHz, major rotamer) δ 2.14 (s, 3H), 3.73 (br s, 2H), 3.87 (s, 3H), 5.13 (m, 2H), 5.32 (s, 2H), 5.70 (m, 1H), 7.19 (m, 1H), 7.38 (m, 2H), 7.47 (m, 3H), 7.61 (m, 2H), 7.86 (d, *J* = 8.4 Hz, 1H); ¹³C NMR (75.4 MHz, major rotamer) δ 21.5 (CH₃), 32.1 (CH₃), 38.0 (CH₂), 48.6 (CH₂), 110.1 (CH), 116.4 (CH₂), 117.1 (C), 121.0 (CH), 122.1 (CH), 125.8 (CH), 126.1 (C), 126.4 (C), 129.3 (CH), 129.5 (CH), 132.6 (CH), 135.8 (CH), 136.4 (C), 138.3 (C), 170.7 (C), 187.2 (C). Anal. Calcd for C₂₂H₂₂N₂O₂Se·1/2H₂O: C, 60.83; H, 5.34; N, 6.45. Found: C, 60.83; H, 5.06; N, 6.37.

Se-Phenyl **3-**(*N*-Allyl-*N*-*tert*-butoxycarbonylaminomethyl)-1-methylindole-2carboselenoate (14b): flash chromatography (9:1 hexanes-AcOEt); yield 76%; mp 102-3°C; ¹H NMR (300 MHz) δ 1.52 (s, 9H), 3.63 (br s, 2H), 3.86 (s, 3H), 5.03 (m, 2H), 5.16 (s, 2H), 5.69 (m, 1H), 7.17 (m, 1H), 7.36 (m, 2H), 7.46 (m, 3H), 7.60 (m, 2H), 7.88 (br s, 1H); ¹³C NMR (75.4 MHz) δ 28.5 (CH₃), 32.0 (CH₃), 39.6 (CH₂), 47.3 (CH₂), 79.7 (C), 110.1 (CH), 116.1 (CH₂), 117.1 (C), 120.8 (CH), 122.0 (CH), 125.7 (CH), 126.3 (C), 126.5 (C), 129.3 (CH), 129.5 (CH), 133.7 (CH), 135.9 (CH, C), 138.4 (C), 155.5 (C), 187.0 (C). Anal. Calcd for C₂₅H₂₈N₂O₃Se: C, 62.11; H, 5.84; N, 5.79. Found: C, 62.13; H, 5.86; N, 5.72.

Se-Phenyl **3-**[*N*-Acetyl-*N*-(2-bromo-2-propenyl)aminomethyl]-1-methylindole-2carboselenoate (18): flash chromatography (8:2 hexanes-AcOEt); yield 85%; mp 93-5°C; ¹H NMR (300 MHz, major rotamer) δ 2.18 (s, 3H), 3.87 (s, 3H), 3.93 (s, 2H), 5.36 (s, 2H), 5.60 (m, 1H), 5.67 (m, 1H), 7.18 (ddd, *J* = 1.2, 6.6, 8.1 Hz, 1H), 7.37 (m, 2H), 7.46 (m, 2H), 7.62 (m, 3H), 7.82 (d, *J* = 8.4 Hz, 1H); ¹³C NMR (75.4 MHz, major rotamer) δ 21.6 (CH₃), 32.1 (CH₃), 37.8 (CH₂), 53.8 (CH₂), 110.2 (CH), 115.5 (C), 117.4 (CH₂), 121.2 (CH), 121.8 (CH), 125.9 (CH), 126.0 (C), 126.3 (C), 128.3 (C), 129.4 (CH), 129.5 (CH), 135.9 (CH), 136.5 (C), 138.3 (C) 170.8 (C), 187.2 (C). Anal. Calcd for C₂₂H₂₁BrN₂O₂Se: C, 52.40; H, 4.20; N, 5.56. Found: C, 52.38; H, 4.16; N, 5.45.

