Palladium-Catalyzed Stereoselective Formation of α-O-Glycosides

Brandon P. Schuff, Gregory J. Mercer, and Hien M. Nguyen*

Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT 59717

Supporting Information

Methods and Reagents. All reactions were performed in oven-dried Schlenk flasks fitted with glass stoppers under a positive pressure of argon. Organic solutions were concentrated by rotary evaporation below 40 °C at 25 torr. Analytical thin-layer chromatography (TLC) was routinely used to monitored the progress of all reactions and performed using precoated glass plates with 230-400 mesh silica gel impregnated with a fluorescent indicator (250 nm). Visualization was achieved using UV light, iodine, or ceric ammonium molybdenate. Flash chromatography was performed and employed 230-400 mesh silica gel. Dichloromethane and toluene were distilled from calcium hydride under an argon atmosphere at 760 torr. Buchwald's biaryl phosphine ligands, $Pd(CH_3CN)_2Cl_2$ and $Pd(PhCN)_2Cl_2$ were purchased from Strem Chemicals. All other chemicals were obtained from commercial vendors and used without further purification.

Instrumentation. All proton (¹H) and carbon (¹³C) nuclear magnetic resonance spectra were recorded on a Bruker 300 (300 MHz and 75 MHz) or Bruker 500 (500 MHz and 125 MHz) NMR spectrometer. Chemical shifts are expressed in parts per million (δ scale) downfield from tetramethylsilane and are referenced to the residual protium in the NMR solvent (CDCl₃: δ 7.26 ppm, δ 77.23 ppm; C₆D₆: δ 7.16 ppm, δ 128.39 ppm). Data are presented as follows: chemical shift, multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, and bs = broad singlet), integration, and coupling constant in hertz (Hz). Infrared (IR) spectra were obtained using a Jasco FT/IR-4100 spectrophotometer, and absorption frequencies are reported in cm⁻¹. High resolution (ESI) mass spectrometry was performed by the mass spectrometry laboratory at Montana State University.

General procedure for the synthesis of glycal imidates:

Preparation of glucal imidate 4. A 50 mL oven-dried Schlenk flask was charged with glucal **32** (480 mg, 2.58 mmol, 1 equiv) and CH_2Cl_2 (15 mL). The solution was cooled to 0 °C, and trichloroacetonitrile (0.78 mL, 7.74 mmol, 3 equiv) and DBU (0.12 mL, 0.77 mmol, 0.3 equiv) were sequentially added to the solution. The resulting mixture was stirred at 0 °C for 1 h and concentrated. The residue was purified by silica gel flash chromatography (5/1, hexane/ethyl acetate with 1% triethylamine) to give **4** (644 mg, 76%) as a white solid.

 $\mathbf{R}_{\mathbf{f}} = 0.68 (5/1, \text{Hexane/Ethyl Acetate})$ **MP:** 72 °C

¹**H** NMR (CDCl₃, 500 MHz): $\delta = 8.35$ (s, 1H), 6.39 (d, J = 6 Hz, 1H), 5.54 (d, J = 7.5 Hz, 1H), 4.89 (dd, J = 6.0, 2.0 Hz, 1H), 4.18 (dd, J = 10.0, 8.0 Hz, 1H), 3.99-3.97 (m, 1H), 3.88-3.83 (m,

1H), 1.51 (s, 3H), 1.40 (s, 3H).

¹³C NMR (CDCl₃, 125 MZ): $\delta = 162.2, 145.9, 99.9, 99.4, 73.9, 70.0, 69.8, 61.7, 28.8, 19.0$ IR (film, cm⁻¹): v = 3337, 2995, 2951, 2890, 2870, 1664, 1641, 1333, 1266, 1235, 1109, 1093, 1062, 1015, 992, 796.

General procedure for the synthesis of *O*-aryl-glycosides:

Preparation of *O***-aryl-glycoside 5.** A 10 mL oven-dried Schlenk flask was charged with $Pd(PhCN)_2Cl_2$ (1.9 mg, 0.005 mmol, 2.5 mol%), DTTBP (2.1 mg, 0.005 mmol, 2.5% mol), and CH_2Cl_2 (0.5 mL). The resulting solution was stirred at room temperature for 3 h, 1-naphthol (58 mg, 0.4 mmol, 2 equiv), glucal imidate 4 (66 mg, 0.2 mmol, 1 equiv), and CH_2Cl_2 (0.5 mL) were sequentially added to the solution. The resulting mixture was stirred for 3 h, diluted with benzene (1 mL), and purified by silica gel flash chromatography (15/1, hexane/ethyl acetate) to give 5 (84%, α : β = 20:1) as a white solid.

 $\mathbf{R}_{\mathbf{f}} = 0.52 \ (8/1, \text{Hexane/Ethyl Acetate})$

MP: 134.7° C – 134.9° C

¹**H** NMR (CDCl₃, 500 MHz): $\delta = 8.21$ (dd, J = 6.5, 3.0 Hz, 1H), 7.79 (dd, J = 3.5, 3.0 Hz, 1H), 7.51-7.45 (m, 3H), 7.37 (t, J = 8.0 Hz, 1H), 7.14 (d, J = 7.5 Hz, 1H), 6.20 (d, J = 10.0 Hz, 1H), 5.98 (dt, J = 10.0, 2.5 Hz, 1H), 5.85 (s, 1H), 4.29 (dd, J = 9.0, 1.0 Hz, 1H), 3.96-3.91 (m, 1H), 3.87-3.78 (m, 2H), 1.54 (s, 3H).

¹³C NMR (CDCl₃, 125 MHz): δ = 150.0, 134.6, 132.7, 127.5, 126.4, 126.2, 125.9, 125.8, 125.5, 122.0, 121.8, 108.8, 99.9, 93.7, 67.5, 66.2, 62.9, 29.2, 19.0

IR (film, cm⁻¹): v = 3051 (w), 2992 (w), 2935 (w), 2878 (w), 1578 (w), 1396 (m), 1375 (m), 1264 (m), 1084 (s), 1081 (s), 935 (w), 858 (m), 792 (w), 771 (m).

HRMS (ESI): calc. for C₁₉H₂₀O₅Na [M+Na] 335.1254; found: 335.1250.

