SUPPORTING INFORMATION

Peptide 1: WVEQLK
Peptide 2: YTFLQFDPAP...

Peptide 3: FFFTDQDNTT.... Peptide 4: LTESQYVQNA

Figure S1. HPLC analysis of endopeptidase Lys-C digest for Edman degradation. The purified proteins (A) OABP1 and (B) OABP2 were digested with endopeptidase Lys-C, and separated by TSKgel ODS-80Ts QA ($\phi 2.0 \times 250 \mathrm{~mm}$). The column was equilibrated with Solvent A of 0.1% TFA at a flow rate of $0.2 \mathrm{~mL} / \mathrm{min}$, and loaded with the samples. The Solvent B of 0.09% TFA in $90 \% \mathrm{CH}_{3} \mathrm{CN}$ was linearly raised from 0 to 10% in the period of $2-7 \mathrm{~min}$, from 10 to 50% in the period of $7-82 \mathrm{~min}$ and from 50 to 100% in the period of $82-$ 87 min . The Solvent B was kept running for another 5 min , and then the solvent was replaced with Solvent A for conditioning. Amino acid sequences of two peptides in each analysis were determined by Edman degradation as listed below the HPLC charts.

A
amino acid sequence
OABP1 WVEQLK
YTFLQFDPAP
1)ABP2 LTESQYVQNA FFFTDQDNTT
sense strand

antisense strand

(f) 5'TTNAGYTGYTCNACCCA3'
(g) 5'TTYAAYTGYTCNACCCA3'
(h) 5^{\prime} 'GGNGCNGGRTCRAAYTG3'
(i) 5'GCRTTYTGNACRTAYTG3'
(j) 5'TTRTCYTGRTCNGTRAARAA3'

B

Primers used in the PCR Reaction

1. (d) and (j)
2. (e) and (i)
3. (c) and (f), (g)
4. (a), (b) and (h)

Figure S2. Amplification of cDNA coding OABP1 and OABP2. (A) The degenerated forward and reverse primers based on the amino acid residues of OABP1 and OABP2 determined by Edman degradation (14). The letters Y, N and R represents C/T, A/C/G/T and A/G, respectively. (B) Agarose gel electrophoresis of PCR products. Lanes 1 and 2 (both for OABP2), and lanes 3 and 4 (both for OABP1) represent the results from individual pairs of primers shown in the right. Bands A, B and C were subjected to the sequence analysis.

$\begin{aligned} & \text { OABP1 } \\ & \text { P11611 } \end{aligned}$	1	WVEQLKOCKQLEEASVKLLCEKAREVLS MDDKTFTKELDQWVEOLNECKOLLNENQVRTLCEKAKEILT
OABP1 P11611	41	OESNVQKVKSPVTVCGDVHGOFHDLMELFRIGGDSPDTNY KESNVOEVRCPVTVCGDVHGORHDLMELFRTGGGKARDTNY
$\begin{aligned} & \text { OABP1 } \\ & \text { P11611 } \end{aligned}$	81	LFMGDYVDRGYYSVETVTLLVALKVRYPNRITLLRGNHES LFMGDVVDRGYYSVETVLLVALKKVRYPERTILRGNHES *******************************:******
OABP1 P11611	121	RQITQITQVYDECLRKYGNPNVWKFFTDLFDYLPLTALVD ROTIOVYGFYDECLRKYGNANVWKYFTDLEDYLPLTALVD
$\begin{aligned} & \text { OABP1 } \\ & \text { P11611 } \end{aligned}$	161	DQIFCLHGGLSPSIDTLDHIRSLDRLQEVPHEGPMCDLLW
$\begin{aligned} & \text { OABP1 } \\ & \text { P11611 } \end{aligned}$	201	SDPDDRGGWGISPRGADYTFGMDISENFNHNNGLTLISRA SDPDDRGGWGISPRGAGTFGQDISETFNHANGLTLVSRA
$\begin{aligned} & \text { OABP1 } \\ & \text { P11611 } \end{aligned}$	241	HQLVMEGYNWCHERNVVTIFSAPNYCYRCGNQAAIMELDD $\underset{*}{H} \mathrm{~L}$ VMEGYNWCHDRNVVTIFSAPNYCYRCGNQAAIMELDE
$\begin{aligned} & \text { OABP1 } \\ & \text { P11611 } \end{aligned}$	281	GLKYTFLQFDPA TLKYSFLØFDPAPRRGEPHVTRRTPDYFL

Figure S3. Alignment of protein sequences for OABP1 and a rabbit PP2A β catalytic subunit (GenBank accession number: P11611). They are 88% homologous (16). OABP1 catalyzed hydrolysis of p NPP with $710 \mathrm{pmol} / \mathrm{min} / \mu \mathrm{g}$ (13).