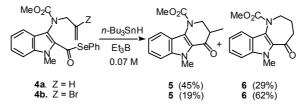

Se-Phenyl 3-[N-Acetyl-N-(2-methyl-2-propenyl)aminomethyl]-1-methylindole-2-

carboselenoate (19): flash chromatography (75:25 hexanes-AcOEt); yield 72%; mp 109-11 °C; ¹H NMR (300 MHz, major rotamer) δ 1.64 (s, 3H), 2.11 (s, 3H), 3.58 (s, 2H), 3.86 (s, 3H), 4.80 (s, 1H), 4.94 (s, 1H), 5.34 (s, 2H), 7.18 (m, 1H), 7.35 (m, 2H), 7.45 (m, 3H), 7.59 (m, 2H), 7.87 (d, *J* = 7.8 Hz, 1H); ¹³C NMR (75.4 MHz, major rotamer) δ 20.2 (CH₃), 21.4 (CH₃), 32.0 (CH₃), 38.1 (CH₂), 51.5 (CH₂), 110.0 (CH), 110.5 (CH₂), 116.4 (C), 121.0 (CH), 122.1 (CH), 125.8 (CH), 126.2 (C), 126.4 (C), 129.5 (CH), 129.6 (CH), 135.8 (CH), 136.4 (C), 138.3 (C), 139.8 (C), 171.0 (C), 187.3 (C). Anal. Calcd for C₂₃H₂₄N₂O₂Se: C, 62.87; H, 5.51; N, 6.38. Found: C, 62.84; H, 5.30; N, 6.21.

3. Cyclization Reactions

General Procedure. *n*-Bu₃SnH (0.16 mL, 0.60 mmol) and Et₃B (1 M in hexanes, 0.60 mmol) were added to a solution of the respective phenyl selenoester (0.30 mmol, previously dried azeotropically with anhydrous C_6H_6) in anhydrous C_6H_6 (see the hydride concentration below). The reaction mixture was stirred at rt for 2-7 h with constant supply of dry air provided by passing compressed air through a short tube of Drierite. The reaction mixture was concentrated. The residue was eluted with CH_2Cl_2 through a KF/SiO₂ column to remove tin impurities⁵ (workup A). Alternatively, the residue was partitioned between hexanes (15 mL) and acetonitrile (15 mL), and the polar layer was washed with hexanes (3 x 15 mL) (workup B). The solvent was removed, and the crude product was chromatographed. Hydride concentration, eluents, yields, NMR data, elemental analyses and HRMS are given below.

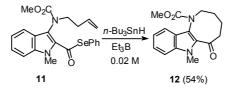
From selenoester 1: concn 0.07 M; workup A; 95:5 hexanes-AcOEt



2,9-Dimethyl-2,3,4,9-tetrahydrocarbazol-1-one (2): yield 62%; mp 74-5°C; ¹H NMR (300 MHz) δ 1.29 (d, J = 7.2 Hz, 3H), 1.98 (m, 1H), 2.30 (dddd, J = 3.9, 4.5, 4.8, 13.2 Hz, 1H), 2.68 (m, 1H), 2.98 (ddd, J = 4.5, 9.6, 16.8 Hz, 1H), 3.11 (ddd, J = 4.5, 4.8, 16.8 Hz, 1H), 4.07 (s, 3H), 7.14 (m, 1H), 7.37 (m, 2H), 7.65 (dt, J = 0.9, 0.9, 8.1 Hz, 1H); ¹³C NMR (100.6 MHz) δ 15.3 (CH₃), 20.7 (CH₂), 31.5 (CH₃), 32.8 (CH₂), 43.2 (CH), 110.2 (CH), 119.9 (CH), 121.2 (CH), 124.6 (C), 126.4 (CH), 128.5 (C), 130.1 (C), 139.8 (C), 195.2 (C). Anal. Calcd for C₁₄H₁₅NO: C, 78.84; H, 7.04; N, 6.57. Found: C, 78.65; H, 7.18; N, 6.35.

