Total Synthesis of (-)-Hennoxazole

Thomas E. Smith,* Wen-Hsin Kuo, Emily P. Balskus, Victoria D. Bock, Jennifer L. Roizen, Ashleigh B. Theberge, Kathleen A. Carroll, Tomoki Kurihara, and Jeffrey D. Wessler
Department of Chemistry, Williams College, Williamstown, Massachusetts 01267

Supporting Information

Table of Contents

General Information. S2
Experimental details and characterization data for 21 S3
Experimental details and characterization data for $\mathbf{2 2}$ S3
Experimental details and characterization data for 23 S4
Experimental details and characterization data for $\mathbf{2 4 b}$ S4
Experimental details and characterization data for $\mathbf{4 0}$ S5
Experimental details and characterization data for 5 S6
Experimental details and characterization data for 51 S7
Experimental details and characterization data for 54 S8
Experimental details and characterization data for $\mathbf{4 a}$ S9
Experimental details and characterization data for 24a S9
Experimental details and characterization data for 27. S10
Experimental details and characterization data for 28 S10
Experimental details and characterization data for 29 S11
Experimental details and characterization data for $\mathbf{3 0}$ S11
Experimental details and characterization data for 41 S12
Experimental details and characterization data for 42. S12
General procedure for $\mathrm{TiCl}_{4} /(i-\mathrm{Pr})_{2} \mathrm{NEt}$ aldol-type reactions with acetals S13
General procedure for PhBCl_{2} /sparteine aldol-type reactions with acetals S13
Characterization data for 45a S14
Characterization data for 46a S14
Characterization data for $\mathbf{4 5 b}$ S14
Characterization data for 46b S15
Characterization data for 47a S15
Characterization data for 48a. S15
${ }^{1} \mathrm{HNMR}(500 \mathrm{MHz})$ and ${ }^{13} \mathrm{CNMR}(125 \mathrm{MHz})$ spectra $\left(\mathrm{CDCl}_{3}\right)$ for 21 S17-18
${ }^{1} \mathrm{HNMR}(500 \mathrm{MHz})$ and ${ }^{13} \mathrm{CNMR}(125 \mathrm{MHz})$ spectra $\left(\mathrm{CDCl}_{3}\right)$ for 22 S19-20
${ }^{1} \mathrm{HNMR}(500 \mathrm{MHz})$ and ${ }^{13} \mathrm{CNMR}(125 \mathrm{MHz})$ spectra $\left(\mathrm{CDCl}_{3}\right)$ for 23 S21-22
${ }^{1} \mathrm{HNMR}(500 \mathrm{MHz})$ and ${ }^{13} \mathrm{CNMR}(125 \mathrm{MHz})$ spectra $\left(\mathrm{CDCl}_{3}\right)$ for 24b S23-24
${ }^{1} \mathrm{HNMR}(500 \mathrm{MHz})$ and ${ }^{13} \mathrm{CNMR}(125 \mathrm{MHz})$ spectra $\left(\mathrm{CDCl}_{3}\right)$ for 7. S25-26
${ }^{1} \mathrm{HNMR}(500 \mathrm{MHz})$ and ${ }^{13} \mathrm{CNMR}(125 \mathrm{MHz})$ spectra $\left(\mathrm{CDCl}_{3}\right)$ for 37 S27-28
${ }^{1} \mathrm{HNMR}(500 \mathrm{MHz})$ and ${ }^{13} \mathrm{CNMR}(125 \mathrm{MHz})$ spectra $\left(\mathrm{CDCl}_{3}\right)$ for 40 S29-30
${ }^{1} \mathrm{HNMR}(500 \mathrm{MHz})$ and ${ }^{13} \mathrm{CNMR}(125 \mathrm{MHz})$ spectra $\left(\mathrm{CDCl}_{3}\right)$ for 5 S31-32
${ }^{1} \mathrm{HNMR}(500 \mathrm{MHz})$ and ${ }^{13} \mathrm{CNMR}(125 \mathrm{MHz})$ spectra $\left(\mathrm{CDCl}_{3}\right)$ for $\mathbf{4 7 b}$ S33-34
${ }^{1} \mathrm{HNMR}(500 \mathrm{MHz})$ and ${ }^{13} \mathrm{CNMR}(125 \mathrm{MHz})$ spectra $\left(\mathrm{CDCl}_{3}\right)$ for 51 S35-36
${ }^{1} \mathrm{HNMR}(500 \mathrm{MHz})$ and ${ }^{13} \mathrm{CNMR}(125 \mathrm{MHz})$ spectra $\left(\mathrm{CDCl}_{3}\right)$ for 53 S37-38
${ }^{1} \mathrm{HNMR}(500 \mathrm{MHz})$ and ${ }^{13} \mathrm{CNMR}(125 \mathrm{MHz})$ spectra $\left(\mathrm{CDCl}_{3}\right)$ for 54 S39-40
${ }^{1} \mathrm{HNMR}(500 \mathrm{MHz})$ and ${ }^{13} \mathrm{CNMR}(125 \mathrm{MHz})$ spectra $\left(\mathrm{CDCl}_{3}\right)$ for $\mathbf{4 a}$ S41-42
${ }^{1} \mathrm{HNMR}(500 \mathrm{MHz})$ and ${ }^{13} \mathrm{CNMR}(125 \mathrm{MHz})$ spectra $\left(\mathrm{CDCl}_{3}\right)$ for 55 S43-44
${ }^{1} \mathrm{HNMR}(500 \mathrm{MHz})$ and ${ }^{13} \mathrm{CNMR}(125 \mathrm{MHz})$ spectra $\left(\mathrm{CDCl}_{3}\right)$ for $\mathbf{1 a}$ S45-46
${ }^{1} \mathrm{HNMR}(500 \mathrm{MHz})$ and ${ }^{13} \mathrm{CNMR}(125 \mathrm{MHz})$ spectra (acetone- d_{6}) for $\mathbf{1 a}$ S47-48
${ }^{1} \mathrm{HNMR}(500 \mathrm{MHz})$ and ${ }^{13} \mathrm{CNMR}(125 \mathrm{MHz})$ spectra $\left(\mathrm{CDCl}_{3}\right)$ for $\mathbf{2 4 a}$ S49-50
${ }^{1} \mathrm{HNMR}(500 \mathrm{MHz})$ and ${ }^{13} \mathrm{CNMR}(125 \mathrm{MHz})$ spectra $\left(\mathrm{CDCl}_{3}\right)$ for 27 S51-52
${ }^{1} \mathrm{HNMR}(500 \mathrm{MHz})$ and ${ }^{13} \mathrm{CNMR}(125 \mathrm{MHz})$ spectra $\left(\mathrm{CDCl}_{3}\right)$ for 28 S53-54
${ }^{1} \mathrm{HNMR}(500 \mathrm{MHz})$ and ${ }^{13} \mathrm{CNMR}(125 \mathrm{MHz})$ spectra $\left(\mathrm{CDCl}_{3}\right)$ for 29 S55-56
${ }^{1} \mathrm{HNMR}(500 \mathrm{MHz})$ and ${ }^{13} \mathrm{CNMR}(125 \mathrm{MHz})$ spectra $\left(\mathrm{CDCl}_{3}\right)$ for 30 S57-58
${ }^{1} \mathrm{HNMR}(500 \mathrm{MHz})$ and ${ }^{13} \mathrm{CNMR}(125 \mathrm{MHz})$ spectra $\left(\mathrm{CDCl}_{3}\right)$ for 41 S59-60
${ }^{1} \mathrm{HNMR}(500 \mathrm{MHz})$ and ${ }^{13} \mathrm{CNMR}(125 \mathrm{MHz})$ spectra $\left(\mathrm{CDCl}_{3}\right)$ for 42 S61-62
${ }^{1} \mathrm{HNMR}(500 \mathrm{MHz})$ and ${ }^{13} \mathrm{CNMR}(125 \mathrm{MHz})$ spectra $\left(\mathrm{CDCl}_{3}\right)$ for 45 a S63-64
${ }^{1} \mathrm{HNMR}(500 \mathrm{MHz})$ and ${ }^{13} \mathrm{CNMR}(125 \mathrm{MHz})$ spectra $\left(\mathrm{CDCl}_{3}\right)$ for 46a S65-66
${ }^{1} \mathrm{HNMR}(500 \mathrm{MHz})$ and ${ }^{13} \mathrm{CNMR}(125 \mathrm{MHz})$ spectra $\left(\mathrm{CDCl}_{3}\right)$ for $\mathbf{4 5 b}$ S67-68
${ }^{1} \mathrm{HNMR}(500 \mathrm{MHz})$ and ${ }^{13} \mathrm{CNMR}(125 \mathrm{MHz})$ spectra $\left(\mathrm{CDCl}_{3}\right)$ for $\mathbf{4 6 b}$ S69-70
${ }^{1} \mathrm{HNMR}(500 \mathrm{MHz})$ and ${ }^{13} \mathrm{CNMR}(125 \mathrm{MHz})$ spectra $\left(\mathrm{CDCl}_{3}\right)$ for $47 \mathbf{a}$ S71-72
${ }^{1} \mathrm{HNMR}(500 \mathrm{MHz})$ and ${ }^{13} \mathrm{CNMR}(125 \mathrm{MHz})$ spectra $\left(\mathrm{CDCl}_{3}\right)$ for $\mathbf{4 8 a}$ S73-74

General Information. Oxygen- or moisture-sensitive reactions were carried out in flame-dried or ovendried glassware sealed with rubber septa under a positive pressure of dry nitrogen. Similarly sensitive liquids and solutions were transferred by gas-tight syringe or cannula. Unless indicated otherwise, reagents and solvents were purchased and used without purification. Ether, THF, and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, were purified by passage through a bed of activated alumina. ${ }^{1}$ Analytical TLC was performed with 0.25 mm silica gel 60 plates with 254 nm fluorescent indicator from SiliCycle. Plates were visualized under UV light and treatment with either acidic p-anisaldehyde stain or aqueous ceric ammonium molybdate (CAM) solution followed by gentle heating. The term flash chromatography refers to preparative silica gel column chromatography as described by Still and co-workers. ${ }^{2}$ Silica gel 60, 230-240 mesh, was purchased from SiliCycle (R10030B). ${ }^{1} \mathrm{H}$ NMR spectra are reported in ppm using tetramethylsilane (0.00 ppm) or solvent $\left(\mathrm{CDCl}_{3}: 7.24 \mathrm{ppm}\right.$; acetone- $\mathrm{d}_{6}: 2.04 \mathrm{ppm}$) as an internal standard. Data are reported as ($\mathrm{ap}=$ apparent, $\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{q}=$ quartet, $\mathrm{m}=$ multiplet, $\mathrm{b}=$ broad; coupling constant(s) in Hz; integration. Proton-decoupled ${ }^{13} \mathrm{C}$ NMR spectra were recorded at 125 MHz and are reported in ppm using solvent as an internal standard $\left(\mathrm{CDCl}_{3}: 77.00 \mathrm{ppm}\right.$, acetone- $\mathrm{d}_{6}: 206.00$ $\mathrm{ppm})$. Unless noted otherwise on the spectra, NMR spectra are recorded in CDCl_{3}. Infrared spectra were recorded as thin films on NaCl plates on a Fourier transform spectrometer (FTIR). Melting points are uncorrected. Optical rotations were measured using a sodium (589, D line) lamp and are reported as follows: $[\alpha]_{\lambda}{ }^{T}{ }^{\circ} \mathrm{C}(\mathrm{c}=\mathrm{g} / 100 \mathrm{~mL}$, solvent $)$.