 $\mathbf{R_f} = 0.40 (5/1, \text{Hexane/Ethyl Acetate})$ MP: 107.1° C – 108.5° C

¹**H NMR (CDCl₃, 500 MHz):** $\delta = 6.97$ (d, J = 8.5 Hz, 2H), 6.81 (d, J = 9.0 Hz, 2H), 6.10 (d, J = 10.0 Hz, 1H), (dt, J = 10.0, 2.5 Hz, 1H), 5.51 (s, 1H), 4.22 (d, 7.5 Hz, 1H), 3.88 – 3.79 (m, 3H), 3.75 (s, 3H), 1.51 (s, 3H), 1.42 (s, 3H).

¹³C NMR (CDCl₃, 75 MHz): $\delta = 155.1, 151.2, 132.5, 126.0, 118.5, 114.6, 100.0, 94.4, 67.5, 65.8, 63.0, 55.7, 29.2, 19.0.$

IR (film, cm⁻¹): v = 3054 (w), 2993 (m), 2941 (m), 2918 (m), 2868 (m), 2837 (m), 1508 (s), 1375 (m), 1219 (s), 1093 (m), 1031 (m), 993 (s), 859 (m), 822 (s)

HRMS (ESI): calc. for C₁₆H₂₁O₅ [M+] 293.1384; found: 293.1383.

¹**H** NMR (CDCl₃, 500 MHz): $\delta = 7.71$ (d, J = 7.5 Hz, 2H), 7.48 (t, J = 7 Hz, 1H), 7.40 (t, J = 7.5 Hz, 2H), 7.04 (d, J = 8.0 Hz, 2H), 6.94 (d, J = 8.0 Hz, 2H), 6.58 (d, J = 7.0 Hz, 1H), 6.10 (d, J = 10.0 Hz, 1H), 5.86-5.79 (m, 1H), 5.60 (s, 1H), 5.00 (dd, J = 12.0, 5.5 Hz, 1H), 4.19 (q, J = 7.0 Hz, 2H), 3.89- 3.73 (m, 3H), 3.22 (dd, J = 14.0, 6.0 Hz, 1H), 3.16 (dd, J = 14.0, 5 Hz, 1H), 1.50 (s, 3H), 1.41 (s, 3H), 1.26 (t, J = 7.0 Hz, 3H).

¹³C NMR (CDCl₃, 125 MZ): δ = 171.6, 166.8, 156.4, 132.6, 131.7, 130.4, 129.5, 128.6, 126.9, 125.7, 116.8, 99.9, 93.3, 67.4, 65.9, 62.8, 61.6, 53.6, 37.1, 29.1, 18.9, 14.2.

IR (film, cm⁻¹): v = 3330 (w), 2992 (w), 2935 (w), 2867 (w), 1737 (s), 1644 (s), 1509 (vs), 1486 (m), 1375 (s), 1267 (m), 1219 (vs), 1198 (s), 1150 (m), 1090 (s), 1036 (m), 859 (m), 731 (m). **HRMS (ESI):** calc. for $C_{27}H_{32}NO_7$ [M+] 482.2173; found: 482.2184.

¹**H NMR (CDCl₃, 500 MHz):** $\delta = 8.22$ (d, J = 7.5 Hz, 1H), 7.79 (d, J = 8 Hz, 1H), 7.49-7.43 (m, 3H), 7.40-7.7.35 (m, 5H), 7.31-7.24 (m, 2H), 6.26 (d, J = 10.0 Hz, 1H), 6.03 (d, J = 10.0 Hz, 1H), 5.84 (s, 1H), 4.74 (d, J = 11.5 Hz, 1H), 4.64 (d, J = 11.5 Hz, 1H), 4.26 (d, J = 9.5 Hz, 1H), 4.02 (d, J = 7.0 Hz, 1H), 3.89 (dd, J = 11.5, 4 Hz, 1H), 3.82 (d, J = 11.5 Hz, 1H), 0.86 (s, 9H), 0.05 (s, 3H), 0.04 (s, 3H).

¹³C NMR (CDCl₃, 125 MHz): δ = 153.3, 138.2, 134.5, 132.1, 128.5, 127.9, 127.8, 127.5, 126.2, 125.9, 125.8, 125.3, 122.1, 121.5, 109.2, 93.4, 71.8, 71.5, 69.9, 62.4, 25.9, 18.4, -5.15, -5.35.

IR (film, cm⁻¹): v = 3049 (w), 2929 (s), 1595 (w), 1579 (m), 1464 (m), 1394 (s), 1260 (s), 1088 (vs), 970 (vs).

HRMS (ESI): calc. for C₂₉H₃₆O₄SiK [M+K] 515.2014; found: 515.1990.

 $\mathbf{R}_{\mathbf{f}} = 0.32 \; (40/1, \text{Hexane/Ethyl Acetate})$

¹**H** NMR (CDCl₃, 500 MHz): $\delta = 7.13$ (t, J = 8.0 Hz, 2H), 7.07 (d, J = 7.5 Hz, 1H), 6.92 (t, J = 7.0 Hz, 1H), 6.12 (d, J = 10.5 Hz, 1H), 5.83 (dt, J = 10.0, 2.5 Hz, 1H), 5.55 (s, 1H), 4.35 (d, J = 5.0 Hz, 1H), 4.09 - 4.08 (m, 1H), 3.86 - 3.82 (m, 2H), 2.23 (s, 3H), 1.75 - 1.68 (m, 12H), 1.28 - 1.19 (m, 12H).

¹³C NMR (CDCl₃, 125 MHz): $\delta = 155.7, 134.6, 130.8, 128.0, 126.9, 124.8, 122.2, 115.4, 93.7, 69.7, 68.5, 66.7, 31.6, 27.8, 27.7, 27.6, 26.9, 26.8, 26.8, 26.7, 26.2, 25.3, 23.8, 22.6, 16.3.$

IR (film, cm⁻¹): v = 2921 (s), 2847 (m), 1493 (m), 1449 (m), 1400 (w), 1234 (m), 1195 (w), 1138 (m), 1127 (m), 1114(m), 1103 (m), 1087 (s), 1021 (m), 994 (m), 891 (m), 862 (s), 749 (m), 717 (m), 668 (vs).

HRMS (ESI): calc. for C₂₅H₃₆O₄SiNa [M+Na] 451.2275; found: 451.2250.

