Use of polyanions for alkylation of hydrazine derivatives.

Aleksei Bredihhin, Uno Mäeorg*
${ }^{\dagger}$ Institute of Organic and Bioorganic Chemistry, University of Tartu, Jakobi 2, 51014, Tartu, Estonia
uno@chem.ut.ee

Supporting material

All reagents were obtained from commercial sources and used without further purification. THF was freshly distilled from $\mathrm{Na} /$ benzophenone.

NMR spectroscopy was performed on a Bruker Avance II 200200 MHz spectrometer using TMS as internal standard. Infrared spectra were measured on a Perkin-Elmer PC16 FTIR spectrometer, using KBr pellet technique for solid compounds and liquid film technique for oils. Melting points were determined on a Gallenkamp melting point apparatus. Compounds $\mathbf{2 b}, \mathbf{c}(\mathbf{3 a , b})$ and 2d are crystalline solids, others are oils.

Procedures:

Alkylation of trianion with 3 equiv of alkyl halide (1a); Typical procedure

An oven-dried flask was charged with $\mathrm{BocNHNH}_{2}$ ($2 \mathrm{mmol}, 264 \mathrm{mg}$), then evacuated and backfilled with argon. Thereafter THF (14 mL) was added to dissolve the solid. Reaction mixture was cooled down to $-78{ }^{\circ} \mathrm{C}$ and 1.6 M n-BuLi ($6.6 \mathrm{mmol}, 4.13 \mathrm{~mL}$) solution was added drop wise. Then reaction mixture was allowed to warm up to $-40^{\circ} \mathrm{C}$ for another 30 min and $\mathrm{Mel}(8 \mathrm{mmol}, 0.5 \mathrm{~mL}$) was added. Then reaction mixture was allowed to slowly warm up to room temperature. The reaction progress was monitored by TLC (Hexane: $\mathrm{Et}_{2} \mathrm{O}$ 1:1). After 6 hours reaction was mainly complete, but it was allowed to stir overnight. Then volatiles were evaporated (ca. $150 \mathrm{~mm} \mathrm{Hg}, 40{ }^{\circ} \mathrm{C}$). To the resulting mixture 15 mL of DCM and 6 mL of brine were added. Organic fraction was separated and dried with MgSO_{4}. Then volatiles were removed (ca. $150 \mathrm{~mm} \mathrm{Hg}, 40{ }^{\circ} \mathrm{C}$) and residue was purified by column chromatography on silica (Hexane:Et ${ }_{2} \mathrm{O}$ 2:1). 310 mg of colourless oil. Yield was 89%.

Alkylation of trianion with 2 equiv of alkyl halide (2a); Typical procedure

An oven-dried flask was charged with BocNHNH2 ($2 \mathrm{mmol}, 264 \mathrm{mg}$), then evacuated and backfilled with argon. Thereafter THF (14 mL) was added to dissolve the solid. Reaction mixture was cooled down to $-78{ }^{\circ} \mathrm{C}$ and $1.6 \mathrm{M} \mathrm{n-BuLi}(6 \mathrm{mmol}, 3.75 \mathrm{~mL}$) solution was added drop wise. Then reaction mixture was stirred for 15 min and Mel (4 $\mathrm{mmol}, 0.25 \mathrm{~mL}$) was added. The reaction progress was monitored by TLC (Hexane: $\mathrm{Et}_{2} \mathrm{O}$ 1:1). Then reaction mixture was stirred for 1 h , then allowed to warm up to room temperature and stirred overnight. Then $0.1 \mathrm{~mL} \mathrm{H} \mathrm{H}_{2} \mathrm{O}$ was added and volatiles were evaporated. To the resulting mixture 10 mL of CHCl_{3} and MgSO_{4} was added. Then mixture was filtered and volatiles were removed. Residue was purified by column chromatography on silica (Hexane: $\mathrm{Et}_{2} \mathrm{O}$ 1:1). 237 mg of colourless oil obtained. Yield was 74%.