[^0]
Bisoxazole Methyl Ester 21. ${ }^{3}$

Following Wipf \& Williams' method, ${ }^{4}$ a solution of serine amide 20 ($1.000 \mathrm{~g}, 4.38 \mathrm{mmol}, 1$ equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(40 \mathrm{~mL})$ was cooled to $-20^{\circ} \mathrm{C}$ and Deoxo-Fluor ($0.89 \mathrm{~mL}, 4.82 \mathrm{mmol}$, 1.1 equiv) was added dropwise. After 15 min , TLC showed complete consumption of starting material. Subsequent addition of $\mathrm{BrCCl}_{3}(1.56 \mathrm{~mL}, 15.8 \mathrm{mmol}, 3.6$ equiv) followed by $\mathrm{DBU}(2.35 \mathrm{~mL}, 15.8 \mathrm{mmol}, 3.6$ equiv) led to an immediate darkening of color. The reaction mixture was allowed to warm to $0^{\circ} \mathrm{C}$ and was stirred at that temp for 3 h . The reaction was quenched by the addition of sat $\mathrm{NaHCO}_{3}(40 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$, and the resulting suspension was extracted with $\mathrm{EtOAc}(3 \times 50 \mathrm{~mL})$. The combined organics were dried over MgSO_{4}, filtered, and the solvent removed in vacuo to provide the crude product as a light brown solid. Silica gel chromatography ($60 \% \mathrm{EtOAc} /$ hexanes; TLC: $\mathrm{R}_{\mathrm{f}}=0.57$ in $100 \% \mathrm{EtOAc}$, CAM stain) gave bisoxazole methyl ester $21(752 \mathrm{mg}, 82 \%)$ as a white solid. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.30(\mathrm{~s}, 1 \mathrm{H})$, $8.28(\mathrm{~s}, 1 \mathrm{H}), 3.95(\mathrm{~s}, 3 \mathrm{H}), 2.56(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm}$; ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 162.8,161.3,155.8,143.5$, 139.2, 134.2, 129.6, 52.2, 13.7 ppm .

Preparation of Bisoxazole Aldehyde $22 .{ }^{5}$

To a solution of bisoxazole ester 21 ($328 \mathrm{mg}, 1.58 \mathrm{mmol}$, 1 equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{~mL})$ at $-78{ }^{\circ} \mathrm{C}$ was added DIBAL-H (3.94 mL of a 1.0 M solution in $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 3.94 \mathrm{mmol}, 2.5 \mathrm{mmol}$) dropwise. The reaction mixture was stirred at $-78{ }^{\circ} \mathrm{C}$ for 20 min and was then quenched by the addition of methanol (10 mL) and half-saturated aq Rochelle's salt. The resulting suspension was allowed to warm to rt and was stirred for 5 h until two distinct layers formed. The layers were separated and the aqueous layer was extracted with EtOAc $(2 \times 40 \mathrm{~mL})$. The combined organics were dried over MgSO_{4}, filtered, and the solvent removed in vacuo to provide bisoxazole aldehyde $22(287 \mathrm{mg}, 100 \%)$ as a yellow solid, which was used without further purification (TLC: $\mathrm{R}_{\mathrm{f}}=0.42$ in $40 \% \mathrm{Et}_{2} \mathrm{O} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$, UV, CAM stain). Mp 175.5-175.8 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 10.00(\mathrm{~s}, 1 \mathrm{H}), 8.32(\mathrm{~s}, 1 \mathrm{H}), 8.24(\mathrm{~s}, 1 \mathrm{H}), 2.57(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 184.1,163.1,156.3,143.5,141.5,139.3,129.5,13.7 \mathrm{ppm}$; IR (film) 3124,1686 , 1295, $1206 \mathrm{~cm}^{-1}$; HRMS (EI): Exact mass calcd for $\mathrm{C}_{8} \mathrm{H}_{6} \mathrm{~N}_{2} \mathrm{O}_{3}$ [M] ${ }^{+}$: 178.0378; Found: 178.0387. Elemental analysis calcd for $\mathrm{C}_{8} \mathrm{H}_{6} \mathrm{~N}_{2} \mathrm{O}_{3}$: C, 53.94; H, 3.39; N, 15.73; Found: C, 54.08; H, 3.45; N, 15.70.

[^1]
Bisoxazole Dimethylacetal 23.

To a solution of bisoxazole aldehyde 22 ($502 \mathrm{mg}, 2.82 \mathrm{mmol}$, 1 equiv) in CHCl_{3} (20 mL , it is essential to select a grade that is not stabilized with ethanol) at $-30^{\circ} \mathrm{C}$ was added TMSOMe ($1.16 \mathrm{~mL}, 8.45$ mmol, 3.0 equiv) followed by TMSOTf ($153 \mu \mathrm{~L}, 0.845 \mathrm{mmol}, 0.3$ equiv) and the mixture turned slightly cloudy and took on a deeper orange color. After 14 h at $-30^{\circ} \mathrm{C}$, an additional 1.0 equiv of TMSOMe and 0.1 equiv TMSOTf were added and the reaction was stirred for another 24 h before quenching with pyridine (1 mL). The mixture was warmed to rt and was poured into sat aq $\mathrm{NaHCO}_{3}(40 \mathrm{~mL})$ and was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 40 \mathrm{~mL})$. The combined organic layers were dried over a $1: 1$ mixture of $\mathrm{K}_{2} \mathrm{CO}_{3}$ and $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated in vacuo to yield a white solid. Purification by silica gel chromatography ($\mathrm{Et}_{3} \mathrm{~N}$-deactivated silica gel, $1: 1: 1 \mathrm{Et}_{2} \mathrm{O} / \mathrm{CH}_{2} \mathrm{Cl}_{2} /$ hexanes; TLC: $\mathrm{R}_{\mathrm{f}}=0.71,100 \% \mathrm{Et}_{2} \mathrm{O}$, UV) provided bisoxazole dimethylacetal $23(609 \mathrm{mg}, 96 \%)$ as a white solid. Mp $63.5-64.0{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.17(\mathrm{~s}, 1 \mathrm{H}), 7.72(\mathrm{~s}, 1 \mathrm{H}), 5.48(\mathrm{~s}, 1 \mathrm{H}), 3.39(\mathrm{~s}, 6 \mathrm{H}), 2.54(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 162.6,155.5,139.5,138.2,136.8,130.3,98.3,52.8,13.7 \mathrm{ppm}$; IR (film) 3119 , 1636, 1530, 1305, 1106, 1058, $984 \mathrm{~cm}^{-1}$; HRMS (EI): Exact mass calcd for $\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{4}[\mathrm{M}]^{+}: 224.0797$; Found: 224.0794. Elemental analysis calcd for $\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{4}$: C, 53.57; H, 5.39; N, 12.49; Found: C, 53.68; H, 5.41; N, 12.41.

TBS-Protected Bisoxazole Dimethylacetal 24b.

To bisoxazole dimethylacetal 23 ($649 \mathrm{mg}, 2.89 \mathrm{mmol}, 1$ equiv) in dry THF (29 mL) at $-78^{\circ} \mathrm{C}$ was added $n-\operatorname{BuLi}(2.5 \mathrm{M}$ in hexanes, $1.27 \mathrm{~mL}, 3.18 \mathrm{mmol}, 1.1$ equiv). The reaction mixture gradually took on a bright yellow color. After stirring at $-78{ }^{\circ} \mathrm{C}$ for 30 min , TBSOTf ($0.696 \mathrm{~mL}, 3.03 \mathrm{mmol}, 1.05$ equiv) was added dropwise. The reaction mixture was stirred at $-78^{\circ} \mathrm{C}$ and the color slowly faded from yellow to almost colorless. After 40 min , TLC indicated some unreacted SM. An additional amount of TBSOTf ($0.100 \mathrm{~mL}, 0.435 \mathrm{mmol}, 0.15$ equiv) was added. After 20 minutes, TLC showed complete consumption of SM . The reaction was quenched by the addition of sat aq $\mathrm{NaHCO}_{3}(30 \mathrm{~mL})$ and the resulting suspension was warmed to rt and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 30 \mathrm{~mL})$. The combined organic layers were dried over a $1: 1$ mixture of $\mathrm{K}_{2} \mathrm{CO}_{3}$ and $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated in vacuo to yield a colorless solid. Purification by silica gel chromatography ($15 \rightarrow 55 \% \mathrm{Et}_{2} \mathrm{O} /$ hexanes; TLC: $\mathrm{R}_{\mathrm{f}}=0.74,80 \%$ ether/ hexanes, UV) provided TBS-protected bisoxazole dimethylacetal 24b ($860 \mathrm{mg}, 88 \%$) as a colorless, crystalline solid. Mp 89.2-90.8 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.70(\mathrm{~s}, 1 \mathrm{H}), 5.47$ (s, 1H), 3.38 (s, $6 \mathrm{H}), 2.54(\mathrm{~s}, 3 \mathrm{H}), 0.95(\mathrm{~s}, 9 \mathrm{H}), 0.38(\mathrm{~s}, 6 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 165.1,156.6,154.8$, 139.6, 136.5, 98.6, 52.7, 26.4, 17.6, 13.7, -5.9 ppm ; IR (film) 2929, 1611, 1114, 1101, $1061 \mathrm{~cm}^{-1}$; HRMS (EI): Exact mass calcd for $\mathrm{C}_{15} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{Si}$ [M $\left.-\mathrm{OCH}_{3}\right]^{+}$: 307.1478; Found: 307.1492. Elemental analysis calcd for $\mathrm{C}_{16} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{Si}$: C, 56.78; H, 7.74; N, 8.28; Found: C, 56.98; H, 7.67; N, 8.29.

Trienyl Alcohol 40.