¹**H** NMR (CDCl₃, 500 MHz): $\delta = 7.71$ (d, J = 7.5, 2H), 7.48 (t, J = 7.5, 1H), 7.40 (t, J = 7.5, 2H), 7.04 (d, J = 8.5 Hz, 2H), 6.96 (d, J = 8.5 Hz, 2H), 6.65 (d, J = 7.5 Hz, 1H), 6.14 (d, J = 10.5 Hz, 1H), 5.76 (m, 1H), 5.54 (s, 1H), 5.0 (q, J = 6.0 Hz, 1H), 4.40 (d, J = 6.5 Hz, 1H), 4.20 (q, J = 7.0 Hz, 2H), 4.09 (q, J = 5.0 Hz, 1H), 3.87 (q, J = 5.5 Hz, 2H), 3.19 (qd, J = 15.5, 5.5 Hz, 2H), 1.27 (t, J = 7.0 Hz, 3H), 1.04 (s, 9H), 0.96 (s, 9H).

¹³**C** NMR (CDCl₃, 125 MHz): $\delta = 171.7$, 166.8, 156.6, 135.3, 133.9, 131.8, 130.5, 129.5, 128.6, 127.0, 124.1, 116.9, 93.3, 70.1, 68.1, 67.0, 61.7, 53.6, 37.1, 27.4, 27.0, 22.7, 20.0, 14.1.

IR (film, cm⁻¹): v = 3342 (m), 3298 (m), 3183 (w), 3060 (w), 2964 (m), 2934 (s), 2896 (m), 2860 (s), 1732 (s), 1649 (s), 1611 (m), 1580 (m), 1530 (m), 1510 (s), 1486 (m), 1474 (m), 1445 (m), 1397 (m), 1375 (m), 1365 (m), 1350 (m), 1318 (m), 1306 (m), 1272 (m), 1226 (s), 1186 (m), 1132 (vs), 1107 (s), 1090 (s), 1073 (m), 1025 (s), 993 (s), 938 (w), 911 (m), 884 (w), 859 (s), 826 (s), 761 (m), 734 (m), 714 (m), 693 (m), 653 (m).

HRMS (ESI): calc. for C₃₂H₄₃NO₇SiNa [M+Na] 604.2701; found: 604.2709.

 $\mathbf{R}_{\mathbf{f}} = 0.48 \ (9/1, \text{Hexane/Ethyl Acetate})$

¹**H** NMR (CDCl₃, 500 MHz): $\delta = 8.29$ (dd, J = 8.3, 1.5 Hz, 1H), 7.84 (dd, J = 8.3, 1.5 Hz, 1H), 7.53 (dd, J = 8.0, 4.0 Hz, 2H), 7.49 (t, J = 7.5 Hz, 1H), 7.41 (d, J = 8 Hz, 2H), 7.37 (d, J = 7 Hz, 6H), 7.22 - 7.17 (m, 9H), 6.15 (dt, J = 10, 2.5 Hz, 1H), 6.04 (d, J = 10 Hz, 1H), 6.00 (s, 1H), 5.41 (d, J = 9 Hz, 1H), 4.33-4.30 (m, 1H), 3.16 (dd, J = 10.0, 6.0 Hz, 1H), 3.11 (dd, J = 10, 1.5 Hz, 1H) 0.99 (s, 9H).

¹³C NMR (CDCl₃, 125 MHz): δ = 177.5, 153.1, 143.8, 134.6, 131.2, 128.8, 128.7, 128.5, 127.8, 127.7, 127.6, 127.0, 126.9, 126.8, 126.3, 126.1, 125.8, 125.4, 122.1, 121.9, 121.8, 109.6, 93.2, 86.3, 69.8, 65.1, 62.6, 38.6, 27.0, 26.9.

IR (film, cm⁻¹): v = 3057 (m), 2973 (m), 2931 (m), 2874 (m), 1732 (s), 1596 (m), 1578 (m), 1507 (m), 1490 (m), 1479 (m), 1463 (m), 1448 (m), 1396 (m), 1280 (m), 1263 (m), 1237 (m), 1149 (s), 1085 (m), 1051 (m), 1016 (m), 976 (s), 910 (m), 792 (m), 772 (m), 733 (m), 706 (m), 667 (m).

HRMS (ESI): calc. for C₄₀H₃₈O₅Na [M+Na] 621.2611; found: 621.2609.

MP: 141 ° C

¹**H** NMR (CDCl₃, 500 MHz): $\delta = 8.16$ (d, J = 8 Hz, 1H), 7.79 (d, J = 7.5 Hz, 1H), 7.50 – 7.38 (m, 4H), 7.32 (d, J = 7.5 Hz, 1H), 6.31 (dd, J = 9.5, 5.5 Hz, 1H), 6.14 (dd, J = 10.0, 3.0 Hz, 1H), 5.92 (d, J = 3 Hz, 1H), 4.42 (dd, J = 5.0, 2.5 Hz, 1H), 4.33 (d, J = 12.5 Hz, 1H), 4.14 (d, J = 12.5 Hz, 1H), 4.08 (d, J = 1.5 Hz, 1H), 1.05 (s, 9H), 1.03 (s, 9H).

¹³**C NMR (CDCl₃, 125 MHz):** δ = 153.1, 134.5, 130.3, 127.6, 126.2, 126.1, 126.0, 125.3, 121.9, 121.6, 109.2, 93.7, 68.1, 66.3, 64.7, 27.5, 27.1, 23.1, 20.6.

IR (**film**, **cm**⁻¹): v = 3052 (w), 2963 (m), 2932 (s), 2886 (m), 2858 (s), 1598 (w), 1578 (m), 1507 (w), 1464 (m), 1398 (s), 1362 (w), 1264 (m), 1238 (m), 1195 (m), 1140 (s), 1124 (m), 1075 (s), 1049 (s), 1016 (m), 966 (s), 906 (s), 888 (s), 826 (m), 795 (s), 771 (s), 743 (s), 706 (m). **HRMS (ESI)**: calc. for C₂₄H₃₂O₄SiNa [M+Na] 435.1962; found: 435.1951.

MP: 47 ° C

¹**H-NMR (CDCl₃, 300 MHz):** $\delta = 7.72$ (d, J = 11.5 Hz, 2H), 7.50 – 7.39 (m, 3H), 7.056 – 6.991 (m, 4H), 6.59 (d, J = 12.0 Hz, 1H), 6.22 (q, J = 8.5 Hz, 1H), 5.98 (dd, J = 16.5, 5.5 Hz, 1H), 5.69 (d, J = 4.5 Hz, 1H), 5.02 (q, J = 12.0 Hz, 1H), 4.37 – 4.31 (m, 2H), 4.21 (q, J = 12.0 Hz, 2H), 4.11 (d, J = 21.0 Hz, 1H), 3.97 (s, 1H), 3.20 (hept., J = 8.5 Hz, 2H), 1.28 (t, J = 12.0 Hz, 3 H), 1.03 (s, 9H), 0.99 (s, 9H).

