Supporting Information

Tuning of Texture and Structure of Copper-containing Nanocomposite Oxide Materials

Yu Xing,[†] Zhenxin Liu,[†] Sinue Gomez,^{‡,§} and Steven L. Suib*,^{†,‡}

Department of Chemistry, and Department of Chemical, Materials & Biomolecular Engineering, University of Connecticut, Storrs, Connecticut 06269-3060, USA

E-mail: steven.suib@uconn.edu

[†] Department of Chemistry, University of Connecticut

[‡] Department of Chemical, Materials & Biomolecular Engineering, University of Connecticut

[§] Present address: Corning Incorporated, Science and Technology, SP-FR-5, Corning, NY, 14831, USA

Figure 1. X-ray diffraction (XRD) patterns of uncalcined precursors of the pure phase oxides. 1), C100-NaHCO₃. 2), Z100-NaHCO₃. 3), A100-NaHCO₃.

Figure 2. XRD patterns of calcined precipitates with the use of precipitant NaHCO₃. a, CuAl₂O₄ phase; b, CuO phase; c, ZnO phase; d, Al₂O₃ phase. 1), A100-NaHCO₃, calcined at 400°C for 3hr; 2), A100-NaHCO₃, 700°C/3hr; 3), M2; 4), M3; 5), M8; 6), M9.

Figure 3. XRD patterns of some calcined precipitates. a, CuAl₂O₄ phase; b, CuO phase; c, ZnO phase. 1), M5; 2), M6; 3), M11; 4), M12.

Figure 4. Differential scanning calorimetry (DSC) curves of uncalcined precipitates in nitrogen atmosphere. 1) CA50-(NH₄)₂CO₃; 2) CA50-Na₂CO₃; 3) CA50-NaHCO₃.

Figure 5. XRD patterns of calcined xerogels. a, α -Al₂O₃ phase; b, CuO phase; c, CuAlO₂ phase; d, CuAl₂O₄ phase; e, Cu⁰ phase. 1), M20; 2), M18; 3), M17; 4), M16.

Figures 1-5 of Supporting Information were described in Results and Discussion section.