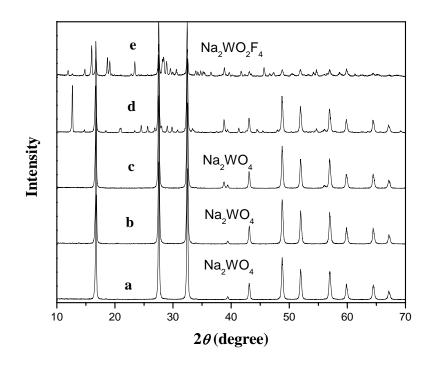
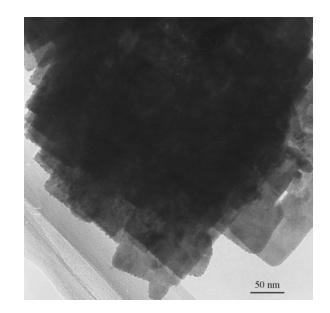
Supporting Information

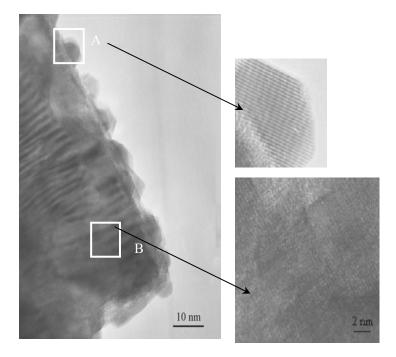
Photocatalytic Degradation of RhB by Fluorinated Bi₂WO₆ and Distributions of the Intermediate Products

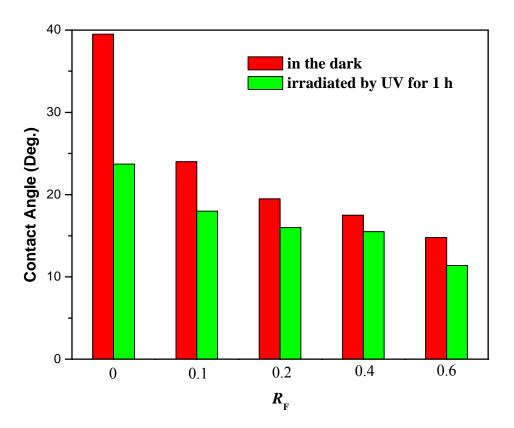

HONGBO FU[†], SHICHENG ZHANG[†], TONGGUANG XU[‡], YONGFA ZHU^{‡*}, and JIANMIN CHEN^{†*}

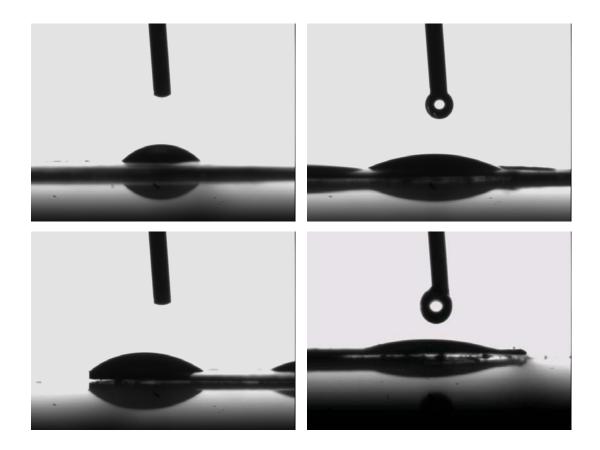
Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, P. R. China; Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China.;


Email: zhuyf@tsinghua.edu.cn (Yongfa Zhu); jmchen@fudan.edu.cn (Jianmin Chen)

Sample Preparation:


Fluorinated Bi_2WO_6 samples were prepared by a two-step hydrothermal process. The starting materials of WO₃, Na₂O and NaF were mixed and calcined at 1100 °C. The final Na₂WO₄ containing F⁻ ions was obtained from XRD patterns (Figure *S1*). In what followed, the value of \mathbf{R}_F was used to describe the molar ratio of NaF to Na₂O; these were 0, 0.1, 0.2, 0.4 and 0.6 nominal ratios. The calcined sample and Bi(NO₃)₃ (the molar ratio of 1:1) were used to synthesis fluorinated Bi₂WO₆ by a hydrothermal process described as our previous report (*3*). The resulting products were collected by filtration, and then were washed by deionized water for several times until no F⁻ ions were left in the solution as tested. The samples were then dried at 80 °C for 4 h for characterization.