¹³**C-NMR (CDCl₃, 75 MHz):** $\delta = 171.7, 156.6, 131.8, 130.5, 130.3, 129.4, 128.7, 127.1, 126.0, 116.9, 93.4, 67.9, 66.2, 64.7, 61.7, 53.7, 37.2, 27.5, 27.1, 23.1, 20.6, 14.2.$

IR (film, cm⁻¹): v = 3344 (m), 3282 (m), 3183 (m), 2963 (m), 2933 (s), 2893 (m), 2858 (s), 1726 (s), 1650 (s), 1602 (m), 1509 (s), 1474 (m), 1374 (m), 1227 (s), 1142 (s), 1076 (s), 980 (s), 905 (m), 887 (m), 826 (s), 792 (m), 714 (m).

HRMS (ESI): calc. for C₃₂H₄₃NO₇Si [M+] 582.2882; found: 582.2854.

MP: 58 ° C

¹**H-NMR** (**CDCl**₃, **300 MHz**): $\delta = 7.22$ (s, 1H), 7.17-7.11 (m, 2H), 6.91 (t, J = 12.0 Hz, 1H), 6.23 (dd, 16.5, 9.0 Hz, 1H), 6.01 (dd, 16.5, 5.0 Hz, 1H), 5.68 (d, 4.5 Hz, 1H), 4.38- 4.32 (m, 2H), 4.15 (d, J = 21.0 Hz, 1H), 4.02 (d, J = 3.0 Hz, 1H), 2.18 (s, 3H), 1.04 (s, 9H), 1.0 (s, 9H). ¹³**C-NMR** (**CDCl**₃, **300 MHz**): $\delta = 130.7$, 130.0, 127.0, 126.4, 122.0, 115.5, 93.9, 67.9, 66.3, 64.8, 27.5, 27.1, 23.2, 20.7, 16.3. **IR** (**film, cm**⁻¹): v = 3050 (w), 2933 (s), 2890 (m), 2858 (s), 1591 (m), 1493 (s), 1473 (m), 1400 (m), 1363 (m), 1339 (w), 1301 (w), 1236 (s), 1188 (m), 1144 (vs), 1123 (m), 1096 (m), 1077 (s), 1000 (m), 1077 (s), 1000 (m), 1000 (m), 1077 (s), 1000 (m), 1000

1049 (w), 986 (vs), 905 (m), 887 (m), 858 (w), 826 (m), 796 (m), 782 (w), 750 (s), 711 (m).

HRMS (ESI): calc. for C₂₁H₃₂O₄SiNa [M+Na] 399.1962; found: 399.2002.

General procedure for the synthesis of O-glycosides:

Preparation of *O*-glycoside 21. A 10 mL oven-dried Schlenk flask was charged with $Pd(PhCN)_2Cl_2$ (1.9 mg, 0.005 mmol, 2.5 mol%), DTTBP (2.1 mg, 0.005 mmol, 2.5% mol), and CH_2Cl_2 (0.5 mL). A second 10 mL oven-dried Schlenk flask was charged with alcohol acceptor 34 (120 mg, 0.27 mmol, 1.5 equiv, azeotroped three times with toluene), CH_2Cl_2 (0.5 mL), and toluene (0.5 mL), and Et_2Zn (1M in hexane, 135 µL, 0.135 mmol, 0.75 equiv) was then added to the solution. After the Pd(PhCN)_2Cl_2 and DTTBP complex solution had been stirring at room temperature for 3 h, it was added to the zinc alkoxide solution followed by glucal imidate 33 (111 mg, 0.18 mmol, 1 equiv) and 2,6-di-*t*-butylphenol (18.5 mg, 0.09 mmol, 0.5 equiv). The resulting mixture was stirred for 10 h and purified by silica gel flash chromatography (9/1, hexane/ethyl acetate) to give 21 (118.8 mg, 88%) as a white solid.

¹**H** NMR (CDCl₃, 500 MHz): $\delta = 7.45$ (d, J= 8.0 Hz, 6H), 7.28 – 7.25 (m, 9H), 7.21 – 7.17 (m, 5H), 5.79 (s, 2H), 5.21 (d, J = 9.5 Hz, 1H), 5.16 (s, 1H), 5.09 (s, 1H), 4.75 (q, 46.0, 6.0 Hz, 2H), 4.61 (d, 12.0 Hz, 1H), 4.51 (q, J = 4.5 Hz, 1H), 4.40 (d, J= 12.0 Hz, 1H), 4.15 – 4.10 (m, 2H), 3.63 (t, J = 10.0 Hz, 1H), 3.12 – 3.10 (m, 2H), 1.43 (s, 3H), 1.30 (s, 3H), 0.95 (s, 9H).

¹³C NMR (CDCl₃, 125 MHz): δ = 177.5, 143.9, 137.1, 129.9, 128.7, 128.4, 128.0, 127.8, 127.4, 126.9, 112.4, 107.3, 96.5, 94.7, 86.4, 85.5, 85.4, 85.4, 85.3, 82.5, 82.2, 74.9, 69.1, 69.0, 68.8, 68.4, 65.3, 64.7, 62.9, 38.6, 26.9, 26.8, 26.4, 25.0.

IR (film, cm⁻¹): v = 3061 (w), 3031 (w), 2976 (m), 2935 (m), 2901 (w), 2874 (w), 1732 (s), 1490 (w), 1450 (m), 1372 (w), 1278 (m), 1210 (m), 1152 (s), 1077 (s), 1040 (s), 1016 (s), 913 (s), 870 (m), 744 (s), 699 (s), 668 (m), 633 (m).

HRMS (ESI): calc. for C₄₅H₅₀O₉Na [M+Na] 757.3347; found: 757.3359.

¹**H NMR (CDCl₃, 500 MHz):** $\delta = 7.46$ (d, J =7.0 Hz, 6H), 7.27 – 7.24 (m, 6H), 7.20 (t, J = 7.0 Hz, 3H), 5.79-5.78 (m, 1H), 5.27 (d, J = 10.0 Hz, 1H), 5.14 (d, J = 10.0 Hz, 1H), 4.20 – 4.17 (m, 1H), 4.19 (hex, J = 5.0 Hz, 1H), 3.22 – 3.08 (m, 2H), 1.95 (d, J = 12.5 Hz, 1H), 1.80 – 0.96 (m, 24H), 0.94 (s, 9H), 0.88 (d, J = 7.0 Hz, 3H), 0.84 (dd, J = 7.0, 2.5 Hz, 6H), 0.63 (s, 3H), 0.51 (s, 3H).