(a) Oxidation. A 25 mL concentration flask containing alcohol $37(92.9 \mathrm{mg}, 0.602 \mathrm{mmol}, 1$ equiv) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(6 \mathrm{~mL})$ was cooled to $0{ }^{\circ} \mathrm{C}$. Dess-Martin periodinane (DMP) ($0.332 \mathrm{~g}, 0.783 \mathrm{mmol}, 1.3$ equiv) was added, and the solution became a cloudy white. After 5 min , the solution was warmed to rt. After 1 h , a $1: 1$ mixture of sat aq $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{4}$ and sat aq $\mathrm{NaHCO}_{3}(12 \mathrm{~mL})$ was added to the crude mixture which was then stirred vigorously for 15 min . The layers were separated, and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 12 \mathrm{~mL})$. The combined organics were washed with sat aq $\mathrm{NaHCO}_{3}(5 \mathrm{~mL})$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated in vacuo to give a light yellow oil with a white precipitate. The residue was suspended in $20 \% \mathrm{Et}_{2} \mathrm{O} /$ pentane (5 mL) and filtered through a small plug of Celite (additional 5 mL rinse). The solvent was removed in vacuo to aldehyde 38 (116 mg , with DMP contaminants) as a light yellow oil (TLC: $\mathrm{R}_{\mathrm{f}}=0.82,15 \% \mathrm{EtOAc} / \mathrm{hexanes}$, anisaldehyde stain) which was carried on without further purification. Due to the volatility of aldehyde 38, it should not be exposed to pressures lower than $5 \mathrm{~mm} \mathrm{Hg}:{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.57(\mathrm{t}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.42-5.34(\mathrm{~m}$, $2 \mathrm{H}), 5.32(\mathrm{~d}, J=10.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.12(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.95(\mathrm{ddq}, J=10.2,9.1,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.76(\mathrm{~d}, J$ $=1.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.64(\mathrm{~d}, J=5.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.03(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 199.5, 135.3, 134.8, 124.7, 123.3, 47.5, 35.8, 24.4, 21.4, 17.8 ppm ; IR (film) 3022, 2966, 2927, 2870, 2717, 1726, 1450, 1379, 1238, 1170, 1120, 1048, 1017, $970,857 \mathrm{~cm}^{-1}$.
(b) Horner-Wadsworth-Emmons Olefination. To a 10 mL concentration flask was added NaH (48 mg of a 60% dispersion in oil, $1.2 \mathrm{mmol}, 2.0$ equiv). The white solid was washed in dry pentanes ($3 \times 1 \mathrm{~mL}$) and suspended in dry THF $(0.4 \mathrm{~mL})$. To this suspension was added triethylphosphonoacetate $(0.251 \mathrm{~mL}$, $1.26 \mathrm{mmol}, 2.1$ equiv) dropwise via syringe, and the solid dissolved to give a light yellow solution. After 1 h , the solution was cooled to $0{ }^{\circ} \mathrm{C}$, and unpurified aldehyde 38 (theoretical from above, $0.602 \mathrm{mmol}, 1$ equiv) was added via cannula in dry THF (0.5 mL), producing a bright yellow/orange solution. After 30 min , the solution was warmed to rt and after an additional 30 min , sat aq $\mathrm{NH}_{4} \mathrm{Cl}(20 \mathrm{~mL})$ was added along with $\mathrm{Et}_{2} \mathrm{O}(20 \mathrm{~mL})$, and the layers were separated. The aqueous layer was further extracted with $\mathrm{Et}_{2} \mathrm{O}(2 \times 10 \mathrm{~mL})$, and the combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated in vacuo to yield ethyl ester 39 (270 mg , with phosphate contaminants) as a clear, yellow oil (TLC: $\mathrm{R}_{\mathrm{f}}=$ 0.80 in $20 \% \mathrm{EtOAc} /$ hexanes, anisaldehyde stain) which was carried on without further purification. Due to the volatility of ester 39, it should not be exposed to pressures lower than $5 \mathrm{~mm} \mathrm{Hg}:{ }^{1} \mathrm{H}$ NMR (500 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.90(\mathrm{dt}, J=15.6,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.82(\mathrm{dt}, J=15.6,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.41-5.31(\mathrm{~m}, 2 \mathrm{H}), 5.12$ $(\mathrm{d}, J=9.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.18(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.95(\mathrm{dd}, J=6.7,2.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.90(\mathrm{~m}, 1 \mathrm{H}), 1.68(\mathrm{~d}, J=$ $1.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.63(\mathrm{~d}, J=5.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.28(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.01(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 166.6,146.4,135.7,132.3,129.7,123.0,122.0,60.2,35.6,35.0,23.5,21.4,17.9$, 14.3 ppm ; IR (film) 3022, 2966, 2927, 2870, 2717, 1725, 1450, 1379, 1048, $970,857 \mathrm{~cm}^{-1}$.
(c) Reduction. To a 50 mL concentration flask containing ethyl ester 39 as an unpurified mixture (theoretical from above, 0.602 mmol , 1 equiv) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(8.6 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ was added DIBAL-H (1.99 mL of a 1.0 M solution in $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 1.99 \mathrm{mmol}, 3.3$ equiv) dropwise via syringe. Some gas evolution was evident. After 1 h , half-saturated Rochelle's salt (20 mL) and $\mathrm{Et}_{2} \mathrm{O}(20 \mathrm{~mL})$ was added and the mixture stirred vigorously overnight and allowed to warm to rt. The layers were separated and the aqueous layer was further extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 25 \mathrm{~mL})$. The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated in vacuo to yield a clear, yellow oil. The product was purified via automated silica column chromatography ($0 \rightarrow 15 \% \mathrm{EtOAc} /$ hexanes, 10 g column; TLC: $\mathrm{R}_{\mathrm{f}}=0.28$ in $20 \% \mathrm{EtOAc} / \mathrm{hexanes}$, CAM stain) to provide alcohol 40 ($82.7 \mathrm{~g}, 76 \%$ yield for three steps) as a clear, colorless oil. Due to the volatility of alcohol 40, it should not be exposed to pressures lower than 5 mm Hg for more than several hours. When left overnight at 0.5 mm Hg for characterization purposes, partial product loss was observed: ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 5.70-5.60 (m, 2H), 5.42-5.33 (m, 2H), 5.04 $(\mathrm{d}, J=9.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.13-4.07(\mathrm{~m}, 2 \mathrm{H}), 3.05-2.97(\mathrm{~m}, 1 \mathrm{H}), 2.82-2.69(\mathrm{~m}, 2 \mathrm{H}), 1.67(\mathrm{~d}, J=1.4 \mathrm{~Hz}, 3 \mathrm{H})$, $1.64(\mathrm{~d}, J=3.9 \mathrm{~Hz}, 3 \mathrm{H}), 1.33(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 1.01(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 136.1, 131.6, 130.9, 130.5, 129.9, 122.7, 63.7, 35.4, 35.0, 23.4, $21.5,17.9 \mathrm{ppm}$; IR (film) 3325,2963 , 2870, 1449, 1377, 1042, 968, $868 \mathrm{~cm}^{-1} ;[\alpha]_{\mathrm{D}^{24}}=-80.6^{\circ}\left(c=1.00, \mathrm{CHCl}_{3}\right)$; HRMS (EI): Exact mass calcd for $\mathrm{C}_{12} \mathrm{H}_{20} \mathrm{O}[\mathrm{M}]^{+}: 180.1514$; Found: 180.1514; Anal calcd for $\mathrm{C}_{12} \mathrm{H}_{20} \mathrm{O}: \mathrm{C}, 79.94 \%, \mathrm{H}, 11.18 \%$; Found: C, 79.72%, H, 11.35%.

Side Chain Allylic Bromide Coupling Fragment 5.

To a 25 mL concentration flask containing alcohol $40(81.8 \mathrm{mg}, 0.454 \mathrm{mmol}, 1$ equiv) in dry THF (2 mL) was added $\mathrm{Et}_{3} \mathrm{~N}\left(0.253 \mathrm{~mL}, 1.82 \mathrm{mmol}, 4\right.$ equiv). The solution was cooled to $-40^{\circ} \mathrm{C}$ and MsCl $(0.105 \mathrm{~mL}, 1.36 \mathrm{mmol}, 3$ equiv) was added dropwise. A white precipitate formed immediately. After 50 min at $40^{\circ} \mathrm{C}$, the suspension was warmed to $0^{\circ} \mathrm{C}$. After 30 min , a solution of $\mathrm{LiBr}(0.394 \mathrm{~g}, 4.54 \mathrm{mmol}$, 10 equiv) in THF (4 mL) was added dropwise via cannula. After 30 min , the flask was warmed to rt and stirred for an additional 30 min . The reaction was quenched with ice-cold sat aq $\mathrm{NaHCO}_{3}(15 \mathrm{~mL})$ and diluted with pentane (5 mL). The layers were separated and the aqueous layer was further extracted with pentane $(3 \times 10 \mathrm{~mL})$. The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated in vacuo to yield a clear, yellow oil. The product was purified via automated silica column chromatography (pentane, 4 g column; TLC: $\mathrm{R}_{\mathrm{f}}=0.89$ in $20 \% \mathrm{EtOAc} /$ hexanes, anisaldehyde stain) to provide bromide 5 ($95.8 \mathrm{~g}, 87 \%$ yield) as a clear, colorless oil. Due to the volatility of bromide 5, it should not be exposed to pressures lower than 5 mm Hg for extended periods: ${ }^{1} \mathrm{H} \mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 5.75-5.67 (m, $2 \mathrm{H}), 5.42-5.32(\mathrm{~m}, 2 \mathrm{H}), 5.06(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.00-3.92(\mathrm{~m}, 2 \mathrm{H}), 3.03-2.95(\mathrm{~m}, 1 \mathrm{H}), 2.82-2.74(\mathrm{~m}$, $2 \mathrm{H}), 1.66(\mathrm{~d}, J=1.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.64(\mathrm{~d}, J=4.5 \mathrm{~Hz}, 3 \mathrm{H}), 1.01(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm}$; ${ }^{13} \mathrm{C}$ NMR (125 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 136.0,133.8,131.4,131.0,127.2,122.8,35.4,34.9,33.3,23.5,21.5,18.0 \mathrm{ppm}$; IR (film) 2964, 2927, 2868, 156, 1438, 1377, 1203, 965, 854, $580 \mathrm{~cm}^{-1} ;[\alpha]_{\mathrm{D}^{24}}=-69.3^{\circ}\left(c=1.00, \mathrm{CHCl}_{3}\right)$; HRMS (EI): Exact mass calcd for $\mathrm{C}_{12} \mathrm{H}_{19} \mathrm{Br}[\mathrm{M}]^{+}: 242.0670$; Found: 242.0663 .

Thiazolidinethione Alcohol 51.