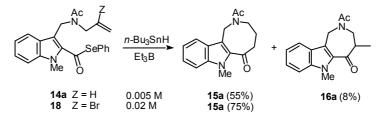
5-Methyl-7,8,9,10-tetrahydro-5*H***-cyclohepta[***b***]indol-6-one (3):⁶ yield 11%; ¹H NMR (300 MHz) \delta 1.94 (m, 4H), 2.82 (m, 2H), 3.10 (m, 2H), 4.02 (s, 3H), 7.15 (m, 1H), 7.37 (m, 2H), 7.69 (dt,** *J* **= 0.9, 0.9, 8.1 Hz, 1H); ¹³C NMR (100.6 MHz) \delta 21.8 (CH₂), 22.9 (CH₂), 25.3 (CH₂),**

31.9 (CH₃), 42.6 (CH₂), 110.2 (CH), 119.8 (CH), 120.8 (CH), 125.9 (C), 126.0 (CH), 126.8 (C), 133.8 (C), 139.1 (C), 196.2 (C).


From selenoesters 4: concn 0.07 M; workup B; 9:1 hexanes-AcOEt.

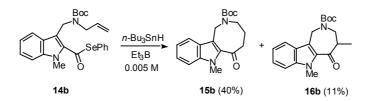
Methyl 3,5-Dimethyl-4-oxo-2,3,4,5-tetrahydropyrido[3,2-*b*]indole-1-carboxylate (5): yield 45% (from 4a), 19% (from 4b); mp 82-4°C; ¹H NMR (300 MHz) δ 1.26 (d, J = 6.9 Hz, 3H), 2.82 (m, 1H), 3.84 (dd, J = 9.3, 13.2 Hz, 1H), 3.90 (s, 3H), 4.05 (s, 3H), 4.39 (dd, J = 4.2, 12.9 Hz, 1H), 7.13 (ddd, J = 1.2, 6.9, 8.4 Hz, 1H), 7.32 (dt, J = 0.9, 0.9, 8.4 Hz, 1H), 7.40 (ddd, J = 1.2, 6.6, 8.4 Hz, 1H), 7.80 (d, J = 8.4 Hz, 1H); ¹³C NMR (75.4 MHz) δ 12.9 (CH₃), 31.3 (CH₃), 42.5 (CH), 53.2 (CH₂), 53.3 (CH₃), 110.2 (CH), 118.7 (C), 120.2 (CH), 121.8 (C), 124.1 (CH), 127.1 (CH), 129.9 (C), 139.0 (C), 154.4 (C), 190.7 (C). Anal. Calcd for C₁₅H₁₆N₂O₃: C, 66.16; H, 5.92; N, 10.29. Found: C, 66.20; H, 6.08; N, 10.00.

Methyl 6-Methyl-5-oxo-3,4,5,6-tetrahydro-2*H*-azepino[3,2-*b*]indole-1-carboxylate (6): oil; yield 29% (from 4a), 62% (from 4b); ¹H NMR (300 MHz, HSQC, HMBC) δ 1.85-2.45 (br m, 2H, H-3), 2.78 (br m, 2H, H-4), 3.10-3.30 (br m, 1H, H-2), 3.74 and 3.90 (2 br s, 3H, OMe), 4.03 (s, 3H, NMe), 4.45-4.70 (br m, 1H, H-2), 7.17 (m, 1H, H-9), 7.39 (m, 2H, H-7,8), [7.52 (d, J = 8.1 Hz) and 7.60 (br m), 1H, H-10]; ¹H NMR (300 MHz, 50 °C) δ 2.16 (br m, 2H, H-3), 2.77 (t, J = 6.6 Hz, 2H, H-4), 3.40-4.0 (br m, 2H, H-2), 3.76 (br s, 3H, OMe), 4.02 (s, 3H, NMe), 7.16 (m, 1H, H-9), 7.37 (m, 2H; H-7,8), 7.54 (d, J = 7.8 Hz, 1H, H-10); ¹³C NMR (75.4 MHz, HSQC, HMBC) δ 24.4 (C-3), 31.7 (NMe), 40.8 (C-4), 48.2 (C-2), 53.3 (OMe), 110.4 (C-7), 120.7 (C-9), 121.2 (C-10), 121.7 (C-10a), 126.4 (C-8), 127.5 (C-10b), 128.6 (C-5a), 138.1 (C-5b), 155.9 (NCO), 194.0 (C-5). Anal. Calcd for C₁₅H₁₆N₂O₃·3/4 H₂O: C, 63.03; H, 6.17; N, 9.80. Found: C, 63.42; H, 5.97; N, 9.49.