Figure S4. ESI-MS spectra of OABP2. (A, C) Raw and (B, D) deconvoluted mass spectrum for OABP2 measured in (A) $5 \% \mathrm{MeOH}$ and (C) $50 \% \mathrm{CH}_{3} \mathrm{CN}$. The X, Y and Z are attributed to OABP2.1, OABP2.2 and OABP2.3, respectively. The peak at 827.7 corresponding to $[\mathrm{M}+\mathrm{Na}]^{+}$for okadaic acid was present in both of the conditions. The peaks X and Y in 5% MeOH gave larger m / z than those observed in $50 \% \mathrm{CH}_{3} \mathrm{CN}$ by 804 , indicating that OABP2.1 and OABP2.2 possibly form a complex with okadaic acid. The deconvoluted peak assigned to OABP2.3 was independent of the measurement condition.

AB078740	1							ACA	ATT	CGA	CTG	TGA	CTT	ATT	TTG	GAA
$\begin{aligned} & \text { AB078740 } \\ & \text { OABP2.1 } \end{aligned}$	$\begin{array}{r} 29 \\ 1 \end{array}$	ATG (M ${ }^{\text {a }}$)	$\underset{A^{b}}{G C T}$	$\begin{gathered} \text { AAT } \\ \mathrm{N} \end{gathered}$	$\underset{\mathrm{L}}{\mathrm{TTA}}$	$\begin{gathered} \text { AAG } \\ \mathrm{K} \end{gathered}$	$\underset{\mathrm{E}}{\mathrm{GAG}}$	$\underset{\mathrm{P}}{\mathrm{CCA}}$	$\begin{gathered} \text { TCA } \\ \mathrm{S} \end{gathered}$	$\underset{\mathrm{A}}{\mathrm{GCT}}$	$\underset{\mathrm{H}}{\mathrm{CAC}}$	TGG	$\begin{gathered} \text { TGC } \\ \mathrm{C} \end{gathered}$	$\begin{gathered} \text { AGG } \\ \mathrm{R} \end{gathered}$	$\begin{gathered} \text { AAG } \\ \mathrm{K} \end{gathered}$	ATG M
$\begin{aligned} & \text { AB078740 } \\ & \text { OABP2.1 } \end{aligned}$	$\begin{aligned} & 74 \\ & 15 \end{aligned}$	$\underset{\mathrm{R}}{\mathrm{CGG}}$	$\underset{\mathrm{T}}{\mathrm{ACA}}$	$\begin{gathered} \text { GTT } \\ \mathrm{V} \end{gathered}$	$\underset{\mathrm{F}}{\mathrm{TTT}}$	$\underset{\mathrm{R}}{\mathrm{CGG}}$	$\underset{\mathrm{P}}{\mathrm{CCA}}$	$\begin{gathered} \text { TGG } \\ \text { W } \end{gathered}$	$\begin{gathered} \text { GAT } \\ \text { D } \end{gathered}$	$\begin{gathered} \text { GTG } \\ \mathrm{V} \end{gathered}$	$\underset{\mathrm{E}}{\mathrm{GAA}}$	$\underset{\mathrm{G}}{\mathrm{GGA}}$	$\begin{gathered} \text { GGT } \end{gathered}$	$\begin{gathered} \text { TCA } \\ \mathrm{S} \end{gathered}$	$\underset{\mathrm{K}}{\mathrm{AAA}}$	GGC
$\begin{aligned} & \text { AB078740 } \\ & \text { OABP2.1 } \end{aligned}$	$\begin{array}{r} 119 \\ 30 \end{array}$	$\begin{gathered} \text { TAT } \\ \text { Y } \end{gathered}$	GTC_{V}	$\underset{\mathrm{T}}{\mathrm{ACG}}$	$\underset{\mathrm{E}}{\mathrm{GAA}}$	$\underset{\mathrm{E}}{\mathrm{GAG}}$	$\underset{\mathrm{V}}{\mathrm{GTC}}$	$\underset{\mathrm{F}}{\mathrm{TTT}}$	$\underset{K}{\text { AAA }}$	$\begin{gathered} \text { GAC } \\ \mathrm{D} \end{gathered}$	$\underset{\mathrm{G}}{\mathrm{GGC}}$	$\underset{\mathrm{V}}{\mathrm{GTT}}$	CAA	$\underset{\mathrm{R}}{\mathrm{AGA}}$	$\underset{\mathrm{R}}{\mathrm{AGG}}$	$\underset{L}{\text { CTG }}$
$\begin{aligned} & \text { AB078740 } \\ & \text { OABP2.1 } \end{aligned}$	$\begin{array}{r} 164 \\ 45 \end{array}$	$\underset{\mathrm{E}}{\mathrm{GAG}}$	$\begin{gathered} \text { AAA } \\ \text { K } \end{gathered}$	$\begin{gathered} \text { TTT } \\ \text { F } \end{gathered}$	$\underset{\mathrm{P}}{\mathrm{CCC}}$	$\underset{\mathrm{E}}{\mathrm{GAG}}$	$\underset{\mathrm{L}}{\mathrm{CTT}}$	$\underset{\mathrm{A}}{\mathrm{GCC}}$	$\underset{\mathrm{P}}{\mathrm{CCT}}$	$\underset{\mathrm{T}}{\mathrm{ACG}}$	AAA	$\underset{\mathrm{D}}{\mathrm{GAC}}$	$\underset{\mathrm{K}}{\text { AAA }}$	$\underset{\mathrm{M}}{\text { ATG }}$	$\underset{\mathrm{Y}}{\mathrm{TAC}}$	$\underset{E}{\text { GAG }}$