¹³C NMR (CDCl₃, 125 MHz): δ = 144.0, 129.5, 128.7, 128.4, 127.7, 126.9, 91.9, 68.5, 65.5, 63.4, 56.5, 56.3, 54.3, 45.1, 40.0, 39.5, 36.9, 36.3, 36.2, 35.8, 35.5, 32.1, 28.7, 28.3, 28.0, 27.7, 26.9, 26.8, 24.2, 23.8, 22.8, 22.5, 21.2, 18.7, 12.3, 12.1. IR (film, cm⁻¹): v = 3059 (w), 2932 (vs), 2868 (s), 1733 (s), 1499 (m), 1448 (m), 1382 (m), 1280 (m), 1150 (s), 1035 (m), 1075 (m), 1035 (vs), 909 (m), 764 (m), 734 (s), 705 (s). HRMS (ESI): calc. for $C_{57}H_{78}O_5Na$ [M+Na] 865.5741; found: 865.5746.

¹**H** NMR (CDCl₃, 500 MHz): $\delta = 7.45$ (d, J = 7.5 Hz, 6H), 7.27 (t, J = 7.5 Hz, 6H), 7.20 (t, J = 7.5 Hz, 3H), 5.92 (d, J = 3.5 Hz, 1H), 5.80 (s, 2H), 5.14 (d, J = 10 Hz, 1H), 4.85 (d, J = 3.0 Hz, 1H), 4.42 (d, J = 2.5 Hz, 1H), 4.23 - 4.20 (m, 1H), 4.15 - 4.10 (m, 3H), 4.00 - 3.97 (m, 1H), 3.15 (m, 2H), 1.48 (s, 3H), 1.43 (s, 3H), 1.34 (s, 3H), 1.02 (s, 3H), 0.95 (s, 9H).

¹³C NMR (CDCl₃, 125 MHz): $\delta = 177.5, 143.7, 129.9, 128.8, 127.8, 127.0, 126.9, 105.4, 95.9, 84.3, 82.0, 81.4, 72.6, 69.2, 67.8, 65.3, 63.4, 27.7, 27.0, 26.8, 26.2, 25.4.$

IR (film, cm⁻¹): v = 3060 (w), 3023 (w), 2984 (m), 2981 (m), 2963 (m), 2931 (m), 1734 (s), 1490 (w), 1449 (m), 1372 (m), 1280 (m), 1252 (w), 1217 (m), 1150 (s), 1073 (s), 1035 (s), 983 (s), 850 (m), 765 (m), 745 (m), 706 (s)

HRMS (ESI): calc. for C₄₂H₅₀O₁₀Na [M+Na] 737.3296; found: 737.3283.

 $\mathbf{R_f} = 0.4 \ (9/1, \text{Hexanes/Ethyl acetate})$

¹**H NMR (CDCl₃, 500 MHz)**: $\delta = 7.5-7.12$ (m, 20H), 5.86 (dd, J = 10, 9.5 Hz, 1H), 5.80 (bd, J = 10 Hz, 1H), 5.57 (d, J = 9.5 Hz, 1H), 5.28 (bs, 1H), 5.01 (s, 1H), 4.68 (d, J = 11.5 Hz, 1H), 4.50 (d, J = 11.5 Hz, 1H), 4.34 (apparent t, J = 6.3 Hz, 1H), 4.16 (dd, J = 8.5, 4.3 Hz, 1H), 4.06 (d, J = 5.5 Hz, 1H), 3.82-3.71 (m, 1H), 3.46 (dd, J = 10, 7.5 Hz, 1H), 3.29 (bd, J = 10 Hz, 1H), 3.17 (bdd, J = 10, 4.5 Hz, 1H), 1.29 (d, J = 6 Hz, 3H), 1.22 (s, 3H), 0.97 (s, 9H).

¹³C NMR (CDCl₃, **75** MHz): δ = 177.5, 143.9, 137.1, 129.9, 128.9, 128.7, 128.5, 128.2, 127.9, 127.8, 127.3, 126.8, 109.0, 96.3, 95.0, 86.3, 81.4, 77.3, 75.8, 69.1, 68.5, 65.0, 64.9, 62.6, 38.6, 28.2, 26.9, 26.4, 17.7.

IR (film, cm⁻¹): v = 3058 (w), 3033 (w), 2979 (m), 2933 (m), 2872 (w), 1731 (vs), 1489 (m), 1449 (m), 1381 (m), 1281 (m), 1220 (m), 1150 (s), 1050 (s), 1024 (s).

HRMS (ESI): calc. for C₄₆H₅₂NaO₉ [M+Na] 771.3509; found : 771.3514.

¹**H** NMR (CDCl₃, 300 MHz): $\delta = 6.15$ (dd, J = 9.8, 5.4 Hz, 1H), 5.88 (dd, J = 10.0, 3.0 Hz, 1H), 5.11 (d, J = 3.0 Hz, 1H), 4.37 (dd, J = 12.6, 1.5 Hz, 1H), 4.30 (dd, J = 5.4, 2.7 Hz, 1H), 4.16 (dd, J = 12.6, 1.5 Hz, 1H), 4.08 – 3.92 (m, 2H), 3.86 (d, J = 2.1 Hz, 1H), 1.03 (s, 9H), 0.96 (s, 9H). ¹³C NMR (CDCl₃, 75 MHz): $\delta = 130.4$, 125.5, 95.1, 67.6, 66.1, 64.9, 64.6, 64.4, 27.5, 27.1, 23.2, 20.6.

IR (**film**, **cm**⁻¹): v = 2935 (s), 2891 (m), 2856 (s), 1475 (m), 1428 (w), 1400 (w), 1384 (w), 1363 (w), 1342 (w), 1284 (s), 1200 (m), 1162 (s), 1147 (vs), 1127 (s), 1063 (vs), 1001 (s), 981 (s), 936 (m), 899 (m), 882 (m), 848 (w), 827 (s), 794 (s), 772 (w), 752 (w), 718 (w), 681 (m). **HRMS (ESI):** calc. for C₁₆H₂₇O₄F₃Si [M+Na] 391.1523; found: 391.2843.

