SUPPORTING INFORMATION

Figure S1. HPLC analysis of endopeptidase Lys-C digest for Edman degradation. The purified proteins (**A**) OABP1 and (**B**) OABP2 were digested with endopeptidase Lys-C, and separated by TSKgel ODS-80Ts QA (ϕ 2.0 x 250 mm). The column was equilibrated with Solvent A of 0.1% TFA at a flow rate of 0.2 mL/min, and loaded with the samples. The Solvent B of 0.09% TFA in 90% CH₃CN was linearly raised from 0 to 10% in the period of 2-7 min, from 10 to 50% in the period of 7-82 min and from 50 to 100% in the period of 82-87 min. The Solvent B was kept running for another 5 min, and then the solvent was replaced with Solvent A for conditioning. Amino acid sequences of two peptides in each analysis were determined by Edman degradation as listed below the HPLC charts.

Figure S2. Amplification of cDNA coding OABP1 and OABP2. (**A**) The degenerated forward and reverse primers based on the amino acid residues of OABP1 and OABP2 determined by Edman degradation (*14*). The letters Y, N and R represents C/T, A/C/G/T and A/G, respectively. (**B**) Agarose gel electrophoresis of PCR products. Lanes 1 and 2 (both for OABP2), and lanes 3 and 4 (both for OABP1) represent the results from individual pairs of primers shown in the right. Bands A, B and C were subjected to the sequence analysis.

OABP1 P11611	1	WVEQLKQCKQLEEASVKLLCEKAREVLS MDDKTFTKELDQWVEQLNECKQLNENQVRTLCEKAKEILT *****::****: .*: *****:*:
OABP1 P11611	41	QESNVQKVKSPVTVCGDVHGQFHDLMELFRIGGDSPDTNY KESNVQEVRCPVTVCGDVHGQFHDLMELFRIGGKSPDTNY :****:::::
OABP1 P11611	81	LFMGDYVDRGYYSVETVTLLVALKVRYPNRITLLRGNHES LFMGDYVDRGYYSVETVTLLVALKVRYPERITILRGNHES *********
OABP1 P11611	121	RQITQITQVYDECLRKYGNPNVWKFFTDLFDYLPLTALVD RQITQVYGFYDECLRKYGNANVWKYFTDLFDYLPLTALVD *****: .**********
OABP1 P11611	161	DQIFCLHGGLSPSIDTLDHIRSLDRLQEVPHEGPMCDLLW GQIFCLHGGLSPSIDTLDHIRALDRLQEVPHEGPMCDLLW .**********************
OABP1 P11611	201	SDPDDRGGWGISPRGADYTFGMDISENFNHNNGLTLISRA SDPDDRGGWGISPRGAGYTFGQDISETFNHANGLTLVSRA *****************
OABP1 P11611	241	HQLVMEGYNWCHERNVVTIFSAPNYCYRCGNQAAIMELDD HQLVMEGYNWCHDRNVVTIFSAPNYCYRCGNQAAIMELDD ***********
OABP1 P11611	281	GLKYTFLQFDPA TLKYSFLQFDPAPRRGEPHVTRRTPDYFL ***:****

Figure S3. Alignment of protein sequences for OABP1 and a rabbit PP2A β catalytic subunit (GenBank accession number: P11611). They are 88% homologous (*16*). OABP1 catalyzed hydrolysis of *p*NPP with 710 pmol/min/µg (13).

Figure S4. ESI-MS spectra of OABP2. (**A**, **C**) Raw and (**B**, **D**) deconvoluted mass spectrum for OABP2 measured in (**A**) 5% MeOH and (**C**) 50% CH₃CN. The X, Y and Z are attributed to OABP2.1, OABP2.2 and OABP2.3, respectively. The peak at 827.7 corresponding to $[M+Na]^+$ for okadaic acid was present in both of the conditions. The peaks X and Y in 5% MeOH gave larger *m*/*z* than those observed in 50% CH₃CN by 804, indicating that OABP2.1 and OABP2.2 possibly form a complex with okadaic acid. The deconvoluted peak assigned to OABP2.3 was independent of the measurement condition.