$\begin{aligned} & \text { AB078740 } \\ & \text { OABP2.1 } \end{aligned}$	$\begin{array}{r} 209 \\ 60 \end{array}$	$\underset{\mathrm{R}}{\mathrm{CGA}}$	$\begin{gathered} \text { TCA } \\ \mathrm{S} \end{gathered}$	$\underset{\mathrm{H}}{\mathrm{CAT}}$	$\underset{R}{\text { CGT }}$	$\underset{\mathrm{H}}{\mathrm{CAC}}$	$\begin{gathered} \text { TGG } \\ \text { W } \end{gathered}$	$\underset{\mathrm{V}}{\mathrm{GTC}}$	$\underset{\mathrm{N}}{\mathrm{AAC}}$	$\underset{\mathrm{H}}{\mathrm{CAC}}$	$\underset{\mathrm{C}}{\mathrm{TGC}}$	$\begin{gathered} \text { AAC } \\ \mathrm{N} \end{gathered}$	CTG	$\underset{G}{\text { GGG }}$	$\underset{\mathrm{V}}{\mathrm{GTC}}$	$\underset{\mathrm{K}}{\text { AAG }}$
$\begin{aligned} & \text { AB078740 } \\ & \text { OABP2.1 } \end{aligned}$	$\begin{array}{r} 254 \\ 75 \end{array}$	$\text { ATG }_{M}$	$\underset{P}{\text { CCT }}$	$\underset{\mathrm{E}}{\mathrm{GA}}$	$\underset{G}{\mathrm{GGT}}$	$\begin{gathered} \text { TAC } \\ \text { Y } \end{gathered}$	$\underset{\mathrm{R}}{\mathrm{CGA}}$	$\underset{\underline{L}}{\substack{\text { CTA } \\ \hline}}$	$\begin{gathered} \mathrm{ACC} \\ \mathrm{~T} \\ \hline \end{gathered}$	$\underset{\mathrm{E}}{\mathrm{GAA}}$	$\begin{gathered} \text { TCG } \\ \mathrm{S} \\ \hline \end{gathered}$	$\begin{gathered} \text { CAG } \\ \mathrm{Q} \\ \hline \end{gathered}$	$\begin{gathered} \text { TAT } \\ \hline \\ \hline \end{gathered}$	$\begin{gathered} \text { GTC } \\ \mathrm{V} \\ \hline \end{gathered}$	$\begin{gathered} \text { CAG } \\ \mathrm{Q} \\ \hline \end{gathered}$	$\begin{gathered} \text { AAT } \\ \mathrm{N} \\ \hline \end{gathered}$
$\begin{aligned} & \text { AB078740 } \\ & \text { OABP2.1 } \end{aligned}$	$\begin{array}{r} 299 \\ 90 \end{array}$	$\begin{gathered} \text { GCC } \\ \mathrm{A} \\ \hline \end{gathered}$	$\begin{gathered} \text { TGG } \\ \text { W } \end{gathered}$	CTG	CTC	$\begin{gathered} \text { ATT } \\ \hline \end{gathered}$	$\underset{\mathrm{H}}{\mathrm{CAC}}$	$\underset{\mathrm{S}}{\mathrm{TCG}}$	$\underset{P}{\text { CCT }}$	$\begin{gathered} \text { GAT } \\ \text { D } \end{gathered}$	$\underset{\mathrm{F}}{\mathrm{TTT}}$	$\underset{E}{\text { GAA }}$	$\underset{A}{\text { GCA }}$	$\begin{gathered} \text { AGT } \\ \mathrm{S} \end{gathered}$	$\underset{\mathrm{L}}{\text { TTG }}$	AAA
$\begin{aligned} & \text { AB078740 } \\ & \text { OABP2.1 } \end{aligned}$	$\begin{aligned} & 344 \\ & 105 \end{aligned}$	$\underset{\mathrm{E}}{\mathrm{GAA}}$	$\begin{gathered} \mathrm{TCC} \\ \mathrm{~S} \end{gathered}$	$\begin{gathered} \mathrm{AGC} \\ \mathrm{~S} \end{gathered}$	CAA	$\underset{\mathrm{T}}{\mathrm{ACT}}$	$\underset{\mathrm{F}}{\mathrm{TTT}}$	$\begin{gathered} \text { TGG } \\ \text { W } \end{gathered}$	$\underset{\mathrm{E}}{\mathrm{GAA}}$	$\underset{G}{\mathrm{GGA}}$	$\begin{gathered} \text { ATC } \\ I \end{gathered}$	$\begin{gathered} \text { GAT } \\ \text { D } \end{gathered}$	$\underset{\mathrm{R}}{\mathrm{AGA}}$	$\underset{\mathrm{E}}{\mathrm{GAA}}$	$\underset{\mathrm{K}}{\text { AAG }}$	$\underset{K}{\text { AAG }}$