¹**H** NMR (CDCl₃, 500 MHz): $\delta = 7.33 - 7.32$ (m, 4H), 7.29 - 7.25 (m, 1H), 6.09 (dd, J = 10.0, 5.0 Hz, 1H), 5.88 (dd, J = 10.0, 3.5 Hz, 1H), 5.13 (d, J = 3.0 Hz, 1H), 4.68 (q, 12.0 Hz, 2H), 4.33 (dd, 12.5, 2.0 Hz, 1H), 4.27 (dd, 5.0, 2.5 Hz, 1H), 4.11 (dd, J = 12.5, 1.5 Hz, 1H), 3.89 - 3.88 (m, 1H), 1.03 (s, 9H), 0.97 (s, 9H).

¹³C NMR (CDCl₃, 500 MHz): $\delta = 138.1$, 129.5, 128.4, 127.9, 127.6, 126.9, 94.0, 69.8, 67.2, 66.3, 64.9, 30.3, 27.5, 27.1, 23.1, 20.5.

IR (film, cm⁻¹): v = 2935 (s), 2886 (m), 2858 (s), 1470 (m), 1363 (m), 1195 (m), 1142 (vs), 1121 (m), 1079 (m), 1040 (s), 1025 (s), 987 (m), 825 (m), 795 (s), 745 (m), 696 (m). **HRMS (ESI):** calc. for C₂₁H₃₂O₄SiNa [M+Na] 399.1962; found: 399.1946.

 $\mathbf{R}_{\mathbf{f}} = 0.36 (9/1, \text{Hexane/Ethyl acetate})$

¹**H NMR (CDCl₃, 500 MHz)**: δ = 7.35-7.25 (m, 5H), 6.10 (dd, *J* = 10.0, 5.5 Hz, 1H), 5.86 (dd, *J* = 10.0, 3.5 Hz, 1H), 5.09 (d, *J* = 3.5 Hz, 1H), 5.03 (s, 1H), 4.67 (d, *J* = 11.5 Hz, 1H), 4.48 (d, *J* = 10.0, 3.5 Hz, 1H), 5.09 (d, *J* = 3.5 Hz, 1H), 5.03 (s, 1H), 4.67 (d, *J* = 10.0, 1.5 Hz, 1H), 4.48 (d, *J* = 10.0, 1.5 Hz, 1H), 5.03 (s, 1

11.5 Hz, 1H), 4.35 (bd, *J* = 10.5 Hz, 1H), 4.27 (s, 1H), 4.26 (bd, *J* = 10.5 Hz, 1H), 4.12 (d, *J* = 5.5 Hz, 1H), 4.05 (dd, *J* = 7.5, 2 Hz, 1H), 4.02 (bd, *J* = 2 Hz, 1H), 3.71 (dq, *J* = 10, 6 Hz, 1H), 3.51 (dd, *J* = 10, 7.5 Hz, 1H), 1.57 (s, 3H), 1.3 (s, 3H), 1.26 (d, *J* = 6 Hz, 3H), 1.03 (s, 9H), 0.96 (s, 9H).

¹³**C** NMR (CDCl₃, **75** MHz): $\delta = 137.2$, 129.9, 128.4, 128.1, 127.9, 126.3, 109.1, 96.2, 94.9, 79.3, 77.4, 76.1, 69.1, 66.8, 66.3, 65.4, 64.9, 60.3, 28.2, 27.4, 27.1, 26.5, 23.0, 20.6, 17.4, 14.2.

IR (film, cm⁻¹): v = 2968 (m), 2934 (m), 2896 (m), 2859 (m), 1473 (m), 1383 (m), 1220 (m), 1142 (s), 1080 (m), 1049 (s), 1026 (m), 999 (m).

HRMS (ESI): calc. for C₃₀H₄₆NaO₈Si (M⁺ Na) 585.2860; found: 582.2851.

¹**H** NMR (CDCl₃, 500 MHz): $\delta = 6.06$ (dd, J = 10.0, 5.5 Hz, 1H), 5.83 (dd, 10.0, 3.0 Hz, 1H), 5.15, (d, 4.0 Hz, 1H), 4.36 (dd, J = 12.3, 1.5 Hz, 1H), 4.25 (q, J = 3.0 Hz, 1H), 4.13 (dd, J = 12.3, 1.5 Hz, 1H), 3.91 (d, 2.0Hz, 1H), 3.64 (hept., J = 5.0 Hz, 1H), 1.93 (dt, J = 13.0, 3.5 Hz, 1H), 1.82 - 1.75 (m, 2H), 1.69 (dt, J = 10.0, 3.0 Hz, 1H), 1.62 (dq, J = 9.5, 3.5 Hz, 1H), 1.56 - 1.05 (m, 22H), 1.04 - 1.00 (m, 1H), 1.03 (s, 9H), 0.99 - 0.94 (m, 2H), 0.96 (s, 9H), 0.87 (d, J = 6.5 Hz, 3H), 0.84 (dd, J = 6.5, 2.0 Hz, 6H), 0.76 (s, 3H), 0.62 (s, 3H).

¹³C NMR (CDCl₃, 500 MHz): δ = 129.2, 127.5, 93.0, 76.9, 66.9, 66.4, 65.1, 56.5, 56.3, 54.4, 45.0, 42.6, 40.0, 39.5, 37.0, 36.4, 36.2, 35.8, 35.5, 32.1, 28.8, 28.2, 28.0, 27.5, 27.1, 24.2, 23.8, 23.1, 22.8, 22.5, 21.2, 18.7, 12.2, 12.1.

IR (film, cm⁻¹): v = 2932 (vs), 2858 (s), 1172 (m), 1384 (m), 1143 (s), 1033 (s), 987 (m), 903 (m), 886 (m), 826 (m), 797 (m).

HRMS: calc. for $C_{41}H_{72}O_4SiNa [M+Na]^+$ 679.5092; found: 679.5094.

¹**H NMR (CDCl₃, 500 MHz):** $\delta = 7.34 - 7.26$ (m, 5H), 6.06 (dd, J = 10.0, 5.5 Hz, 1H), 5.83 (dd, J = 10.0, 5.5 Hz, 1H), 5.13 (s, 1H), 5.03 (d, J = 3.0 Hz, 1H), 4.72 - 4.65 (m, 3H), 4.44 - 4.38 (m, 2H), 4.27 (dd, J = 12.5, 1.5 Hz, 1H), 4.24 (dd, J = 5.5, 2.5 Hz, 1H), 4.13 (dd, J = 12.5, 1.5 Hz, 1H), 3.83 - 3.80 (m, 2H), 3.57 (t, J = 10.0 Hz, 1H), 1.45 (s, 3H), 1.29 (s, 3H), 1.02 (s, 9H), 0.96 (s, 9H).

