Supporting Information ## Agladupols A-E, Triterpenoids from Aglaia duperreana Bo-Jun Xie, Sheng-Ping Yang, Hua-Dong Chen and Jian-Min Yue* State Key Laboratory of Drug Research, Institute of Materia Medica, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Zhangjiang Hi-Tech Park, Shanghai, 201203, P. R. China - Figure S3. Selected HMBC ($H\rightarrow C$) and ROESY (\leftrightarrow) correlations for agladupol A (1). - Figure S4. Selected HMBC ($H\rightarrow C$) and ROESY (\leftrightarrow) correlations for agladupol B (2). - Figure S5. Selected HMBC ($H\rightarrow C$) and ROESY (\leftrightarrow) correlations for agladupol C (3). - Figure S6. Selected HMBC ($H\rightarrow C$) and ROESY (\leftrightarrow) correlations for agladupol D (4). - Figure S7. Coefficients between agladupol D (4) and sapelin A. - Figure S8. ¹H NMR spectrum of agladupol A (1) in CDCl₃. - Figure S9. ¹³C NMR spectrum of agladupol A (1) in CDCl₃. - Figure S10. ESIMS spectrum of agladupol A (1). - Figure S11. IR spectrum of agladupol A (1). - Figure S12. HSQC spectrum of agladupol A (1) in CDCl₃. - Figure S13. HMBC spectrum of agladupol A (1) in CDCl₃. - Figure S14. ROESY spectrum of agladupol A (1) in CDCl₃. - Figure S15. ¹H NMR spectrum of agladupol B (2) in CDCl₃. - Figure S16. ¹³C NMR spectrum of agladupol B (2) in CDCl₃. - Figure S17. ESIMS spectrum of agladupol B (2). - Figure S18. IR spectrum of agladupol B (2). - Figure S19. HSQC spectrum of agladupol B (2) in CDCl₃. - Figure S20. HMBC spectrum of agladupol B (2) in CDCl₃. ^{*} Corresponding author. Tel.: +86-21-50806718, Fax: +86-21-50806718, E-mail: jmyue@mail.shcnc.ac.cn - Figure S21. ROESY spectrum of agladupol B (2) in CDCl₃. - Figure S22. ¹H NMR spectrum of agladupol C (3) in CDCl₃. - Figure S23. ¹³C NMR spectrum of agladupol C (3) in CDCl₃. - Figure S24. ESIMS spectrum of agladupol C (3). - Figure S25. IR spectrum of agladupol C (3). - Figure S26. HSQC spectrum of agladupol C (3) in CDCl₃. - Figure S27. HMBC spectrum of agladupol C (3) in CDCl₃. - Figure S28. ROESY spectrum of agladupol C (3) in CDCl₃. - Figure S29. ¹H NMR spectrum of agladupol D (4) in CDCl₃. - Figure S30. ¹³C NMR spectrum of agladupol D (4) in CDCl₃. - Figure S31. EIMS spectrum of agladupol D (4). - Figure S32. IR spectrum of agladupol D (4). - Figure S33. HSQC spectrum of agladupol D (4) in CDCl₃. - Figure S34. HMBC spectrum of agladupol D (4) in CDCl₃. - Figure S35. ROESY spectrum of agladupol D (4) in CDCl₃. - Figure S36. ¹H NMR spectrum of agladupol E (**5**) in CDCl₃. - Figure S37. ¹³C NMR spectrum of agladupol E (**5**) in CDCl₃. - Figure S38. EIMS spectrum of agladupol E (5). - Figure S39. IR spectrum of agladupol E (5). - Figure S40. HSQC spectrum of agladupol E (5) in CDCl₃. Selected HMBC (H \rightarrow C) correlations for 1 Key ROESY correlations (\leftrightarrow) for 1 Newman projection around C-24 and C-23 for 1; ROESY correlations (↔) Selected HMBC (H \rightarrow C) correlations of **2** Key ROESY correlations (\leftrightarrow) of 2 Selected HMBC (H \rightarrow C) correlations of 3 Key ROESY correlations (\leftrightarrow) of 3 Selected HMBC (H→C) correlations of **4** Key ROESY correlations (\leftrightarrow) of 4 a) ¹³C NMR data of the tetracyclic core of **4** vs those of sapelin A b) ¹³C NMR data of the tetracyclic core of **4** vs those of sapelin A with the assignments of C-18 and C-19 reversed ## Display Report Analysis Info Acquisition Date 02/05/07 19:23:29 Analysis Name 026-3501.D Method Copy of SOPMSMSP.M Operator Administrator esquire3000plus_01005 Sample Name yjm-Aox-14 Instrument Comment **Acquisition Parameter** Ion Source Type Mass Range Mode Capillary Exit ion Polarity Positive Alternating Ion Polarity Scan End Trap Drive Auto MS/MS 100 m/z 40.0 Volt Std/Normal 1750 m/z Scan Begin 158.5 Volt Skim 1 85.4 **Accumulation Time** $6375 \, \mu s$ 3 Spectra **Averages** on Intens. 026-3501.D: TIC +All MS 2 x109 026-3501.D: TIC +All MSn 1.0 0.5 0.0 026-3501.D: UV Chromatogram, 200.4 nm 400 200 0 2 6 8 10 12 ó 14 Time [min] +MS, 8.1min (#483) Intens. x10⁷ 585.4 1147.6 6 2 471.2 863.8 381.2 0 200 400 800 1000 6Ó0 1200 1400 1600 m/z ADX-13 CDCL3 HSQC