$\begin{aligned} & \text { AB078740 } \\ & \text { OABP2.1 } \end{aligned}$	$\begin{aligned} & 389 \\ & 120 \end{aligned}$	$\underset{\mathrm{G}}{\mathrm{GGA}}$	$\begin{gathered} \text { TAC } \\ \text { Y } \end{gathered}$	ATC	$\underset{T}{A C A}$	$\underset{K}{\text { AAG }}$	GAG	$\underset{\mathrm{E}}{\mathrm{GAA}}$	$\underset{\mathrm{A}}{\mathrm{GCT}}$	$\underset{\mathrm{T}}{\mathrm{ACT}}$	AAA K	СТС	$\underset{\mathrm{G}}{\mathrm{GGT}}$	ATC	$\underset{\mathrm{R}}{\mathrm{CGA}}$	$\underset{\mathrm{V}}{\mathrm{GTC}}$
$\begin{aligned} & \text { AB078740 } \\ & \text { OABP2.1 } \end{aligned}$	434 135	ACA	$\begin{gathered} \text { AAA } \\ \text { K } \end{gathered}$	GAC	CCG	$\begin{gathered} \text { AAT } \\ \mathrm{N} \end{gathered}$	CTC	$\begin{gathered} \text { AAG } \\ \text { K } \end{gathered}$	$\underset{\mathrm{S}}{\mathrm{AGC}}$	$\underset{T}{A C T}$	$\underset{G}{\mathrm{GGC}}$	$\underset{\mathrm{I}}{\text { ATC }}$	$\begin{gathered} \text { TTT } \\ \text { F } \end{gathered}$	$\underset{\mathrm{E}}{\mathrm{GAG}}$	$\underset{\mathrm{A}}{\mathrm{GCT}}$	ATG
$\begin{aligned} & \text { AB078740 } \\ & \text { OABP2.1 } \end{aligned}$	$\begin{aligned} & 479 \\ & 150 \end{aligned}$	$\begin{gathered} \text { GAT } \\ \text { D } \end{gathered}$	$\underset{\mathrm{E}}{\mathrm{GAA}}$	AAA	$\underset{\mathrm{N}}{\text { AAT }}$	$\underset{\mathrm{T}}{\mathrm{ACT}}$	$\underset{\mathrm{G}}{\mathrm{GGG}}$	$\underset{\mathrm{R}}{\mathrm{AGG}}$	$\begin{gathered} \text { ATC } \\ \text { I } \end{gathered}$	ACG	$\underset{\text { F }}{\text { TTT }}$	$\underset{\mathrm{E}}{\mathrm{GAG}}$	$\begin{gathered} \text { GAT } \\ \text { D } \end{gathered}$	ACG	$\underset{\mathrm{L}}{\mathrm{CTC}}$	AAG
$\begin{aligned} & \text { AB078740 } \\ & \text { OABP2.1 } \end{aligned}$	$\begin{aligned} & 524 \\ & 165 \end{aligned}$	$\underset{\mathrm{A}}{\mathrm{GCA}}$	$\begin{gathered} \text { CAA } \\ \mathrm{Q} \end{gathered}$	$\underset{\mathrm{L}}{\mathrm{CTT}}$	$\begin{gathered} \text { TTC } \\ \mathrm{F} \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{TTC} \\ \mathrm{~F} \\ \hline \end{gathered}$	$\begin{gathered} \text { TTC } \\ \mathrm{F} \\ \hline \end{gathered}$	$\begin{gathered} \text { ACA } \\ \hline \end{gathered}$	$\begin{gathered} \text { GAC } \\ \mathrm{D} \\ \hline \end{gathered}$	$\begin{gathered} \text { CAG } \\ \mathbf{Q} \\ \hline \end{gathered}$	$\begin{gathered} \text { GAT } \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{AAC} \\ \mathrm{~N} \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{ACA} \\ \hline \end{gathered}$	$\begin{array}{r} \mathrm{ACT} \\ \mathrm{~T} \\ \hline \end{array}$	$\begin{gathered} \text { CAT } \\ \mathrm{H} \end{gathered}$	$\underset{\text { CCT }}{ }$
$\begin{aligned} & \text { AB078740 } \\ & \text { OABP2.1 } \end{aligned}$	$\begin{aligned} & 569 \\ & 180 \end{aligned}$	$\underset{\mathrm{F}}{\mathrm{TTC}}$	$\begin{gathered} \text { AAC } \\ \mathrm{N} \end{gathered}$	$\begin{aligned} & \text { TAT } \\ & \text { Y } \end{aligned}$	$\underset{V}{\text { GTG }}$	$\begin{gathered} \text { AGG } \\ \mathrm{R} \end{gathered}$	GGA	$\underset{A}{\text { GCA }}$	CTT	$\underset{\mathrm{V}}{\mathrm{GTG}}$	$\begin{gathered} \text { GAT } \\ \text { D } \end{gathered}$	TAG stop				
AB078740	61		GAA	ATT C	CAA	CTG	AAC	AGT	TGC	AGG	GGT	CAA A	AAA	GGA		