(a) Reduction. To a 10 mL flask containing bisoxazole methyl ether $\mathbf{4 7 b}$ ($248 \mathrm{mg}, 0.388 \mathrm{mmol}, 1$ equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.5 \mathrm{~mL})$ under N_{2} at $-78{ }^{\circ} \mathrm{C}$ was added DIBAL-H $\left(0.581 \mathrm{~mL}\right.$ of a 1.0 M solution in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, 1.5 equiv) dropwise via syringe. After stirring for 1 h , the reaction was quenched by the addition of MeOH (7.5 mL). Rochelle's salt (10 mL of a 7:5 mixture of saturated solution and water) was added and the biphasic mixture was warmed to rt and stirred rapidly for 45 min . The layers were separated and the aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 25 \mathrm{~mL})$. The combined organic layers were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated in vacuo to give a colorless oil. This material was quickly subjected to flash chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$ until the auxiliary was eluted then $30 \% \mathrm{Et}_{2} \mathrm{O} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$; TLC: $\mathrm{R}_{\mathrm{f}}=0.09$ in $70 \% \mathrm{Et}_{2} \mathrm{O} /$ hexanes $)$ to provide (R)-3-(2-(5-(tert-butyldimethylsilyl)-2-methyloxazol-4-yl) oxazol-4-yl)-3-methoxypropanal (51a) as a relatively unstable clear oil that was used immediately in the next step: ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.83(\mathrm{~s}, 1 \mathrm{H}), 7.67(\mathrm{~s}, 1 \mathrm{H}), 4.81(\mathrm{~d}, J=7.6,4.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.38$ (s, 3H), $3.03(\mathrm{dd}, J=16.9,7.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.94(\mathrm{dd}, J=16.9,4.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.55(\mathrm{~s}, 3 \mathrm{H}), 0.96(\mathrm{~s}, 9 \mathrm{H}), 0.34$ (s, 6H) ppm; ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 200.0,165.1,156.8,154.8,140.8,138.7,135.2,71.3,56.9$, 48.0, 26.3, 17.4, 13.6, -6.0 ppm.
(b) Aldol Reaction. To a 10 mL flask was added $\mathrm{Sn}(\mathrm{OTf})_{2}(0.353 \mathrm{~g}, 0.847 \mathrm{mmol}, 2.3$ equiv $)$ in a glove box. This tin compound was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3.5 \mathrm{~mL})$, the flask was cooled to $-50{ }^{\circ} \mathrm{C}, N$-ethyl piperidine ($0.121 \mathrm{~mL}, 0.884 \mathrm{mmol}, 2.4$ equiv) was added dropwise via syringe, followed by (S) $-\mathrm{N}-$ acetyl-4-iPr-thiazolidinethione (ent-44a, $0.122 \mathrm{~g}, 0.552 \mathrm{mmol}, 1.5$ equiv). The solution was stirred at $50^{\circ} \mathrm{C}$ for 4.5 h to form the tin enolate and then was cooled to $-110{ }^{\circ} \mathrm{C}$ in a liquid nitrogen/hexanes slurry before aldehyde 51a (theoretical from above, $0.388 \mathrm{mmol}, 1$ equiv) was added via cannula in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.5 \mathrm{~mL})$. The solution was kept between -90 and $-100^{\circ} \mathrm{C}$ for 2 h and was then warmed to -78° C over 30 min and allowed to stir for an additional 30 min at $-78^{\circ} \mathrm{C}$. The reaction was quenched with pH 7 buffer and filtered with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(25 \mathrm{~mL})$ through a plug of Celite into a separatory funnel containing sat aq $\mathrm{NaHCO}_{3}(15 \mathrm{~mL})$. The layers were separated and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 30 \mathrm{~mL})$. The combined organic phases were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated in vacuo to give a clear yellow oil. ${ }^{1} \mathrm{H}$ NMR integration of the unpurified product indicated a 3:1 diastereomer ratio. This material was purified via automated silica column chromatography $\left(40 \rightarrow 70 \% \mathrm{EtOAc} / \mathrm{hexanes}, 110 \mathrm{~g}\right.$ column; TLC: $\mathrm{R}_{\mathrm{f}}=0.28$ in $70 \% \mathrm{EtOAc} /$ hexanes $)$ to provide diastereomerically pure alcohol $\mathbf{5 1}\left(214.2 \mathrm{mg}, 46 \%\right.$ yield over two steps) as a clear, yellow oil: ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.65(\mathrm{~s}, 1 \mathrm{H}), 5.15(\mathrm{dd}, J=7.0,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.53(\mathrm{dd}, J=7.2,6.3 \mathrm{~Hz}, 1 \mathrm{H})$, 4.33-4.26 (m, 1H), 3.57-3.47 (m, 3H), 3.39-3.30 (m, 1H), 3.34 (s, 3H), $3.03(\mathrm{~d}, J=11.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.54$ $(\mathrm{s}, 3 \mathrm{H}), 2.42-2.31(\mathrm{~m}, 1 \mathrm{H}), 2.20-2.12(\mathrm{~m}, 1 \mathrm{H}), 2.11-2.03(\mathrm{~m}, 1 \mathrm{H}) .1 .06(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 0.97(\mathrm{~d}, J=$ $7.3 \mathrm{~Hz}, 3 \mathrm{H}), 0.95(\mathrm{~s}, 9 \mathrm{H}), 0.38(\mathrm{~s}, 6 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 202.8,172.2,165.0,156.7$, $154.7,141.3,138.9,135.3,75.1,71.3,66.4,56.6,45.4,40.9,30.7,30.5,26.5,19.0,17.7,17.5,13.7,-5.9$ ppm; IR (film) 3420, 2958, 2930, 2855, 1696, 1616, 1583, 1469, 1363, 1314, 1157, 1094, 1036, 930, 844, 781, 730, $668 \mathrm{~cm}^{-1} ;[\alpha]_{\mathrm{D}}{ }^{25}=+212.1^{\circ}\left(c=1.03, \mathrm{CHCl}_{3}\right)$; HRMS (CI): Exact mass calcd for $\mathrm{C}_{25} \mathrm{H}_{40} \mathrm{~N}_{3} \mathrm{O}_{5} \mathrm{~S}_{2} \mathrm{Si}[\mathrm{M}+\mathrm{H}]^{+}$: 554.2179; Found: 554.2181.

Glycal 54.

(a) Luche Reduction. To a 10 mL flask containing dihydropyranone $\mathbf{5 3}$ ($218.7 \mathrm{mg}, 0.5056 \mathrm{mmol}, 1$ equiv) under an Ar atmosphere was added a solution of $\mathrm{CeCl}_{3} \bullet 7 \mathrm{H}_{2} \mathrm{O}(207 \mathrm{mg}, 0.556 \mathrm{mmol}$, 1.1 equiv) in a $1: 1$ mixture of THF/ $\mathrm{MeOH}\left(7.2 \mathrm{~mL}\right.$). The suspension was cooled to $-78{ }^{\circ} \mathrm{C}$ and $\mathrm{NaBH}_{4}(38.3 \mathrm{mg}, 1.01$ $\mathrm{mmol}, 2$ equiv) was added as a solid in one portion. After 15 min , the flask was allowed to warm to - 40 ${ }^{\circ} \mathrm{C}$ over 1 h .After an additional 45 min at $-40^{\circ} \mathrm{C}$, the flask was recooled to $-78^{\circ} \mathrm{C}$ and the reaction mixture was poured into pH 7 buffer $(150 \mathrm{~mL})$ and was diluted with $\mathrm{Et}_{2} \mathrm{O}(50 \mathrm{~mL})$. The layers were separated and the aqueous phase was extracted with EtOAc ($4 \times 50 \mathrm{~mL}$) The combined organic layers were filtered through a plug of silica gel and concentrated in vacuo to give the corresponding allylic alcohol (53a) which was carried on immediately without any further purification: TLC: $\mathrm{R}_{\mathrm{f}}=0.36$ in 80% EtOAc/hexanes.
(b) TBS Protection. To a 5 mL flask containing allylic alcohol 53a (theoretical from above, 0.5056 mmol, 1 equiv) under an Ar atmosphere was added imidazole ($103 \mathrm{mg}, 1.52 \mathrm{mmol}, 3$ equiv) a catalytic amount of DMAP, and anhydrous DMF (2.0 mL). TBS-Cl ($167.6 \mathrm{mg}, 1.11 \mathrm{mmol}, 2.2$ equiv) was added and the reaction was stirred for 4 h . The solution was diluted with brine (50 mL) and EtOAc (50 mL), the layers were separated, and the aqueous layer was extracted with EtOAc $(3 \times 50 \mathrm{~mL})$. The combined organics were washed with water $(2 \times 25 \mathrm{~mL})$, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated in vacuo. This material was purified via flash chromatography ($5 \rightarrow 9 \% \mathrm{Et}_{2} \mathrm{O} / \mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{TLC}: \mathrm{R}_{\mathrm{f}}=0.31$ in $10 \% \mathrm{Et}_{2} \mathrm{O} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$) to provide allylic TBS ether $54(177.0 \mathrm{mg}, 61 \%$ yield over two steps) as a clear colorless oil: ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.63(\mathrm{~s}, 1 \mathrm{H}), 4.46(\mathrm{dd}, J=8.0,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.42(\mathrm{~s}, 1 \mathrm{H})$, $4.35(\mathrm{dd}, J=8.3,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.86-3.78(\mathrm{~m}, 1 \mathrm{H}), 3.29(\mathrm{~s}, 3 \mathrm{H}), 2.54(\mathrm{~s}, 3 \mathrm{H}), 2.26$ (ddd, $J=14.3,8.7,5.9$ $\mathrm{Hz}, 1 \mathrm{H}), 2.15(\mathrm{ddd}, J=12.7,8.2,4.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.95(\mathrm{dd}, J=13.0,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.69(\mathrm{~s}, 3 \mathrm{H}), 1.68-1.59$ $(\mathrm{m}, 1 \mathrm{H}), 0.95(\mathrm{~s}, 9 \mathrm{H}), 0.88(\mathrm{~s}, 9 \mathrm{H}), 0.39(\mathrm{~s}, 3 \mathrm{H}), 0.38(\mathrm{~s}, 3 \mathrm{H}), 0.06(\mathrm{~s}, 6 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (125 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 165.1,156.6,154.7,152.0,141.2,139.1,135.9,101.3,72.6,71.5,64.3,56.3,39.5,37.6,26.5$, 25.9, 19.8, 18.2, 17.6, 13.8, -4.7, -5.9 ppm; IR (film) 2928, 2857, 1675, 1586, 1463, 1383, 1252, 1062, 837, 837, 780, $495 \mathrm{~cm}^{-1} ;[\alpha]_{\mathrm{D}} 25=+18.5^{\circ}\left(c=1.00, \mathrm{CHCl}_{3}\right)$; HRMS (CI): Exact mass calcd for $\mathrm{C}_{28} \mathrm{H}_{48} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{Si}_{2} \mathrm{Li}[\mathrm{M}+\mathrm{Li}]^{+}: 555.3262$; Found: 555.3267.