From selenoester 11: concn 0.02 M; workup B; 9:1 hexanes-AcOEt.

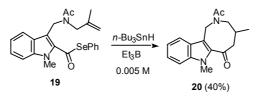
Methyl 7-Methyl-6-oxo-2,3,4,5,6,7-hexahydroazocino[**3,2-***b*]**indole-1-carboxylate (12):** yield 54%; mp 112-4°C; ¹H NMR (400 MHz, HSQC, HMBC) δ 1.45-1.85 (br m, 2H, H-4), 1.90 (br m, 2H, H-3), 2.62 and 3.25 (2 br m, 2H, H-5), 3.20 and 4.47 (2 br m, 2H, H-2), 3.66 and 3.90 (2 s, 3H, Me), 4.09 and 4.11 (2 s, 3H, NMe), 7.18 (m, 1H, H-10), 7.42 (m, 2H, H-8,9), 7.46 (d, *J* =

8.1 Hz, 1H, H-11); ¹³C NMR (100.6 MHz, HSQC, HMBC) δ 23.0 (C-3), 23.8 (C-4), 32.6 (NMe), 40.7 (C-5), 47.6 (C-2), 53.3 (Me), 110.5 (C-8), 120.0 (C-11), 121.0 (C-10), 122.9 (C-11b), 123.2 (C-11a), 126.5 (C-9), 131.0 (C-6a), 138.0 (C-7a), 156.4 (NCO), 194.3 (CO). Anal. Calcd for C₁₆H₁₈N₂O₃: C, 67.12; H, 6.34; N, 9.78. Found: C, 66.90; H, 6.37; N, 9.60.


From selenoesters 14a (concn 0.005 M) or 18 (concn 0.02 M); workup B; 3:7 hexanes-AcOEt.

2-Acetyl-7-methyl-1,2,3,4,5,7-hexahydroazocino[**4,3-***b***]indol-6-one (15a): oil; yield 55% (from 14a), 75% (from 18); ¹H NMR (300 MHz, HSQC, HMBC) \delta 1.94 and 2.16 (2 s, 3H, Me), 2.01 and 2.11 (2 m, 2H, H-4), 2.91 and 3.02 (2 m, 2H, H-5), [3.53 (t,** *J* **= 6 Hz) and 3.79 (t,** *J* **= 6 Hz), 2H, H-3], 3.86 and 4.05 (2 s, 3H, NMe), 4.92 and 5.13 (2 s, 2H, H-1), 7.20 (m, 1H, H-10), 7.40 (m, 2H, H-8,9), [7.61 (d,** *J* **= 8.1 Hz) and 7.82 (d,** *J* **= 8.1 Hz), 1H, H-11]; ¹³C NMR (75.4 MHz, HSQC, HMBC) \delta 21.7 and 22.1 (Me), 24.6 and 26.5 (C-4), 31.7 and 32.7 (NMe), 41.0 and 42.2 (C-5), 42.1 and 45.8 (C-1), 45.5 and 46.7 (C-3), 110.2 and 110.5 (C-8), 117.8 and 118.4 (C-11b), 119.3 and 121.0 (C-11), 120.7 and 120.8 (C-10), 124.9 (C-11a), 125.5 and 126.5 (C-9), 133.4 and 134.1 (C-6a), 138.1 and 138.8 (C-6b), 169.9 and 171.0 (NCO), 194.2 and 198.1 (C-6); HRMS [M+H]⁺ calcd for C₁₆H₁₉N₂O₂ 271.1441, found 271.1447.**