Alkylation of dianion with 2 equiv of alkyl halide (3a); Typical procedure

An oven-dried flask was charged with $\mathrm{BocNHNH}_{2}$ ($2 \mathrm{mmol}, 264 \mathrm{mg}$), then evacuated and backfilled with argon. Thereafter THF (10 mL) was added to dissolve the solid. Reaction mixture was cooled down to $-90^{\circ} \mathrm{C}$ and $1.6 \mathrm{M} \mathrm{n-BuLi}(4 \mathrm{mmol}, 2.5 \mathrm{~mL}$) solution was added drop wise. Then reaction mixture was stirred for 15 min and $\mathrm{AllBr}(4 \mathrm{mmol}$, 0.35 mL) was added. Then reaction mixture was stirred for 1 h , then allowed to warm up to room temperature and stirred for another 1 h . The reaction progress was monitored by TLC (Hexane:Et $\mathrm{E}_{2} \mathrm{O}$ 1:1). Then $0.1 \mathrm{~mL} \mathrm{H} \mathrm{H}_{2} \mathrm{O}$ was added and volatiles were evaporated. To the resulting mixture 10 mL of CHCl_{3} and MgSO_{4} was added. Then mixture was filtered and volatiles were removed. The residue was purified by column chromatography on silica (Hexane:EtOAc 4:1). 284 mg of colourless crystals obtained. Yield was 67\%.

Alkylation of dianion with 1 equiv of alkyl halide (4a); Typical procedure

An oven-dried flask was charged with $\mathrm{BocNHNH}_{2}$ ($2 \mathrm{mmol}, 264 \mathrm{mg}$), then evacuated and backfilled with argon. Thereafter THF (5 mL) was added to dissolve the solid. Reaction mixture was cooled down to $-90^{\circ} \mathrm{C}$ and $1.6 \mathrm{M} \mathrm{n}-\mathrm{BuLi}(4 \mathrm{mmol}, 2.5 \mathrm{~mL}$) solution was added drop wise. Then reaction mixture was allowed to warm up to $-50^{\circ} \mathrm{C}$ for 20 min and $\operatorname{AllBr}(1 \mathrm{mmol}, 0.09 \mathrm{~mL})$ was added. Then reaction mixture was stirred for 1 h . The reaction progress was monitored by TLC (Hexane:EtOAc 4:1). Starting material and some amount of tert-butyl-2,2-diallylhydrazinecarboxylate was noticed. Then
another 0.5 equiv of $\operatorname{AllBr}(1 \mathrm{mmol}, 0.09 \mathrm{~mL}$) was added. After 1 h 0.2 mL of MeOH was added followed by $0.2, \mathrm{~mL} \mathrm{H}_{2} \mathrm{O}$. After that reaction mixture was allowed to warm up to room temperature. The reaction mixture was evaporated. To the resulting mixture 15 mL of DCM and 6 mL of brine were added. Organic fraction was separated and dried with MgSO_{4}. Then volatiles were removed and residue was purified by column chromatography on silica (Hexane:EtOAc 4:1). 175 mg of colourless oil obtained. Yield was 50\%.

Analytical data:

tert-butyl 1,2,2-trimethylhydrazinecarboxylate (1a)

${ }^{1} \mathrm{H}$ NMR (200 MHz, $\left.\mathrm{CDCl}_{3}, \mathrm{TMS}\right): \delta=2.91$ (s, 6H), 2.61 (s, 3H), 1.48 (s, 9H).
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{TMS}$): $\delta=155.6,79.9,42.7,33.0,28.7$.
FT IR $v\left(\mathrm{~cm}^{-1}\right): 2972,2952,2885,1698,1487,1452,1364,1154,768$.

tert-butyl 1,2,2-triallylhydrazinecarboxylate (1b)

${ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{TMS}$): $\delta=5.94-5.74(\mathrm{~m}, 3 \mathrm{H}), 5.22-5.05(\mathrm{~m}, 6 \mathrm{H}), 3.84$ (broad s, 3H), 3.47 (broad s, 3H), 1.47 (s, 9H).
${ }^{13} \mathrm{C}$ NMR (100 MHz, $\mathrm{CDCl}_{3}, \mathrm{TMS}$): $\delta=155.1,135.8,135.2,117.3,116.4,80.1,58.1$, 55.1, 28.7.

FT IR $v\left(\mathrm{~cm}^{-1}\right): 3080,2977,2930,2859,1693,1374,1246,1179,1130,994,927,763$.
HRMS (ESI): m/z calcd for $\mathrm{C}_{14} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{2}[\mathrm{MH}]^{+}$: 253.19105; found:253.19110.

tert-butyl 2,2-dimethylhydrazinecarboxylate (2a)

${ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{TMS}$): $\delta=5.65$ (broad s, 1H), 2.58 (s, 6H), 1.46 (s, 9H).
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{TMS}$): $\delta=154.7,80.0,47.6,28.4$.
FT IR $v\left(\mathrm{~cm}^{-1}\right): 3244,2982,2864,2787,1708,1518,1451,1251,1159,1107,846$.
tert-butyl 2,2-diallylhydrazinecarboxylate (2b)

${ }^{1} \mathrm{H}$ NMR (200 MHz, $\left.\mathrm{CDCl}_{3}, \mathrm{TMS}\right): ~ \delta=6.01-5.81$ (m, 2H), 5.53 (broad s, 1H), 5.26-5.15 (m, 6H), 3.42/3.39 (s, 4H), 1.43 (s, 9H),
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{TMS}$): $\delta=155.3,134.2,118.4,79.7,59.8,28.4$.