AB078740	1						A	ACA	ATT	CGA	CTG	TGA	CTT	ATT	TTG	GAA
AB078740	29	ATG	GCT	AAT	TTA	AAG	GAG	CCA	TCA	GCT	CAC	TGG	TGC	AGG	AAG	ATG
OABP2.1	1	(M ^a)	A ^b	N	L	K	E	P	S	A	H	W	C	R	K	M
AB078740	74	CGG	ACA	GTT	TTT	CGG	CCA	TGG	GAT	GTG	GAA	GGA	GGT	TCA	AAA	GGC
OABP2.1	15	R	T	V	F	R	P	W	D	V	E	G	G	S	K	G
AB078740	119	TAT	GTC	ACG	GAA	GAG	GTC	TTT	AAA	GAC	GGC	GTT	CAA	AGA	AGG	CTG
OABP2.1	30	Y	V	T	E	E	V	F	K	D	G	V	Q	R	R	L
AB078740	164	GAG	AAA	TTT	CCC	GAG	CTT	GCC	CCT	ACG	AAA	GAC	AAA	ATG	TAC	GAG
OABP2.1	45	E	K	F	P	E	L	A	P	T	K	D	K	M	Y	E
AB078740	209	CGA	TCA	CAT	CGT	CAC	TGG	GTC	AAC	CAC	TGC	AAC	CTG	GGG	GTC	AAG
OABP2.1	60	R	S	H	R	H	W	V	N	H	C	N	L	G	V	K
AB078740	254	ATG	CCT	GAA	GGT	TAC	CGA	CTA	ACC	GAA	TCG	CAG	TAT	GTC	CAG	AAT
OABP2.1	75	M	P	E	G	Y	R	L	T	E	S	O	Y	V	O	N
AB078740	299	GCC	TGG	CTG	CTC	ATT	CAC	TCG	CCT	GAT	TTT	GAA	GCA	AGT	TTG	AAA
OABP2.1	90	A	W	L	L	I	H	S	P	D	F	E	A	S	L	K
AB078740	344	GAA	TCC	AGC	CAA	ACT	TTT	TGG	GAA	GGA	ATC	GAT	AGA	GAA	AAG	AAG
OABP2.1	105	E	S	S	Q	T	F	W	E	G	I	D	R	E	K	K
AB078740	389	GGA	TAC	ATC	ACA	AAG	GAG	GAA	GCT	ACT	AAA	CTC	GGT	ATC	CGA	GTC
OABP2.1	120	G	Y	I	T	K	E	E	A	T	K	L	G	I	R	V
AB078740	434	ACA	AAA	GAC	CCG	AAT	CTC	AAG	AGC	ACT	GGC	ATC	TTT	GAG	GCT	ATG
OABP2.1	135	T	K	D	P	N	L	K	S	T	G	I	F	E	A	M
AB078740	479	GAT	GAA	AAA	AAT	ACT	GGG	AGG	ATC	ACG	TTT	GAG	GAT	ACG	CTC	AAG
OABP2.1	150	D	E	K	N	T	G	R	I	T	F	E	D	T	L	K
AB078740	524	GCA	CAA	CTT	TTC	TTC	TTC	ACA	GAC	CAG	GAT	AAC	ACA	ACT	CAT	CCT
OABP2.1	165	A	Q	L	F	F	F	T	D	O	D	N	T	T	H	P
AB078740 OABP2.1	569 180	TTC F	AAC N	TAT Y	GTG V	AGG R	GGA G	GCA A	CTT L	GTG V	GAT D	TAG stoj	<u>,</u>			
AB078740	61	4 (GAA A	ATT (CAA (CTG Z	AAC 2	AGT 1	IGC 2	AGG (GGT (CAA Z	AAA (GGA		

Figure S5. The complete cDNA sequence of OABP2.1 and its amino acid sequence. The peptide sequences determined by Edman degradation were underlined. The MS mapping demonstrated that the posttranslational modification occurs at *N*-terminus. The superscripts ^a and ^b represent (a) deletion of the methionine and (b) acetylation on the alanine in *N*-terminus.

Figure S6. Quantification of okadaic acid in the sponges *H. okadai* and *H. japonica*. To 300 μ L of the crude extract from each sponge was added 200 μ L of 1 mg/mL 9-anthryldiazomethan (ADAM) in MeOH (28). After incubation at room temperature for 60 min in the dark, the mixture was evaporated, loaded to a silica gel column, and eluted with CHCl₃ followed by 5% MeOH/CHCl₃. The latter fraction was collected, and analyzed with HPLC on an ODS column Mightysil RP-18 GP 4.6 x 250 mm using 8:1:1 CH₃CN-MeOH-H₂O at flow rate of 1.1 mL/min. The wavelength of excitation and emission were set at 365 nm and 412 nm, respectively. HPLC chromatogram for 50 ng of 9-ADMOA (top), 32 mg of *H. okadai* extract (middle) and 52 mg of *H. japonica* extract (bottom) provided evidence that okadaic acid is not contained in *H. japonica*.

According to Fig. 4B, this peptide is deduced to be D^{139} PNLK.

Figure S7. Identification of the photoaffinity labeled OABP2 fragment by ESIMS. After photolabeling of OABP2, the protein was precipitated in acetone, and resuspended in 10 mM Tris/HCl (pH 9.0). The mixture was digested with endopeptidase Lys-C for 12 h, and then purified with Immunopure Immobilized Monomeric Avidin (Pierce, Illinois, USA). ESIMS analysis was carried out as described in *Experimental Procedures*.