Preparation of Pyran/Bisoxazole Coupling Fragment 4a ($\mathrm{R}=$ TBS).

To a 5 mL flask containing TBS ether 54 ($170.0 \mathrm{mg}, 0.3097 \mathrm{mmol}, 1$ equiv) in benzene (10 mL) under an argon atmosphere was added $\mathrm{MeOH}(0.376 \mathrm{~mL}, 30$ equiv) and trimethyl orthoformate $(0.170 \mathrm{~mL}, 5$ equiv). A spatula tip of PPTS was added in one portion and the reaction was stirred for 90 min . The reaction was quenched with sat aq $\mathrm{NaHCO}_{3}(50 \mathrm{~mL})$ and diluted with $\mathrm{EtOAc}(40 \mathrm{~mL})$. The layers were separated and the aqueous phase was further extracted with EtOAc $(3 \times 20 \mathrm{~mL})$. The combined organics were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated in vacuo. This material was purified via flash chromatography ($0 \rightarrow 40 \%$ EtOAc/hexanes, TLC: $\mathrm{R}_{\mathrm{f}}=0.57$ in $40 \% \mathrm{EtOAc} /$ hexanes) to provide mixed methyl acetal $4 \mathbf{4}$ ($\mathrm{R}=\mathrm{TBS}, 144.4 \mathrm{mg}, 80 \%$ yield) as a clear colorless oil: ${ }^{1} \mathrm{H}$ NMR (500 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.62(\mathrm{~s}, 1 \mathrm{H}), 4.45(\mathrm{dd}, J=7.7,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.02-3.93(\mathrm{~m}, 1 \mathrm{H}), 3.51-3.42(\mathrm{~m}, 1 \mathrm{H}), 3.29(\mathrm{~s}$, $3 \mathrm{H}), 3.00(\mathrm{~s}, 3 \mathrm{H}), 2.54(\mathrm{~s}, 3 \mathrm{H}), 2.18-2.06(\mathrm{~m}, 2 \mathrm{H}), 1.95(\mathrm{dd}, J=12.8,4.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.79(\mathrm{~d}, J=10.3 \mathrm{~Hz}$, $1 \mathrm{H}), 1.31(\mathrm{dd}, J=23.7,11.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.30(\mathrm{~s}, 3 \mathrm{H}), 1.22(\mathrm{dd}, J=23.6,11.8 \mathrm{~Hz}, 1 \mathrm{H}), 0.95(\mathrm{~s}, 9 \mathrm{H}), 0.87$ (s, 9H), $0.39(\mathrm{~s}, 3 \mathrm{H}), 0.38(\mathrm{~s}, 3 \mathrm{H}), 0.04(\mathrm{~s}, 6 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 165.1,156.6,154.8$, $141.4,139.1,135.9,99.6,72.7,65.8,65.1,56.3,47.6,45.3,41.0,40.3,26.5,25.8,23.7,18.0,17.6,13.8$, $-4.6,-5.9 \mathrm{ppm}$; IR (film) 2929, 2857, 1612, 1586, 1463, 1377, 1319, 1251, 1192, 1084, 1034, 930, 914, $870,837,779,670,580,490 \mathrm{~cm}^{-1} ;[\alpha]_{\mathrm{D}}{ }^{25}=-20.1^{\circ}\left(c=1.01, \mathrm{CHCl}_{3}\right)$; HRMS (CI): Exact mass calcd for $\mathrm{C}_{29} \mathrm{H}_{52} \mathrm{~N}_{2} \mathrm{O}_{6} \mathrm{Si}_{2} \mathrm{Li}[\mathrm{M}+\mathrm{Li}]^{+}$: 587.3479; Found: 587.3523.

Methylated Bisoxazole Dimethylacetal 24a

To bisoxazole dimethylacetal 23 ($78.8 \mathrm{mg}, 0.351 \mathrm{mmol}$, 1 equiv) in dry THF (2.0 mL) at $-78{ }^{\circ} \mathrm{C}$ was added $n-\operatorname{BuLi}(2.72 \mathrm{M}$ in hexanes, $129 \mu \mathrm{~L}, 0.351 \mathrm{mmol}, 1$ equiv). The reaction mixture gradually took on a bright yellow color. After stirring at $-78^{\circ} \mathrm{C}$ for 30 min , $\mathrm{MeI}(24 \mu \mathrm{~L}, 0.386 \mathrm{mmol}, 1.1$ equiv) was added dropwise. The reaction mixture was stirred at $-78^{\circ} \mathrm{C}$ for 30 min and the color slowly faded from yellow to colorless. The reaction was quenched by the addition of sat. aq $\mathrm{NaHCO}_{3}(2.5 \mathrm{~mL})$ and the resulting suspension was warmed to rt and extracted with EtOAc. The combined organic layers were dried over a $1: 1$ mixture of $\mathrm{K}_{2} \mathrm{CO}_{3}$ and $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered. and concentrated in vacuo to yield a colorless solid. Purification by silica gel chromatography ($0 \rightarrow 40 \% \mathrm{EtOAc} /$ hexanes; TLC: $\mathrm{R}_{\mathrm{f}}=0.60,100 \%$ ether UV) provided methylated bisoxazole dimethylacetal $\mathbf{2 4 a}(65.5 \mathrm{mg}, 78 \%)$ as a colorless, crystalline solid. Mp 97.0-98.5 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.71$ ($\mathrm{s}, 1 \mathrm{H}$), 5.47 ($\mathrm{s}, 1 \mathrm{H}$), 3.39 ($\mathrm{s}, 6 \mathrm{H}$), $2.64(\mathrm{~s}, 3 \mathrm{H})$, 2.47 (s, 3H) ppm; ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 160.1,156.5,149.6,139.3,136.2,124.9,98.5,52.8$, 13.6, 11.5 ppm ; IR (film) 2937, 1593, 1197, 1097, 1055, $980 \mathrm{~cm}^{-1}$; HRMS (EI): Exact mass calcd for $\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{4}$ [M]+: 238.0954; Found: 238.0950; Anal calcd for $\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{4}$: C, $55.46 \%, \mathrm{H}, 5.92$, N, 11.76%; Found: C, 55.57%, H, 5.97%, N, 11.66%.

Allylated Bisoxazole Dimethylacetal 27

To as solution of diethylamine ($22.0 \mu \mathrm{~L}, 0.213 \mathrm{mmol}$, 1.5 equiv) in THF (1 mL) at $-78^{\circ} \mathrm{C}$ was added n $\operatorname{BuLi}(133 \mu \mathrm{~L}$ of a 1.5 M solution in hexanes, $0.199 \mathrm{mmol}, 1.4$ equiv). After stirring for 5 min , warming to $0{ }^{\circ} \mathrm{C}$ for 10 min , and then recooling to $-78{ }^{\circ} \mathrm{C}$, this solution was added via cannula to protected bisoxazole dimethyl acetal 24b ($48.0 \mathrm{mg}, 0.142 \mathrm{mmol}$, 1 equiv) in dry THF (1 mL) at $-78{ }^{\circ} \mathrm{C}$. The reaction mixture immediately took on a bright red color and was stirred at $-78^{\circ} \mathrm{C}$ for 30 min . Allyl iodide ($14.3 \mu \mathrm{~L}, 0.156 \mathrm{mmol}, 1.1$ equiv) was added dropwise, which caused a color change to light orange. After stirring at $-78{ }^{\circ} \mathrm{C}$ for 15 min , sat aq $\mathrm{NaHCO}_{3}(2 \mathrm{~mL})$ was added and the reaction was warmed to rt. The resulting suspension was partitioned between $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ and sat aq NaHCO_{3} $(10 \mathrm{ml})$ and The aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 10 \mathrm{~mL})$. The combined organic layers were dried over a $1: 1$ mixture of $\mathrm{K}_{2} \mathrm{CO}_{3}$ and $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated in vacuo to yield a colorless liquid. Purification by silica gel chromatography ($20 \% \mathrm{Et}_{2} \mathrm{O} /$ hexanes; TLC: $\mathrm{R}_{\mathrm{f}}=0.77,70 \%$ $\mathrm{Et}_{2} \mathrm{O} /$ hexanes UV) provided allylated bisoxazole $27(47.0 \mathrm{mg}, 88 \%)$ as a clear colorless oil. ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.70(\mathrm{~s}, 1 \mathrm{H}), 5.86(\mathrm{ddt}, J=17.1,10.2,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.47(\mathrm{~s}, 1 \mathrm{H}), 5.08(\mathrm{dd}, J=17.1$, $1.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.01(\mathrm{dd}, J=10.2,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.37(\mathrm{~s}, 6 \mathrm{H}), 2.96(\mathrm{t}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.57(\mathrm{dt}, J=7.9,6.7$ $\mathrm{Hz}, 2 \mathrm{H}), 0.94$ (s, 9H), 0.38 (s, 6H) ppm; ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 167.9,156.6,154.8,139.6$, $138.9,136.5,136.3,115.9,98.6,52.8,30.9,27.5,26.4,17.6,-5.9 \mathrm{ppm}$; IR (film) 2931, 2858, 1612, 1580, 1470, 1251, 1391, 1193, 1103, $1062 \mathrm{~cm}^{-1}$; HRMS (EI): Exact mass calcd for $\mathrm{C}_{18} \mathrm{H}_{27} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{Si}$ [M$\left.\mathrm{OCH}_{3}\right]^{+}: 347.1791$; Found: 347.1795; Anal calcd for $\mathrm{C}_{19} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{Si}: \mathrm{C}, 60.29 \%, \mathrm{H}, 7.99 \%, \mathrm{~N}, 7.40 \%$; Found: C, 60.59%, H, 8.02%, N, 7.37%.