¹³C NMR (CDCl₃, 125 MHz): δ = 137.1, 129.4, 128.5, 127.9, 127.8, 126.7, 112.4, 107.2, 95.4, 85.5, 85.4, 82.2, 69.4, 69.1, 67.2, 66.2, 64.8, 27.5, 27.1, 26.5, 25.0, 23.1, 20.5. IR (film, cm⁻¹): v = 2934 (s), 2886 (m), 2859 (s), 1498 (w), 1473 (m), 1383 (m), 1373 (m), 1363 (m), 1271 (m), 1238 (m), 1210 (m), 1194 (m), 1142 (vs), 1121 (s), 1104 (s), 1078 (s), 1041 (vs), 1015 (s), 987 (s), 967 (m), 940 (m), 903 (m), 886 (m), 871 (m), 848 (m), 826 (m), 796 (m), 772 (m), 748 (m), 735 (m), 717 (m), 698 (m), 651 (m), 606 (w).

HRMS (ESI): calc. for C₂₉H₄₄O₈SiNa [M+Na] 571.2698; found: 571.2683.

A scintillation vial was charged with **24** (81 mg, 0.108 mmol, 1 equiv) and acetone (0.6 mL). *N*-methyl morpholine *N*-oxide (18.9 mg, 0.162 mmol, 1.5 equiv) was then added to the solution followed by OsO₄ (4 wt% in H₂O, 13.5 μ L, 0.00216 mmol, 2 mo%). The resulting mixture was stirred at rt overnight. The mixture was quenched with saturated aqueous Na₂S₂O₃ solution (30 mL), stirred for 30 min, and then extracted with ethyl acetate (3 x 40 mL). The combined organic extracts were dried over MgSO₄, filtered, and concentrated. The resulting residue was purified by silica gel flash chromatography (1/1, hexane/ethyl acetate) to give **29** (68.3 mg, 80%) as a white solid.

 $\mathbf{R}_{\mathbf{f}} = 0.45 (1/1, \text{Hexane/Ethyl acetate})$ **MP:** 98°C

¹**H** NMR (CDCl₃, 500 MHz): $\delta = 7.45-7.15$ (m, 20H), 5.28 (apparent t, J = 9.7 Hz, 1H), 5.13 (s, 1H), 5.03 (s, 1H), 4.69 (d, J = 11.5 Hz, 1H), 4.51 (d, J = 11.5 Hz, 1H), 4.22 (apparent t, J = 6.2 Hz, 1H), 4.11-4.06 (m, 2H), 3.93 (bs, 1H), 3.86-3.80 (m, 1H), 3.74 (qd, J = 10, 6.5 Hz, 1H), 3.42 (dd, J = 9.5, 7.5 Hz, 1H), 3.32 (d, J = 9 Hz, 1H), 3.26 (d, J = 6 Hz, 1H), 3.11 (dd, J = 10, 4 Hz, 1H), 2.56 (d, J = 4.5 Hz, 1H), 1.29 (d, J = 6 Hz, 3H), 1.24 (s, 3H), 1.14 (s, 3H), 0.95 (s, 9H). ¹³C NMR (CDCl₃, 75 MHz): $\delta = 179.8, 143.8, 137.0, 128.9, 128.5, 128.2, 128.0, 127.7, 126.8, 128.2, 128.0, 127.7, 126.8, 128.2, 128.0, 127.7, 126.8, 128.2, 128.0, 127.7, 126.8, 128.2, 128.0, 127.7, 126.8, 128.2, 128.0, 127.7, 126.8, 128.2, 128.0, 128.2, 128.0, 128.2, 128.0, 128.2, 128.0, 128.2, 128.0, 128.2, 128.0, 128.2, 128.0, 128.2, 128.0, 128.2, 128.0, 128.2, 128.0, 128.2, 128.0, 128.2, 128.0, 128.2, 128.2, 128.0, 128.2, 128.2, 128.0, 128.2, 12$

C NMR (CDCl₃, 75 MHz): $\delta = 1/9.8$, 143.8, 137.0, 128.9, 128.5, 128.2, 128.0, 127.7, 126.8, 109.1, 100.3, 96.1, 86.3, 81.8, 76.0, 71.2, 71.0, 70.2, 69.4, 69.2, 64.8, 62.0, 38.7, 28.1, 26.9, 26.4, 17.5, 14.2.

IR (film, cm⁻¹): v = 3472 (br, m), 3060 (w), 3033 (w), 2980 (m), 2934 (m), 1733 (m), 1449 (m), 1382 (m), 1280 (w), 1220 (m), 1146 (s), 1090 (vs), 1041 (vs).

HRMS (ESI): calc. for C₄₆H₅₄NaO₁₁ [M+ Na] 805.3564; found: 805.3580.

To a scintillation vial was charged with **13** (60 mg, 0.10 mmol, 1 equiv) and acetone (0.6 mL). *N*-methyl morpholine *N*-oxide (17.5 mg, 0.15 mmol, 1.5 equiv) was then added to the solution followed by OsO_4 (4 wt% in H₂O, 12.5 µL, 0.002 mmol, 2 mo%). The resulting mixture was stirred at rt overnight. The mixture was quenched with saturated aqueous $Na_2S_2O_3$

solution (30 mL), stirred for 30 min, and then extracted with ethyl acetate (3 x 30 mL). The combined organic extracts were dried over MgSO₄, filtered, and concentrated. The resulting residue was purified by silica gel flash chromatography (1/1, hexane/ethyl acetate) to give **30** (50 mg, 81%).

¹**H** NMR (CDCl₃, 500 MHz): $\delta = 7.71$ (d, J = 7.0 Hz, 2H), 7.49 (t, J = 7.5 Hz, 1H), 7.41 (t, J = 7.5 Hz, 2H), 7.05 (d, J = 8.5 Hz, 2H), 6.93 (d, J = 8.5 Hz, 2H), 6.61 (d, J = 7.5 Hz, 1H), 5.47 (s, 1H), 5.01 (dd, J = 13.0, 5.5 Hz, 1H), 4.21-4.17 (m, 3H), 4.09 (t, J = 9.5 Hz, 1H), 4.00 (dd, J = 8.5, 3.0 Hz, 1H), 3.97 (dd, J = 10.0, 5.0 Hz, 1H), 3.78 (td, J = 10.0, 5.5 Hz, 1H), 3.22 (dd, J = 14.0, 5.5 Hz, 1H), 3.16 (dd, J = 13.5, 5.0 Hz, 1H), 2.87 (s, 1H), 2.80 (d, J = 2.0 Hz, 1H), 1.25 (t, J = 7.5 Hz, 3H), 1.03 (s, 3H), 0.95 (s, 3H).