2-Acetyl-4,6-dimethyl-2,3,4,6-tetrahydro-*1H*-azepino[4,3-*b*]indol-5-one (16a): oil; yield 8% (from 14a); ¹H NMR (300 MHz) δ [1.31 (d, *J* = 6.6 Hz) and 1.34 (d, *J* = 6.9 Hz), 3H, Me], 2.12 and 2.14 (2 s, 3H, MeCO), 3.27 (m, 1H, H-4), [3.47 (dd, *J* = 11.1, 13.2 Hz), 3.66 (dd, *J* = 11.4, 13.5 Hz) and 3.80 (m), 2H, H-3], 3.99 and 4.00 (2 s, 3H, NMe), [4.73 (d, *J* = 16.8 Hz), 4.82 (d, *J* = 17.1 Hz), 5.05 (d, *J* = 16.8 Hz) and 5.59 (d, *J* = 16.8 Hz), 2H, H-1], 7.21 (m, 1H, H-9), 7.35-7.45 (m, 2H, H-7,8), [7.67 (dt, *J* = 1.5, 1.5, 7.8 Hz) and 7.80 (dt, *J* = 1.2, 1.2, 7.8 Hz), 1H, H-10]; HRMS [M+H]⁺ calcd for C₁₆H₁₉N₂O₂ 271.1441, found 271.1449.


From selenoester 14b: concn 0.005 M; workup B; 9:1 hexanes-AcOEt.

tert-Butyl 7-Methyl-6-oxo-1,3,4,5,6,7-hexahydroazocino[4,3-*b*]indole-2-carboxylate (15b): oil; yield 40%; ¹H NMR (300 MHz) δ 1.22 and 1.47 (2 s, 9H), 2.04 (m, 2H), 2.96 (m, 2H), 3.49 and 3.60 (2 m, 2H), 3.93 and 3.97 (2 s, 3H), 4.87 and 4.97 (2 s, 2H), 7.17 (m, 1H), 7.38 (m, 2H), [7.68 (d, *J* = 8.1 Hz) and 7.76 (d, *J* = 7.8 Hz), 1H]; ¹³C NMR (75.4 MHz) δ 25.5 and 25.9 (CH₂), 28.3 and 28.4 (CH₃), 32.0 and 32.3 (CH₃), 41.6 and 43.2 (CH₂), 41.6 and 43.9 (CH₂), 44.6 and 47.1 (CH₂), 80.0 (C), 110.2 (CH), 118.7 and 122.0 (C), 120.2 and 120.7 (CH), 120.4 and 120.6 (CH), 124.9 (C), 125.6 and 126.9 (CH), 133.5 and 134.0 (C), 138.3 and 138.6 (C), 154.9 and 155.1 (C), 196.2 and 197.3 (C); HRMS [M+Na]⁺ calcd for C₁₉H₂₄N₂NaO₃ 351.1679, found 351.1674.