FIGURE S1. XRD patterns of Na₂WO₄ with the different F doping content prepared by high-temperature solid state reaction. $\mathbf{R}_{\mathbf{F}} = 0$ (a), $\mathbf{R}_{\mathbf{F}} = 0.1$ (b), $\mathbf{R}_{\mathbf{F}} = 0.2$ (c), $\mathbf{R}_{\mathbf{F}} = 0.4$ (d) and $\mathbf{R}_{\mathbf{F}} = 0.6$ (e).


FIGURE S2. TEM image of the as-prepared sample ($R_F = 0.4$) prepared by the hydrothermal process at 180 °C for 24 h.

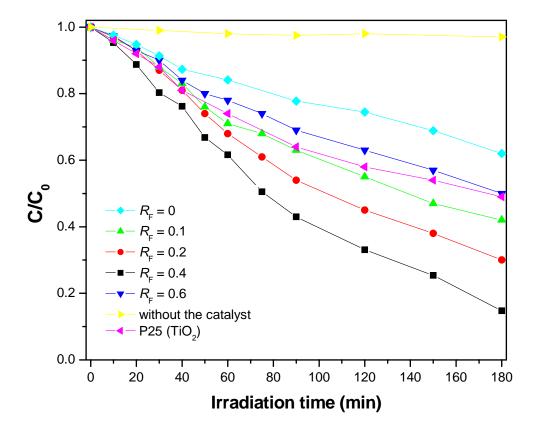
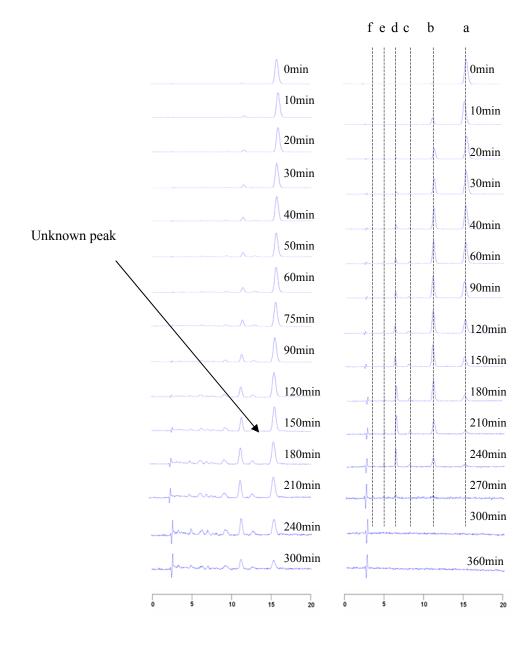
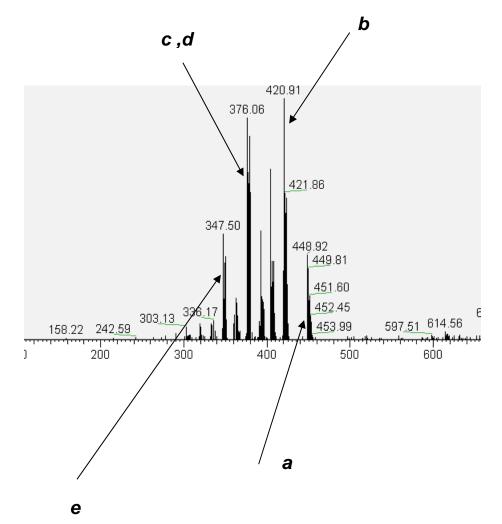

FIGURE S3. HRTEM image of the as-prepared sample ($\mathbf{R}_{\rm F} = 0.4$) prepared by hydrothermal process at 180 °C for 24 h. One can see that the F-Bi₂WO₆ crystal is sheet-shaped, which is similar with that of Bi₂WO₆ in our previous publication (5). The growth orientation was the same in different areas, indicating a single-crystalline feature of the whole nanoplates. However, the growth orientations were different in the areas of A and B. The sample particles on the edges could be the impurities of Bi₂O₃.