FT IR $v\left(\mathrm{~cm}^{-1}\right): 3249,3080,2982,2920,2859,1703,1503,1359,1241,1164,995,907$, 845, 742, 614.

HRMS (ESI): m/z calcd for $\mathrm{C}_{11} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{2}[\mathrm{MH}]^{+}$: 213.15975; found:.213.15965 $\mathrm{mp} 38-40^{\circ} \mathrm{C}$

tert-butyl 2,2-dibenzylhydrazinecarboxylate (2c)

${ }^{1} \mathrm{H}$ NMR (200 MHz, $\mathrm{CDCl}_{3}, \mathrm{TMS}$): $\delta=7.40-7.24$ (m, 10H), 5.68 (broad s, 1H) 4.05 (broad s, 2H), 1.35 (s, 9H).
${ }^{13} \mathrm{C}$ NMR (100 MHz, $\mathrm{CDCl}_{3}, \mathrm{TMS}$): $\delta=155.2,137.7,129.3,128.3,127.3,79.8,60.4$, 28.4.

FT IR $v\left(\mathrm{~cm}^{-1}\right): 3305,3090,3064,3034,2977,2936,2869,2828,1693,1508,1456$, 1364, 1266, 1236, 1153, 742, 691.
mp $115-118{ }^{\circ} \mathrm{C}$
tert-butyl pyrrolidin-1-ylcarbamate (2d)

${ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}, 2 \mathrm{I}^{\circ} \mathrm{C}, \mathrm{TMS}$): $\delta=5.62(\mathrm{~s}$ broad, 1 H), $2.87(\mathrm{~m}, 4 \mathrm{H}), 1.82(\mathrm{~m}, 4$ H), 1.46 (s, 9H).
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}, 21^{\circ} \mathrm{C}$, TMS): $\delta=155.0,79.9,55.1,28.5,22.4$.
FT IR $v\left(\mathrm{~cm}^{-1}\right): 3229,2977,2925,2843,1688,1544,1282,1359,1164,860,624$.
HRMS (ESI): m/z calcd for $\mathrm{C}_{9} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{2}[\mathrm{MH}]^{+}: 187.14410$; found:.187.14421
mp 110-114 ${ }^{\circ} \mathrm{C}$

tert-butyl 2-allylhydrazinecarboxylate (4a)

${ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}, 21^{\circ} \mathrm{C}, \mathrm{TMS}$): $\delta=6.71 / 6.47$ (broad s, 1 H), $5.98-5.76(\mathrm{~m}, 2 \mathrm{H})$, 5.26-5.12 (m, 2H), 3.97 (s, 1H), 3.48/3.45 (s, 2H), 1.46 (s, 9H),
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}, 21^{\circ} \mathrm{C}$, TMS): $\delta=156.8,134.5,117.9,80.3,54.6,28.4$.
FT IR $v\left(\mathrm{~cm}^{-1}\right): 3311,3075,2972,2930,2864,1703,1456,1380,1282,1251,1158$, 927.

tert-butyl 1,2,2-trimethylhydrazinecarboxylate (1a)

tert-butyl 1,2,2-trimethylhydrazinecarboxylate (1a)

tert-butyl 1,2,2-triallylhydrazinecarboxylate (1b)

tert-butyl 1,2,2-triallylhydrazinecarboxylate (1b)

tert-butyl 2,2-dimethylhydrazinecarboxylate (2a)

/

tert-butyl 2,2-dimethylhydrazinecarboxylate (2a)

∞ N N NT		$\begin{aligned} & \text { 응 } \\ & \text { B } \end{aligned}$	¢

T1171110	11	,	171	,	11		$1{ }^{1}$	11	1	11	11	11	1	111	$1{ }^{1}$	$1 T$
160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0

tert-butyl 2,2-diallylhydrazinecarboxylate (2b)

tert-butyl 2,2-dibenzylhydrazinecarboxylate (2c)

tert-butyl 2,2-dibenzylhydrazinecarboxylate (2c)

tert-butyl pyrrolidin-1-ylcarbamate (2d)

tert－butyl 2－allylhydrazinecarboxylate（3a）

tert-butyl 2-allylhydrazinecarboxylate (3a)