Deprotected Allylated Bisoxazole 28

To alylated TBS-protected bisoxazle 27 ($16 \mathrm{mg}, 0.042 \mathrm{mmol}, 1$ equiv) in dry THF ($425 \mu \mathrm{~L}$) at $0{ }^{\circ} \mathrm{C}$ was added tetrabutylammoium fluoride (TBAF) ($51 \mu \mathrm{~L}$ of a 1.0 M solution in THF, $0.051 \mathrm{mmol}, 1.2$ equiv). After stirring at $0{ }^{\circ} \mathrm{C}$ for 10 min , the reaction was quenched by the addition of sat aq $\mathrm{NaHCO}_{3}(5 \mathrm{~mL})$ and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL})$. The mixture was partitioned between $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ and sat aq $\mathrm{NaHCO}_{3}(5 \mathrm{~mL})$ and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 5 \mathrm{~mL})$ The combined organic layers were dried over a $1: 1$ mixture of $\mathrm{K}_{2} \mathrm{CO}_{3}$ and $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated in vacuo to yield a colorless liquid. Purification by silica gel chromatography (1:1:1 $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{Et}_{2} \mathrm{O} /$ hexanes; TLC: $\mathrm{R}_{\mathrm{f}}=0.53,70 \% \mathrm{Et}_{2} \mathrm{O} /$ hexanes, UV) provided deptotected allylated bisoxazole $28(10.0 \mathrm{mg}, 90 \%)$ as a clear colorless oil. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.18(\mathrm{~s}, 1 \mathrm{H}), 7.72(\mathrm{~s}, 1 \mathrm{H}), 5.86(\mathrm{ddt}, J=17.1,10.2,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.48(\mathrm{~s}$, $1 \mathrm{H}), 5.09(\mathrm{dd}, J=17.1,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.03(\mathrm{dd}, J=10.2,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.39(\mathrm{~s}, 6 \mathrm{H}), 2.95(\mathrm{t}, J=7.4 \mathrm{~Hz}$, $2 \mathrm{H}), 2.58(\mathrm{dt}, J=7.4,6.7 \mathrm{~Hz}, 2 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 165.4,155.6,139.5,138.3$, $136.8,136.1,130.3,116.1,98.3,52.8,30.7,27.5 \mathrm{ppm}$; IR (film) 2939, 1103, 1059, 984, $916 \mathrm{~cm}^{-1}$; HRMS (EI): Exact mass calcd for $\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{4}$ [M]+: 264.1110; Found: 264.1114; Anal calcd for $\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{4}$: C, 59.08%, H, 6.10%, N, 10.60%; Found: C, $58.94 \%, \mathrm{H}, 6.16 \%, \mathrm{~N}, 10.46 \%$.

Prenylated Bisoxazole 29

A 0.5 M solution of LiNEt_{2} was prepared by addition of $n-\mathrm{BuLi}(1.00 \mathrm{~mL}$ of a 2.72 M solution in hexanes, 2.72 mmol) to diethylamine ($0.310 \mathrm{~mL}, 3.00 \mathrm{mmol}$) in THF $(4.13 \mathrm{~mL})$ at $-78{ }^{\circ} \mathrm{C}$ under an atmosphere of argon. After 5 min , the flask was warmed to $0^{\circ} \mathrm{C}$. In a separate flask, TBS-protected bisoxazole dimethylacetal 24b ($100.8 \mathrm{mg}, 0.298 \mathrm{mmol}$, 1 equiv) in THF (2.0 mL) was cooled to $-78{ }^{\circ} \mathrm{C}$ under an atmosphere of argon and the LiNEt_{2} solution prepared above was added dropwise until a yellow color persisted (to remove any adventitious acid source-about 4 drops). After this zero point, $\mathrm{LiNEt}_{2}(0.893 \mathrm{~mL}$ of a 0.5 M solution in THF, $0.447 \mathrm{mmol}, 1.5$ equiv) was added dropwise via gastight syringe. The reaction took on an bright orange/red color. After stirring at $-78{ }^{\circ} \mathrm{C}$ for 30 min , prenyl bromide ($39 \mu \mathrm{~L}, 0.327 \mathrm{mmol}, 1.1$ equiv) was added dropwise causing the reaction to fade to light orange-yellow almost immediately. After 15 min , the reaction was quenched with sat aq NaHCO_{3} (5 mL) and the color turned a very light yellow. The mixture was diluted with EtOAc (5 mL) and warmed to rt . The layers were separated and the aqueous phase was further extracted with $\mathrm{EtOAc}(3 \times 5 \mathrm{~mL})$. The combined organics were dried over a $1: 1$ mixture of anhydrous $\mathrm{K}_{2} \mathrm{CO}_{3}$ and $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated in vacuo. This material was purified via automated silica column chromatography ($0 \rightarrow 15 \%$ $\mathrm{EtOAc} /$ hexanes, $\mathrm{TLC}: \mathrm{R}_{\mathrm{f}}=0.81$ in $70 \% \mathrm{Et}_{2} \mathrm{O} /$ hexanes $)$ to provide prenylated bisoazole $29(103.1 \mathrm{mg}$, 91% yield) as a clear colorless oil ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.70(\mathrm{~d}, J=1.0 \mathrm{~Hz}, 1 \mathrm{H}) 5.47(\mathrm{~d}, J=$ $0.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.15(\mathrm{tt}, J=7.2,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.37(\mathrm{~s}, 6 \mathrm{H}), 2.87(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.48(\mathrm{dt}, J=7.6,7.4 \mathrm{~Hz}$, $2 \mathrm{H}), 1.67(\mathrm{~s}, 3 \mathrm{H}), 1.60(\mathrm{~s}, 3 \mathrm{H}), 0.95,(\mathrm{~s}, 9 \mathrm{H}), 0.38(\mathrm{~s}, 6 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($\left.125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 168.3$, 156.7, 154.6, 139.6, 138.9, 136.5, 133.4, 122.2, 98.6, 52.8, 28.3, 26.4, 25.7, 25.6, 17.62, 17.58, -5.9 ppm; IR (film) 2954, 2930, 1469, 1251, 1104, 1062, 843, $124 \mathrm{~cm}^{-1}$; HRMS (EI): Exact mass calcd for $\mathrm{C}_{21} \mathrm{H}_{34} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{Si}[\mathrm{M}]^{+}: 406.2288$; Found: 406.2273; Anal calcd for $\mathrm{C}_{21} \mathrm{H}_{34} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{Si}$: C, $62.03 \%, \mathrm{H}, 8.43 \%$, N, 6.89%; Found: C, 62.17%, H, 8.56%, N, 6.94%.

Deprotected Prenylated Bisoxazole 30

To prenylated TBS-protected bisoxazole $29\left(44.9 \mathrm{mg}, 0.110 \mathrm{mmol}, 1\right.$ equiv) in dry THF (2.0 mL) at $0^{\circ} \mathrm{C}$ was added tetrabutylammoium fluoride (TBAF) ($132 \mu \mathrm{~L}$ of a 1.0 M solution in THF, $0.133 \mathrm{mmol}, 1.2$ equiv). After stirring at $0{ }^{\circ} \mathrm{C}$ for 10 min , the reaction was quenched by the addition of sat aq $\mathrm{NaHCO}_{3}(2$ $\mathrm{mL})$ and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$. The mixture was partitioned between $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ and sat aq $\mathrm{NaHCO}_{3}(10$ $\mathrm{mL})$ and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 10 \mathrm{~mL})$ The combined organic layers were dried over a $1: 1$ mixture of $\mathrm{K}_{2} \mathrm{CO}_{3}$ and $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated in vacuo to yield a colorless liquid. Purification by silica gel chromatography ($1: 1: 2 \mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{Et}_{2} \mathrm{O} /$ hexanes; TLC: $\mathrm{R}_{\mathrm{f}}=0.66,70 \%$ $\mathrm{Et}_{2} \mathrm{O} /$ hexanes, UV) provided deprotected prenylated bisoxazole $30(31.8 \mathrm{mg}, 99 \%)$ as a clear colorless oil. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.18(\mathrm{~s}, 1 \mathrm{H}), 7.72(\mathrm{~d}, J=1.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.48(\mathrm{~s}, 1 \mathrm{H}), 5.14(\mathrm{tt}, J=7.2$, $1.3 \mathrm{~Hz}, 1 \mathrm{H}$), 3.39 (s, 6H), 2.86 (t, $J=7.4 \mathrm{~Hz}, 2 \mathrm{H}$), $2.50(\mathrm{dt}, J=7.7,7.4 \mathrm{~Hz}, 2 \mathrm{H}$), 1.68 ($\mathrm{s}, 3 \mathrm{H}$), 1.60 (s, 3H) ppm; ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 165.8,155.6,139.5,138.2,136.8,133.7,130.2,121.8,98.3$,
52.8, 28.3, 25.6, 25.5, 17.6 ppm; IR (film) 2933, 1103, 1059, $984 \mathrm{~cm}^{-1}$; HRMS (EI): Exact mass calcd for $\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{4}[\mathrm{M}]^{+}: 292.1423$; Found: 292.1392; Anal calcd for $\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{4}$: C, $61.63 \%, \mathrm{H}, 6.90 \%, \mathrm{~N}$, 9.58%; Found: C, 61.38%, H, 7.06%, N, 9.36%.