Figure S5. The complete cDNA sequence of OABP2.1 and its amino acid sequence. The peptide sequences determined by Edman degradation were underlined. The MS mapping demonstrated that the posttranslational modification occurs at N-terminus. The superscripts ${ }^{\text {a }}$ and ${ }^{\text {b }}$ represent (a) deletion of the methionine and (b) acetylation on the alanine in N terminus.

Figure S6. Quantification of okadaic acid in the sponges H. okadai and H. japonica. To 300 $\mu \mathrm{L}$ of the crude extract from each sponge was added $200 \mu \mathrm{~L}$ of $1 \mathrm{mg} / \mathrm{mL} 9$ anthryldiazomethan (ADAM) in MeOH (28). After incubation at room temperature for 60 \min in the dark, the mixture was evaporated, loaded to a silica gel column, and eluted with CHCl_{3} followed by $5 \% \mathrm{MeOH} / \mathrm{CHCl}_{3}$. The latter fraction was collected, and analyzed with HPLC on an ODS column Mightysil RP-18 GP $4.6 \times 250 \mathrm{~mm}$ using 8:1:1 $\mathrm{CH}_{3} \mathrm{CN}-\mathrm{MeOH}-$ $\mathrm{H}_{2} \mathrm{O}$ at flow rate of $1.1 \mathrm{~mL} / \mathrm{min}$. The wavelength of excitation and emission were set at 365 nm and 412 nm , respectively. HPLC chromatogram for 50 ng of 9-ADMOA (top), 32 mg of H. okadai extract (middle) and 52 mg of H. japonica extract (bottom) provided evidence that okadaic acid is not contained in H. japonica.

(1018.7 x 2 -2) - $1450=585.4$

According to Fig. 4B, this peptide is deduced to be D^{139} PNLK.

Figure S7. Identification of the photoaffinity labeled OABP2 fragment by ESIMS. After photolabeling of OABP2, the protein was precipitated in acetone, and resuspended in 10 mM Tris $/ \mathrm{HCl}(\mathrm{pH} 9.0)$. The mixture was digested with endopeptidase Lys-C for 12 h , and then purified with Immunopure Immobilized Monomeric Avidin (Pierce, Illinois, USA). ESIMS analysis was carried out as described in Experimental Procedures.