FIGURE *S4.* Change of the water CA under weak UV light irradiation (black light bulb, light intensity = $20 \ \mu W \ cm^{-2}$) on the as-prepared samples.


FIGURE *S5.* The CA variation of the as-prepared sample. Before (A) and after (B) irradiation of the sample ($\mathbf{R}_{\mathbf{F}} = 0$); before (C) and after (D) irradiation of the sample ($\mathbf{R}_{\mathbf{F}} = \underline{0.4}$).


FIGURE *S6.* Photodegradation of RhB over the as–prepared samples as a function of UV irradiation time. Catalyst loading, 0.1 g; RhB concentration, 2×10^{-5} M. The data was gained by recording the variations in the absorption band (553 nm) in the UV–visible spectra of RhB.

В

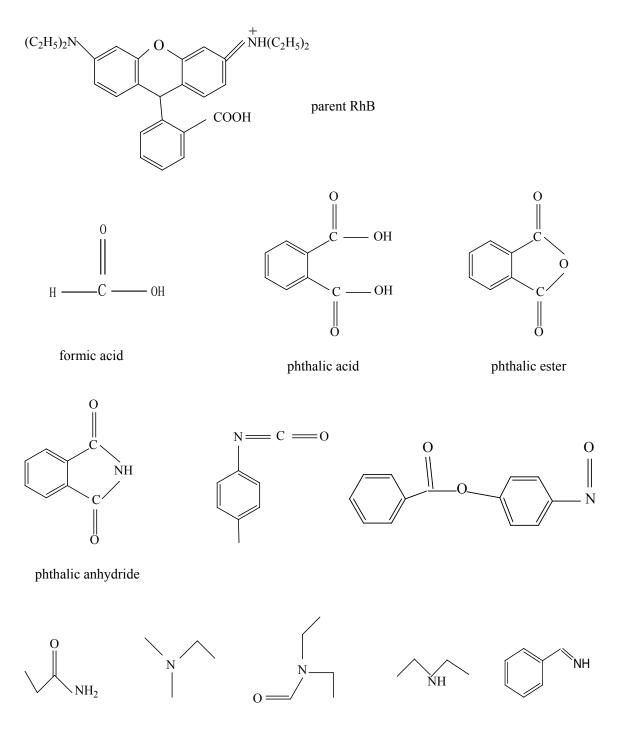
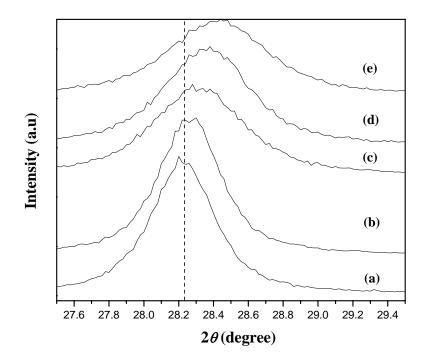


FIGURE *S7.* HPLC chromatograms of the *N*-deethylated intermediates at different irradiation intervals. Initial conditions are the same as those described in Figure 4; (A) $R_F = 0$, (B) $R_F = 0.4$.


FIGURE *S8.* Identification of deethylation intermediates of RhB by GC–MS. Typical LC–MS chromatogram at the irradiation for 180 min.

- **a** parent RhB
- **b** N, N-diethyl-N'-ethylrhodamine (DER)
- *c N*–ehyl–*N*–ethylrhodamine (EER)
- *d* N, N–diethylrhodamine (DR)
- *e N*–ethylrhodamine (ER)

N-containing molecular fractions

FIGURE S9. Identification of the ring–open products of RhB by GC–MS in the presence of Bi_2WO_6 ($R_F = 0$ and $R_F = 0.4$).

FIGURE S10. Diffraction peak positions of the (113) plane in the range of $2\theta = 27.5-29.5$; $R_F = 0$ (a), $R_F = 0.1$ (b), $R_F = 0.2$ (c), $R_F = 0.4$ (d) and $R_F = 0.6$ (e).