SUPPORTING INFORMATION

Synthesis and size-dependent exchange bias in inverted core-shell MnO|Mn₃O₄ nanoparticles

German Salazar-Alvarez^{a,*}, Jordi Sort^b, Santiago Suriñach^c, M. Dolors Baró^c, and Josep Nogués^d

S1. XPS Analysis of the samples

Fig. S1 XPS Mn (2p) core level spectra of various samples.

Figure S1 shows that the absorption edges of the Mn 2p3/2 and 2p1/2 lines are centered around 641 and 653 eV, respectively. The position of the lines indicates that the oxidation state of Mn at the surface is a mixture of Mn (III) and Mn (II) (in lower percentage). The ratio of cations indicates a composition close to Mn₃O₄.^{R1-R3}

S2. Temperature dependence of the loop shift and coercivity

Fig. S2 Variation of (a) the loop shift, H_E , and (b) the coercivity, H_C , after cooling the samples under H_{FC} = 50 kOe from 150 K with the core size, D_{MnO} , and temperature.

Figure S2 presents the dependence of exchange bias, H_E , and coercivity, H_C , with the temperature. As the temperature is increased, H_E and H_C decay as the transition temperature of the ferrimagnetic phase, T_C ~43 K, is approached. In all cases, H_E and H_C vanish above 50K.

R1 Langell, M.A.; Hutchings, C.W.; Carson, G.A.; Nassir, M.H.; J. Vac. Sci. Technol. A 1996, 14, 1656.

R2 Kurata, H.; Colliex, C. Phys. Rev. B 1993, 48, 2102.

R3 Oku, M.; Hirokawa, K.; Ikeda, S. J. Electron Spectrosc. Relat. Phenom. 1975, 7, 465.