Trienyl Bisozaxole 41

To as solution of diethylamine ($59 \mu \mathrm{~L}, 0.568 \mathrm{mmol}$, 2.1 equiv) in THF $(1.5 \mathrm{~mL})$ at $-78{ }^{\circ} \mathrm{C}$ was added n BuLi ($340 \mu \mathrm{~L}$ of a 1.59 M solution in hexanes, 0.541 mmol , 2.0 equiv). After stirring for 5 min , warming to $0{ }^{\circ} \mathrm{C}$ for 10 min , and then recooling to $-78{ }^{\circ} \mathrm{C}$, this solution was added via cannula to protected bisoxazole dimethyl acetal $\mathbf{2 4 b}\left(93.1 \mathrm{mg}, 0.271 \mathrm{mmol}, 1\right.$ equiv) in dry THF (1.5 mL) at -78° C. The reaction mixture immediately took on a bright red color and was stirred at $-78{ }^{\circ} \mathrm{C}$ for 30 min . Side chain allylic bromide 7 ($106 \mathrm{mg}, 0.436 \mathrm{mmol}, 1.5$ equiv) in THF (1 mL) was added dropwise via cannula, which caused a color change to light orange. After stirring at $-78{ }^{\circ} \mathrm{C}$ for 15 min , sat aq $\mathrm{NaHCO}_{3}(4 \mathrm{~mL})$ was added and the reaction was warmed to rt . The resulting suspension was partitioned between $\mathrm{CH}_{2} \mathrm{Cl}_{2}(15 \mathrm{~mL})$ and sat aq $\mathrm{NaHCO}_{3}(15 \mathrm{ml})$ and The aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(2 \times 15 \mathrm{~mL})$. The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated in vacuo to yield a clear yellow liquid. Purification by silica gel chromatography ($25 \% \mathrm{Et}_{2} \mathrm{O} /$ hexanes; TLC: $\mathrm{R}_{\mathrm{f}}=$ $0.81,70 \% \mathrm{Et}_{2} \mathrm{O} /$ hexanes UV) provided trienyl bisoxazole $41(106.7 \mathrm{mg}, 79 \%)$ as a clear colorless oil. ${ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.70(\mathrm{~d}, J=0.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.50-5.39(\mathrm{~m}, 2 \mathrm{H}), 5.47(\mathrm{~s}, 1 \mathrm{H}), 5.35-5.33(\mathrm{~m}, 2 \mathrm{H})$, $4.99(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.37(\mathrm{~s}, 6 \mathrm{H}), 3.03-2.95(\mathrm{~m}, 1 \mathrm{H}), 2.91(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.71(\mathrm{dd}, J=14.4,6.2$ $\mathrm{Hz}, 1 \mathrm{H}), 2.65(\mathrm{dd}, J=14.4,6.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.51(\mathrm{dt}, J=7.4,7.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.63(\mathrm{~d}, J=4.7 \mathrm{~Hz}, 3 \mathrm{H}), 1.60(\mathrm{~d}$, $\left.J=1.2 \mathrm{~Hz}, 3 \mathrm{H}), 0.99(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 0.95(\mathrm{~s}, 9 \mathrm{H}), 0.38(\mathrm{~s}, 6 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C} \mathrm{NMR} \mathrm{(125MHz,CDCl}_{3}\right) \delta$ $166.0,156.6,154.7,139.6,138.9,136.5,136.2,132.1,130.4,129.5,128.8,122.5,98.6,52.8,35.3,35.2$, 29.9, 28.2, 26.5, 23.3, 21.4, 17.9, 17.6, -5.9 ppm; IR (film) 2957, 2930, 2858, 1612, 1579, 1464, 1448, 1376, 1318, 1251, 1193, 1161, 1104, 1063, 1005, 970, 929, 910, 843, 824, 812, 782, 748, 688, 582, 456 cm^{-1}; HRMS (EI): Exact mass calcd for $\mathrm{C}_{28} \mathrm{H}_{44} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{Si}[\mathrm{M}]^{+}: 500.3070$; Found: 500.3080; Anal calcd for $\mathrm{C}_{28} \mathrm{H}_{44} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{Si}: \mathrm{C}, 67.16 \%, \mathrm{H}, 8.86 \%$, N, 5.59%; Found: C, $67.43 \%, \mathrm{H}, 8.94 \%, \mathrm{~N}, 5.40 \%$.

Deprotected Trienyl Bisoxazole 42

To TBS-protected trienyl bisoxazole 41 ($54.4 \mathrm{mg}, 0.109 \mathrm{mmol}, 1$ equiv) in dry THF (2.2 mL) at $0^{\circ} \mathrm{C}$ was added tetrabutylammoium fluoride (TBAF) ($130 \mu \mathrm{~L}$ of a 1.0 M solution in THF, $0.130 \mathrm{mmol}, 1.2$ equiv). After stirring at $0^{\circ} \mathrm{C}$ for 10 min , the reaction was quenched by the addition of sat aq $\mathrm{NaHCO}_{3}(2$ mL). The mixture was partitioned between $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ and sat aq $\mathrm{NaHCO}_{3}(10 \mathrm{~mL})$ and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 10 \mathrm{~mL})$ The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated in vacuo to yield an orange liquid. Purification by silica gel
chromatography ($1: 1: 2 \mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{Et}_{2} \mathrm{O} /$ hexanes; $\mathrm{TLC}: \mathrm{R}_{\mathrm{f}}=0.66,70 \% \mathrm{Et}_{2} \mathrm{O} /$ hexanes, UV) provided deprotected trienyl bisoxazole 42 ($39.8 \mathrm{mg}, 95 \%$) as a clear colorless oil. ${ }^{1} \mathrm{H} \mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ ppm; ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.16(\mathrm{~s}, 1 \mathrm{H}), 7.71(\mathrm{~d}, J=1.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.49-5.41(\mathrm{~m}, 2 \mathrm{H}), 5.47(\mathrm{~s}$, $1 \mathrm{H}), 5.37-5.30(\mathrm{~m}, 2 \mathrm{H}), 4.98(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.40(\mathrm{~s}, 3 \mathrm{H}), 3.02-2.93(\mathrm{~m}, 1 \mathrm{H}), 2.89(\mathrm{t}, J=7.4, \mathrm{~Hz}$, $2 \mathrm{H}), 2.70(\mathrm{dd}, J=14.6,6.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.65(\mathrm{dd}, J=14.6,6.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.51$ (dt, $J=7.4,7.4 \mathrm{~Hz}, 2 \mathrm{H}$), 1.62 (d, $J=4.9 \mathrm{~Hz}, 3 \mathrm{H}), 1.60(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 3 \mathrm{H}), 0.97(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm}$; IR (film) $3135,2962,2832$, 2730, 1635, 1579, 1829, 1501, 1448, 1377, 1310, 1266, 1193, 1158, 1102, 1061, 969, 917, 854, 781, $734,653 \mathrm{~cm}^{-1}$; HRMS (EI): Exact mass calcd for $\mathrm{C}_{22} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{O}_{4}$ [M]+: 386.2206; Found: 386.2190; Anal calcd for $\mathrm{C}_{22} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{O}_{4}$: C, $68.37 \%, \mathrm{H}, 7.82 \%$, N, 7.25%; Found: C, $68.52 \%, \mathrm{H}, 8.04 \%, \mathrm{~N}, 7.24 \%$.

General procedure for $\mathrm{TiCl}_{4} /$ Hünig's base aldol-type reactions with acetals

To the N-acetyl-thiazolidinethione (1.3 equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.2 \mathrm{M})$ under argon atmosphere at $0{ }^{\circ} \mathrm{C}$ was added TiCl_{4} (1.3 equiv) dropwise via syringe. After 10 min , the orange solution was cooled to $-78{ }^{\circ} \mathrm{C}$ and $(i-\mathrm{Pr})_{2} \mathrm{NEt}$ (1.3 equiv) was added via syringe and the solution turned a characteristic blood-red color. After stirring for 30 min , the solution was warmed to $-50^{\circ} \mathrm{C}$ and stirred for 2 h . The dimethyl acetal (1 equiv) was added dropwise via cannula in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (approx 0.3 M) followed by the dropwise addition of $\mathrm{BF}_{3} \bullet \mathrm{OEt}_{2}$ (1.3 equiv). The solution was stirred at $-78^{\circ} \mathrm{C}$ for 2 h . The reaction was quenched by pouring into a rapidly stirring $1: 1$ mixture of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and half-sat $\mathrm{NH}_{4} \mathrm{Cl}$. The layers were separated and the aqueous layer was re-extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and the combined organic layers were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated in vacuo. ${ }^{1} \mathrm{H}$ NMR integration of the unpurified product was used to determine the diastereomer ratio. Silica column chromatography provided diastereomerically pure methyl ether.

General procedure for $\mathrm{PhBCl}_{2} /$ sparteine aldol-type reactions with acetals

To the N-acetyl-thiazolidinethione (1.3 equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.2 \mathrm{M})$ under argon atmosphere at $0{ }^{\circ} \mathrm{C}$ was added PhBCl_{2} (1.3 equiv) dropwise via syringe. After 10 min , sparteine (2.6 equiv) was added via syringe and the resulting solution was warmed to rt and stirred for 30 min . The solution was cooled to $78{ }^{\circ} \mathrm{C}$ and the dimethyl acetal (1 equiv) was added dropwise via cannula in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (approx 0.3 M) followed by the dropwise addition of $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$ (1.1 equiv). The solution was stirred at $-78{ }^{\circ} \mathrm{C}$ for 1.5 h and then was warmed to rt over 2 h . After stirring at rt an additional 1 h , the reaction was quenched with sat aq $\mathrm{NH}_{4} \mathrm{Cl}$. The contents of the flask were transferred to a separatory funnel containing a $4: 1$ mixture of hexanes: $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The layers were separated and the aqueous layer was re-extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and the combined organic layers were washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated in vacuo. ${ }^{1} \mathrm{H}$ NMR integration of the unpurified product was used to determine the diastereomer ratio. Silica column chromatography provided diastereomerically pure methyl ether.

Methyl Ether 45a

Yellow crystals. Mp 92.3-92.7 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 7.37-7.33 (m, 4H), 7.32-7.26 (m, 1H), $5.00(\mathrm{ddd}, J=7.7,6.0,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.71(\mathrm{dd}, J=7.6,5.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.86(\mathrm{dd}, J=16.6,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.69$ (dd, $J=16.6,5.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.30(\mathrm{dd}, J=11.4,8.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.21(\mathrm{~s}, 3 \mathrm{H}), 2.96(\mathrm{dd}, J=11.4,1.5 \mathrm{~Hz}, 1 \mathrm{H})$, 2.40-2.31 (m, 1H), $1.04(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 0.97(\mathrm{~d}, J=7.1,3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 202.7, 171.0, 140.4, 128.4, 127.9, 126.9, 79.9, 71.7, 56.5, 46.1, 30.5, 30.2, 19.0, 17.4 ppm ; IR (film) 2964, 2933, 2891, 2821, 1698, 1467, 1364, 1306, 1255, 1207, 1156, 1096, 1038, 1006, 987, 895, 701 $\mathrm{cm}^{-1} ;[\alpha]_{\mathrm{D}}{ }^{24}=-214.2^{\circ}\left(c=1.00, \mathrm{CHCl}_{3}\right)$; HRMS (EI): Exact mass calcd for $\mathrm{C}_{16} \mathrm{H}_{21} \mathrm{NO}_{2} \mathrm{~S}_{2}[\mathrm{M}]^{+}$: 323.1014; Found: 323.0997.

Methyl Ether 46a

Clear yellow oil: ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.39-7.33(\mathrm{~m}, 4 \mathrm{H}), 7.33-7.28(\mathrm{~m}, 1 \mathrm{H}), 5.16(\mathrm{dd}, J=6.9$, $6.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.81(\mathrm{dd}, J=9.7,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.76(\mathrm{dd}, J=17.1,9.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.53(\mathrm{dd}, J=11.4,8.1 \mathrm{~Hz}$, $1 \mathrm{H}), 3.46(\mathrm{dd}, J=17.1,3.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.22(\mathrm{~s}, 3 \mathrm{H}), 3.03(\mathrm{~d}, J=11.4,1 \mathrm{H}), 2.41-2.25(\mathrm{~m}, 1 \mathrm{H}), 1.04(\mathrm{~d}, J=$ $6.7 \mathrm{~Hz}, 3 \mathrm{H}), 0.96(\mathrm{~d}, J=6.9,3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 202.8,171.0,140.5,128.5$, $128.0,126.7,79.5,71.7,56.7,46.6,30.8,30.7,19.0,17.7 \mathrm{ppm}$; IR (film) $3029,2961,2930,2822,1678$, $1455,1365,1313,1275,1161,1096,1039,762,701 \mathrm{~cm}^{-1} ;[\alpha]_{D^{24}}=-266.0^{\circ}\left(c=1.34, \mathrm{CHCl}_{3}\right)$; HRMS (EI): Exact mass calcd for $\mathrm{C}_{16} \mathrm{H}_{21} \mathrm{NO}_{2} \mathrm{~S}_{2}[\mathrm{M}]^{+}$: 323.1014; Found: 323.1053.