tert-Butyl **4,6**-Dimethyl-5-oxo-3,**4**,**5**,**6**-tetrahydro-*1H*-azepino[**4**,**3**-*b*]indole-2-carboxylate (**16b**): oil; yield 11%; ¹H NMR (300 MHz) δ 1.28 (d, *J* = 6.9 Hz, 3H), 1.38 and 1.46 (2 s, 9H), 3.19 (m, 1H), [3.45 (m) and 3.72 (dd, *J* = 3.9, 13.8 Hz), 2H], 3.96 and 3.98 (2 s, 3H), [4.72 (d, *J* = 16.5 Hz), 4.87 (d, *J* = 17.1 Hz), 5.13 (d, *J* = 16.8 Hz) and 5.18 (d, *J* = 16.5 Hz), 2H], 7.19 (m, 1H), 7.40 (m, 2H), 7.65 (m, 1H); ¹³C NMR (75.4 MHz) δ 14.4 and 14.9 (CH₃), 28.3 and 28.4 (CH₃), 32.1 (CH₃), 42.1 and 42.3 (CH₂), 45.9 and 46.5 (CH), 48.3 and 48.6 (CH₂), 80.2 (C), 110.5 and 110.7 (CH), 120.5 and 120.6 (CH), 120.7 and 121.0 (CH), 122.9 and 123.2 (C), 124.9 (C), 126.4 and 126.5 (CH), 133.2 (C), 139.2 (C), 155.0 (C), 196.4 and 196.9 (C); HRMS [M+Na]⁺ calcd for C₁₉H₂₄N₂NaO₃ 351.1679, found 351.1676.

From selenoester 19: concn 0.005 M; workup B; 4:6 hexanes-AcOEt.

2-Acetyl-4,7-dimethyl-1,2,3,4,5,7-hexahydroazocino[**4,3-***b*]**indol-6-one** (**20**): oil; yield 40%; ¹H NMR (400 MHz, HSQC, HMBC) δ [1.04 (d, *J* = 7.2 Hz) and 1.05 (d, *J* = 6.9 Hz), 3H, Me], 1.96 and 2.17 (2s, 3H, COMe), 2.32 and 2.54 (2 m, 1H, H-4), [2.74 (dd, *J* = 2.7, 14.4 Hz), 2.90 (m) and 3.07 (dd, *J* = 4.5, 13.5 Hz), 2H, H-5], [3.18 (dd, *J* = 9.6, 15.3 Hz), 3.42 (dd, *J* = 10.8, 13.5 Hz), 3.50 (dd, *J* = 4.2, 15 Hz), and 3.71 (dd, *J* = 4.2, 13.8 Hz), 2H, H-3], 3.87 and 4.06 (2 s, 3H, NMe), [4.90 (d, *J* = 16.8, Hz), 4.95 (d, *J* = 16.8, Hz), 5.09 (d, *J* = 15.6 Hz), and 5.20 (d, *J* = 15.6 Hz), 2H, H-1], 7.20 (m, 1H, H-10), 7.40 (m, 2H, H-8,9), [7.61 (d, *J* = 8.1 Hz) and 7.79 (d, *J* = 8.1 Hz), 1H, H-11]; ¹³C NMR (100.6 MHz, HSQC, HMBC) δ 18.2 and 19.1 (Me), 21.7 and 22.2 (MeCO), 31.0 and 32.6 (C-4), 31.7 and 32.7 (NMe), 41.8 and 46.0 (C-1), 48.0 and 49.9 (C- 5), 50.7 and 52.6 (C-3), 110.3 and 110.6 (C-8), 117.7 and 118.1 (C-11b), 119.3 and 120.8 (C-11), 120.9 and 121.0 (C-10), 124.9 and 126.5 (C-11a), 125.5 and 126.5 (C-9), 134.0 and 134.6 (C-6a), 138.2 and 138.9 (C-6b), 170.2 and 170.9 (NCO), 193.1 and 197.0 (C-6); HRMS $[M+H]^+$ calcd for $C_{17}H_{21}N_2O_2$ 285.1598, found 285.1592.

References

- 1. Davies, J. R.; Kane, P. D.; Moody, C. J.; Slawin, A. M. Z. J. Org. Chem. 2005, 75, 5840-5851.
- 2. Unangst, P. C. J. Heterocyclic Chem. 1983, 20, 495-499.
- 3. Bennasar, M.-L.; Roca, T.; Ferrando, F. J. Org. Chem. 2005, 70, 9077-9080.
- 4. Bottini, A. T.; Dev, V.; Klinck, J. Org. Synth. 1963, 43, 6-9.
- 5. Harrowven, D. C.; Guy, I. L. Chem. Commun. 2004, 1968-1969.
- 6. Shioiri, T.; Ishizumi, K.; Yamada, S.-I. Chem. Pharm. Bull. 1967, 15, 1010-1014.