¹³C NMR (CDCl₃, 125 MHz): δ = 171.6, 166.8, 155.4, 133.9, 131.8, 130.6, 129.9, 128.6, 126.9, 116.5, 98.0, 74.4, 71.6, 70.4, 67.4, 66.2, 61.6, 53.6, 37.2, 27.5, 26.9, 22.6, 19.9, 14.1.

IR (film, cm⁻¹): v = 3419 (m), 3362 (m), 2933 (vs), 2858 (s), 1734 (s), 1646 (s), 1509 (vs), 1473 (m), 1229 (s), 1127 (m), 1092 (vs), 1011 (vs), 911 (w), 854 (w), 826 (m).

HRMS (ESI): calc. for $C_{32}H_{45}NO_9SiNa [M+Na]^+ 638.2756$; found: 638.2770.

To a solution of **21** (43 mg, 0.059 mmol, 1 equiv) in acetonitrile (1.1 mL) was added a 0.4 mM solution of EDTA in H₂O (360 μ L). The flask was cooled to 5 °C, and trifluoroacetone (134 μ L, 1.5 mmol, 25 equiv) was added to the cloudy solution. A mixture of Oxone[®] (184 mg, 0.3 mmol, 5 equiv) and sodium bicarbonate (126 mg, 1.5 mmol, 25 equiv) was added in portions at intervals of 5 min over 1.25 h to the cooled heterogeneous mixture. After complete addition of the Oxone[®] mixture, the flask was allowed to warm to rt with continued stirring for 2 h. The reaction mixture was then filtered through Celite with a wash of ethyl acetate (10 mL). The filtrate was concentrated, and the residue was taken up with ethyl acetate (20 mL), dried over MgSO₄, and then concentrated to yield crude epoxide **31-A** (45 mg).

$\mathbf{R}_{\mathbf{f}} = 0.45$ (4/1, Hexane/Ethyl acetate)

¹**H** NMR (C_6D_6 , 500 MHz): $\delta = 7.7-7.05$ (m, 20H), 5.43 (s, 1H), 5.09 (d, J = 10 Hz, 1H), 4.94 (s, 1H), 4.84 (dd, J = 10, 5 Hz, 1H), 4.82-4.77 (m, 2H), 4.64 (d, J = 11.5, 1H), 4.42 (dd, J = 9.5, 5 Hz, 1H), 4.28 (d, J = 11.5, 1H), 4.24 (apparent t, J = 12 Hz, 1H), 3.63 (apparent t, J = 9.5, 1H), 3.38 (dd, J = 10, 7.5 Hz, 1H), 3.21 (bd, J = 8.5 Hz, 1H), 3.06 (d, J = 3.5 Hz, 1H), 2.84 (d, J = 3.5 Hz, 1H), 1.54 (s, 3H), 1.28 (s, 3H), 0.97 (s, 9H).

The crude epoxide (45 mg, 0.059 mmol, 1 equiv) was dissolved in dichloromethane (4 mL) within a schlenk reaction flask and cooled to -78 °C under an argon atmosphere. BF₃•OEt₂ (1 M in dichloromethane, 39 µL, 0.039 mmol, 0.65 equiv) was added to the cooled solution. The reaction was monitored regularly by TLC. Once the epoxide was mostly consumed at 6 h, a solution of water in THF (~0.5% v/v, 1 mL, 5 equiv) was added dropwise to the solution. The reaction mixture was allowed to warm slowly to rt with continued stirring over 12 h.

Triethylamine (30 μ L, 2 equiv) was added and the solution was concentrated. The residue was purified by flash chromatography silica gel (gradient elution 2:1 \rightarrow 1:1 hexane/ethyl acetate) to yield pure diol **31** (26 mg, 57%, 2 steps) as a white solid.

 $\mathbf{R_f} = 0.44 \ (1/1, \text{Hexane/Ethyl acetate})$

MP: 79 °C

¹**H** NMR (CDCl₃, 500 MHz): $\delta = 7.49-7.15$ (m, 20H), 5.16 (s, 1H), 4.99 (dd, J = 8.5, 3.5 Hz, 1H), 4.78 (d, J = 3 Hz, 1H), 4.74 (d, J = 11 Hz, 1H), 4.69 (d, J = 11 Hz, 1H), 4.63 (d, J = 12 Hz, 1H), 4.47 (d, J = 12 Hz, 1H), 4.45 (d, J = 12 Hz, 1H), 4.21 (apparent t, J = 6.5 Hz, 1H), 4.07 (dd, J = 10.5, 5.5 Hz, 1H), 3.99-3.93 (m, 1H), 3.87-3.82 (m, 1H), 3.60 (dd, J = 10, 7.2 Hz, 1H), 3.24 (dd, J = 10, 7 Hz, 1H), 3.15 (dd, J = 10, 2.5 Hz, 1H), 2.78 (d, J = 8 Hz, 1H), 2.24 (d, J = 5 Hz, 1H), 1.45 (s, 3H), 1.30 (s, 3H), 1.02 (s, 9H).

¹³C NMR (CDCl₃, **75** MH): $\delta = 177.5$, 143.7, 136.9, 128.7, 128.5, 128.1, 127.9, 127.1, 112.6, 107.7, 100.7, 86.8, 85.7, 85.0, 82.1, 70.4, 69.5, 69.3, 68.7, 67.9, 63.1, 38.8, 27.0, 26.5, 25.0.

IR (film, cm⁻¹): v = 3478 (br, m), 3061 (w), 2933 (s), 2874 (m), 1730 (s), 1489 (w), 1449 (m), 1373 (m), 1283 (m), 1211 (m), 1159 (s), 1075 (vs), 1014 (s).

HRMS (ESI): calc. for C₄₅H₅₂O₁₁ (M⁺ Na) 791.3402; found: 791.3408.

3-I-29		
ц		
600°6T ———		
891.02		
806.53		
484.78 484.78		
£2.77 200.77 252.77		
70/.00		
886.66		
618.801 — 248.121 —		
725.005 474.225 474 125.784		
122.884 129.188 126.384 126.384		
8TS'LZT		
920°891		
	∂	

BS-I1-8

HN-I-78

HN - II - 12

mqq

HN-II-56

HN-II-56