Methyl Ether 45b

Clear yellow oil: ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.37-7.33(\mathrm{~m}, 4 \mathrm{H}), 7.32-7.27(\mathrm{~m}, 1 \mathrm{H}), 5.19(\mathrm{dd}, J=8.1$, $1.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.72(\mathrm{dd}, J=7.8,5.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.90(\mathrm{dd}, J=16.7,7.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.65(\mathrm{dd}, J=16.7,5.5 \mathrm{~Hz}$, $1 \mathrm{H}), 3.35(\mathrm{dd}, J=11.4,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.30(\mathrm{dd}, J=11.4,8.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.21(\mathrm{~s}, 3 \mathrm{H}), 1.30(\mathrm{~s}, 3 \mathrm{H}), 1.29(\mathrm{~s}$, $3 \mathrm{H}), 0.95(\mathrm{t}, J=7.9 \mathrm{~Hz}, 6 \mathrm{H}), 0.61(\mathrm{q}, J=7.9 \mathrm{~Hz}, 4 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 205.3$, $170.5,140.6,128.4,127.9,127.0,79.976 .7,72.6,56.6,45.8,30.1,28.1,26.1,7.0,6.5 \mathrm{ppm}$; IR (film) 2955, 2937, 2876, 2823, 1736, 1700, 1456, 1369, 1312, 1272, 1242, 1169, 1150, 1102, 1036, 745, 724,
$701 \mathrm{~cm}^{-1} ;[\alpha]_{D^{24}}=-74.5^{\circ}\left(c=1.00, \mathrm{CHCl}_{3}\right)$; HRMS (EI): Exact mass calcd for $\mathrm{C}_{22} \mathrm{H}_{3} \mathrm{NO}_{3} \mathrm{~S}_{2} \mathrm{Si}[\mathrm{M}]^{+}$: 453.1828; Found: 453.1829.

Methyl Ether 46b

Clear yellow oil: ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.38-7.33$ (m, 4H), 7.33-7.28 (m, 1H), $5.30(\mathrm{~d}, J=8.1$, $1 \mathrm{H}), 4.82(\mathrm{dd}, J=9.5,3.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.75(\mathrm{dd}, J=17.0,9.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.49(\mathrm{dd}, J=16.8,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.48$ (dd, $J=8.1,3.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.42(\mathrm{~d}, J=11.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.21(\mathrm{~s}, 3 \mathrm{H}), 1.28(\mathrm{~s}, 3 \mathrm{H}), 1.24(\mathrm{~s}, 3 \mathrm{H}), 0.94(\mathrm{t}, J=$ $7.9 \mathrm{~Hz}, 6 \mathrm{H}), 0.60(\mathrm{q}, J=7.9 \mathrm{~Hz}, 4 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 204.5,170.3,140.5,128.5$, 128.0, 126.8, 79.6 76.7, 72.6, 56.6, 46.0, 30.3, 28.1, 26.2, 7.1, 6.6 ppm ; IR (film) 2955, 2910, 2876, $2822,1736,1700,1456,1368,1312,1242,1148,1102,1036,971,934,745,724,701 \mathrm{~cm}^{-1} ;[\alpha]_{\mathrm{D}^{24}}=$ $-68.2^{\circ}\left(c=0.84, \mathrm{CHCl}_{3}\right)$; HRMS (EI): Exact mass calcd for $\mathrm{C}_{22} \mathrm{H}_{35} \mathrm{NO}_{3} \mathrm{~S}_{2} \mathrm{Si}[\mathrm{M}]^{+}: 453.1828$; Found: 453.1855.

Methyl Ether 47a

Clear yellow oil: ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.67$ (s, 1H), 5.11 (dd, $J=7.4,6.6 \mathrm{~Hz}, 1 \mathrm{H}$), 4.84 (dd, J $=6.6,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.02(\mathrm{dd}, J=17.8,7.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.80(\mathrm{dd}, J=17.8,5.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.49(\mathrm{dd}, J=11.4$, $8.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.37(\mathrm{~s}, 3 \mathrm{H}), 3.02(\mathrm{~d}, J=11.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.54(\mathrm{~s}, 3 \mathrm{H}), 2.42-2.34(\mathrm{~m}, 1 \mathrm{H}), 1.06(\mathrm{~d}, J=6.7 \mathrm{~Hz}$, $3 \mathrm{H}), 0.98$ (d, $J=6.9 \mathrm{~Hz}, 3 \mathrm{H}$), $0.95(\mathrm{~s}, 9 \mathrm{H}), 0.39(\mathrm{~s}, 3 \mathrm{H}), 0.38(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 202.3,170.9,164.9,156.5,154.7,140.8,138.8,135.4,72.2,71.4,56.8,43.5,30.6,30.1,26.3,18.9$, 17.5, 17.4, 13.7, $-5.99,-6.01 \mathrm{ppm}$; IR (film) 2957, 2930, 2895, 2857, 1698, 1613, 1585, 1469, 1364, 1314, 1252, 1163, 1103, 1039, 930, 842, $782 \mathrm{~cm}^{-1} ;[\alpha]_{\mathrm{D}}{ }^{24}=-238.7^{\circ}\left(c=1.00, \mathrm{CHCl}_{3}\right)$; HRMS (EI): Exact mass calcd for $\mathrm{C}_{23} \mathrm{H}_{35} \mathrm{~N}_{3} \mathrm{O}_{4} \mathrm{~S}_{2} \mathrm{Si}[\mathrm{M}]^{+}$: 509.1838; Found: 509.1840.

Methyl Ether 48a

Clear yellow oil: ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.65(\mathrm{~s}, 1 \mathrm{H}), 5.17(\mathrm{dd}, J=6.9,6.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.89(\mathrm{dd}, J$ $=9.4,2.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.87(\mathrm{dd}, J=17.9,9.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.65(\mathrm{dd}, J=17.9,2.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.56(\mathrm{dd}, J=11.4$, $7.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.38(\mathrm{~s}, 3 \mathrm{H}), 3.04(\mathrm{~d}, J=11.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.54(\mathrm{~s}, 3 \mathrm{H}), 2.42-2.35(\mathrm{~m}, 1 \mathrm{H}), 1.07(\mathrm{~d}, J=6.9 \mathrm{~Hz}$, $3 \mathrm{H}), 0.98(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 0.96(\mathrm{~s}, 9 \mathrm{H}), 0.40(\mathrm{~s}, 3 \mathrm{H}), 0.39(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) ठ 202.5, 170.7, 165.0, 156.7, 154.9, 141.0, 138.9, 135.1, 72.2, 71.5, 57.3 43.9, 30.8, 30.7, 26.5, 19.0, $17.8,17.6,13.8,-5.8 \mathrm{ppm}$; IR (film) 2956, 2929, 2857, 1698, 1466, 1364, 1315, 1250, 1165, 1104, 1040, 930, 841, 823, 811, 781, $680 \mathrm{~cm}^{-1} ;[\alpha]_{\mathrm{D}^{24}}=-111.3^{\circ}\left(c=1.02, \mathrm{CHCl}_{3}\right)$; HRMS (EI): Exact mass calcd for $\mathrm{C}_{23} \mathrm{H}_{35} \mathrm{~N}_{3} \mathrm{O}_{4} \mathrm{~S}_{2} \mathrm{Si}[\mathrm{M}]^{+}$: 509.1838; Found: 509.1847.

\qquad

$$
{ }^{13} \mathrm{CNMR}: 125 \mathrm{MHz} \text { in } \mathrm{CDCl}_{3}
$$

${ }^{1} \mathrm{HNMR}: 500 \mathrm{MHz}$ in CDCl_{3}

${ }^{13}$ CNMR: 125 MHz in CDCl_{3}

${ }^{1} \mathrm{HNMR}: 500 \mathrm{MHz}$ in CDCl_{3}
${ }^{13}$ CNMR: 125 MHz in CDCl_{3}

${ }^{13}$ CNMR: 125 MHz in CDCl_{3}

${ }^{13} \mathrm{CNMR}: 125 \mathrm{MHz}$ in CDCl_{3}

7

${ }^{13}$ CNMR: 125 MHz in CDCl_{3}

${ }^{13} \mathrm{CNMR}: 125 \mathrm{MHz}$ in CDCl_{3}

${ }^{13}$ CNMR: 125 MHz in CDCl_{3}

$\begin{array}{r}0 \\ 0 \\ \hline\end{array}$
009
09
10080

${ }^{13}$ CNMR: 125 MHz in CDCl_{3}

${ }^{13} \mathrm{CNMR}: 125 \mathrm{MHz}$ in CDCl_{3}

${ }^{13}$ CNMR: 125 MHz in CDCl_{3}

${ }^{13}$ CNMR: 125 MHz in CDCl_{3}

${ }^{13} \mathrm{CNMR}: 125 \mathrm{MHz}$ in CDCl_{3}

${ }^{13}$ CNMR: 125 MHz in CDCl_{3}

$$
{ }^{13} \mathrm{CNMR}: 125 \mathrm{MHz} \text { in } \mathrm{CDCl}_{3}
$$

${ }^{13}$ CNMR: 125 MHz in CDCl_{3}

$$
{ }^{13} \mathrm{CNMR}: 125 \mathrm{MHz} \text { in } \mathrm{CDCl}_{3}
$$

${ }^{13}$ CNMR: 125 MHz in CDCl_{3}

${ }^{13}$ CNMR: 125 MHz in CDCl_{3}

[^0]: (1) Pangborn, A. B.; Giardello, M. A.; Grubbs, R. H.; Rosen, R. K.; Timmers, F. J. Organometallics 1996, 1518.
 (2) Still, W. C.; Kahn, M.; Mitra, A. J. Org. Chem 1978, 43, 2923.

[^1]: (3) Chattopadhyay, S. K.; Kempson, J.; McNeil, A.; Pattenden, G.; Reader, M.; Rippon, D. E.; Waite, D. J. Chem. Soc., Perkin Trans. 1, 2000, 2415-2428.
 (4) Phillips, A. J.; Uto, Y.; Wipf, P.; Reno, M. J.; Williams, D. R. Org. Lett. 2000, 2, 1165-1168.
 (5) Williams, D. R.; Brooks, D. A.; Moore, J. L.; A. Stewart, A. O. Tetrahedron Lett. 1996, 37, 983-986.