4. NMR Data of Aldehydes.

1-Methyl-3-(4-pentenyl)indole-2-carboxaldehyde (8): ¹H NMR (300 MHz) δ 1.85 (m, 2H), 2.15 (m, 2H), 3.08 (m, 2H), 4.06 (s, 3H), 5.02 (m, 2H), 5.83 (m, 1H), 7.15 (m, 1H), 7.39 (m, 2H), 7.71 (d, *J* = 8.1 Hz, 1H), 10.13 (s, 1H).

3-[*N*-Acetyl-*N*-(2-cyclohexenyl)aminomethyl]-1-methylindole-2-carboxaldehyde (10): ¹H NMR (300 MHz) δ 1.50 (m, 2H), 1.69 (m, 2H), 1.92 (m, 2H), 2.11 and 2.23 (2 s, 3H), 4.06 (s, 3H), 4.31 and 5.30 (2 br m, 1H), [4.86 (br s), 5.00 (d, *J*=15.9 Hz), 5.37 (d, *J*=15.6 Hz) and 5.45 (br s), 2H], 5.07 and 5.42 (2 m, 1H), 5.50 and 5.78 (2 m, 1H), 7.15 (t, *J* = 7.8 Hz, 1H), 7.38 (m, 2H), [7.72 (d, *J* = 9 Hz) and 7.86 (d, *J* = 8.4 Hz), 1H], 10.25 (s, 1H).

3-[*N*-(**3**-Butenyl)-*N*-(methoxycarbonyl)amino]-1-methylindole-2-carboxaldehyde (13): ¹H NMR (300 MHz) δ 2.35 (q, *J* = 6.6 Hz, 2H), 3.63 (br s, 3H), 3.79 (m, 2H), 4.09 (s, 3H), 5.04 (m, 2H), 5.74 (m, 1H), 7.20 (m, 1H), 7.42 (m, 2H), 7.57 (d, *J* = 7.8 Hz, 1H), 9.95 (s, 1H).

3-(N-Acetyl-N-allylaminomethyl)-1-methylindole-2-carboxaldehyde (17a): ¹H NMR (300 MHz, major rotamer) δ 2.14 (s, 3H), 3.79 (m, 2H), 4.09 (s, 3H), 5.14 (s, 2H), 5.24 (m, 2H), 5.73 (m, 1H), 7.18 (m, 1H), 7.42 (m, 2H), 7.85 (d, *J* = 8.4 Hz, 1H), 10.20 (s, 1H).

3-(N-Allyl-*N-tert***-butoxycarbonylaminomethyl)-1-methylindole-2-carboxaldehyde** (17b): ¹H NMR (300 MHz) δ 1.45 (s, 9H), 3.64 (br s, 2H), 4.02 (s, 3H), 4.91 (s, 2H), 5.00 (dq, J = 1.5, 17.1 Hz, 1H), 5.07 (dm, J = 10.2 Hz, 1H), 5.65 (m, 1H), 7.11 (m, 1H), 7.34 (m, 2H), 7.79 (br d, J = 6.6 Hz, 1H), 10.13 (s, 1H).

3-[*N*-Acetyl-*N*-(2-methyl-2-propenyl)aminomethyl]-1-methylindole-2-carboxaldehyde (21): ¹H NMR (300 MHz) δ 1.69 (s, 3H), 2.12 (s, 3H), 3.66 (s, 2H), 4.09 (s, 3H), 4.83 (s, 1H), 5.00 (s, 1H), 5.13 (s, 2H), 7.18 (m, 1H), 7.41 (m, 2H), 7.84 (d, *J* = 8.1 Hz, 1H), 10.17 (s, 1H).