Supporting Information

High Performance n-Type Field-Effect Transistors Based on Indenofluorenedione and Diindenopyrazinedione Derivatives

Tomohiro Nakagawa, Daisuke Kumaki, ${ }^{\dagger}$ Jun-ichi Nishida, Shizuo Tokito, ${ }^{\dagger}$ Yoshiro Yamashita*
Department of Electronic Chemistry, Interdisciplinary Graduate School of Science and Engineering, Tokyo Institute of Technology, Nagatsuta, Midori-ku, Yokohama 226-8502, Japan
\dagger NHK Science and Technical Research Laboratories, Kinuta, Setagaya-ku, Tokyo 157-8510, Japan
\section*{E-mail: yoshiro@echem.titech.ac.jp}

General:

Melting points were obtained on a SHIMADZU DSC-60 and uncorrected. EI mass spectra were collected on a JEOL JMS-700 mass spectrometer. UV-vis spectra were recorded on a SHIMADZU Multi Spec-1500. Emission spectra were collected on a JASCO FP-6600 spectrometer. Differential pulse voltammograms were recorded on a BAS-100B system containing terabutylammonium hexafluorophoshate (TBAPF_{6}) ($0.1 \mathrm{moldm}^{-3}$ in dry DMF). The Pt disk, Pt wire and SCE were used as the working, counter, and reference electrodes, respectively. Elemental analyses were performed at the Tokyo Institute of Technology, Chemical Resources Laboratory.

Synthetic details:

<Compound 1a>

The synthetic details of $\mathbf{4 a}, \mathbf{5 a}$ and $\mathbf{1 a}$ are described in reference 5 .
$\mathrm{Mp}: 351-354^{\circ} \mathrm{C}$. IR (KBr) : 1714, 1604, 1470, 1429, 1182, 1124, 1086, 919, 755, $723 \mathrm{~cm}^{-1} . \mathrm{MS} / \mathrm{EI}$
$(70 \mathrm{eV}): \mathrm{m} / \mathrm{z} 282\left(\mathrm{M}^{+}\right)$. Anal. Calcd. For $\mathrm{C}_{20} \mathrm{H}_{10} \mathrm{O}_{2}$: C, 85.09; H, 3.57. Found: C, 85.15; H, 3.39.

<Compound 1b>

2,5-Di(4-fluorophenyl)-p-xylene (4b): A mixture of 2,5-dibromo-p-xylene ($3.66 \mathrm{~g}, 13.9 \mathrm{mmol}$) and tributyl-(4-fluorophenyl)stannane (11.3 g, 29.3 mmol) and $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(548 \mathrm{mg})$ in toluene $(60 \mathrm{ml})$ was refluxed overnight. The black precipitate was removed by filtration under suction, and the solvent was evaporated. The resulting solid was recrystallized from boiling ethanol: 1.43 g, 35 \% yield.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)=7.32(\mathrm{~m}, 4 \mathrm{H}), 7.11(\mathrm{~m}, 6 \mathrm{H}), 2.29(\mathrm{~s}, 6 \mathrm{H})$

2,5-Di(4-fluorophenyl)terephthalic acid (5b): 5b was synthesized by following the procedure described for 5a: $1.60 \mathrm{~g}>100$ \% yield.

2,8-Difluoroindeno[1,2-b]fluorene-6,12-dione (1b): 1b was synthesized by following the procedure described for 1a: $412 \mathrm{mg}, 48$ \% yield.

Mp : sublimated (ca. $340^{\circ} \mathrm{C}$). IR (KBr) : 1714, 1603, 1502, 1454, 1428, 1276, 1258, 1226, 1124, 1086, 922, 882, 838, 817, 780, 662, $496 \mathrm{~cm}^{-1}$. MS/EI (70 eV) : m/z 318 (${ }^{+}$). Anal. Calcd. For $\mathrm{C}_{20} \mathrm{H}_{8} \mathrm{~F}_{2} \mathrm{O}_{2}$: C, 75.47; H, 2.53. Found: C, 75.36; H, 2.40.

<Compound 1c>

2,5-Di(4-chlorophenyl)-p-xylene (4c): 4c was synthesized by following the procedure described for 4a: $971 \mathrm{mg}, 79$ \% yield.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)=7.40(\mathrm{~d}, 4 \mathrm{H}, J=8.1 \mathrm{~Hz}), 7.30-7.26(\mathrm{~m}, 4 \mathrm{H}), 7.11(\mathrm{~s}, 2 \mathrm{H}), 2.25(\mathrm{~s}$, 6H)

2,5-Di(4-fluorophenyl)terephthalic acid (5c): 5c was synthesized by following the procedure described for 5a: 998 mg, >100 \% yield.

2,8-Difluoroindeno[1,2-b]fluorene-6,12-dione (1c): 1c was synthesized by following the procedure described for 1d: $425 \mathrm{mg}, 59$ \% yield.

Mp : sublimated (ca. $340^{\circ} \mathrm{C}$). IR (KBr) : 1714, 1601, 1435, 1247, 1175, 1128, 1062, 946, 908, 835, 777, 753, 614, $478 \mathrm{~cm}^{-1}$. MS/EI (70 eV) : m/z $350\left(\mathrm{M}^{+}\right)$. Anal. Calcd. For $\mathrm{C}_{20} \mathrm{H}_{8} \mathrm{Cl}_{2} \mathrm{O}_{2}$: C, 68.40; H, 2.30. Found: C, 68.42; H, 2.35.
<Compound 1d>

The synthetic details of $\mathbf{6}, \mathbf{4 d}, \mathbf{5 d}$ and $\mathbf{1 d}$ are described in reference 6 .
$\mathrm{Mp}:>400^{\circ} \mathrm{C}$. IR (KBr) : 1714, 1598, 1435, 1247, 1175, 1127, 1053, 938, 909, 833, 777, 739, 472 cm^{-1}. MS/EI (70 eV) : m/z $440\left(\mathrm{M}^{+}\right)$. Anal. Calcd. For $\mathrm{C}_{20} \mathrm{H}_{8} \mathrm{Br}_{2} \mathrm{O}_{2}$: C, 54.58; H, 1.83. Found: C, 54.43; H, 1.84.
<Compound 2a>

The synthetic details of 7a, 8, 9a and 2a are described in reference 7
Mp : sublimated (ca. $330^{\circ} \mathrm{C}$). IR (KBr) : 1728, 1602, 1494, 1466, 1434, 1380, 1234, 1215, 1178, 1142, 925, 758, 731, $704 \mathrm{~cm}^{-1}$. MS/EI (70 eV) : m/z $284\left(\mathrm{M}^{+}\right)$. Anal. Calcd. For $\mathrm{C}_{18} \mathrm{H}_{8} \mathrm{~N}_{2} \mathrm{O}_{2}$: C, 76.05; H, 2.84; N, 9.85. Found: C, 76.08; H, 2.82; N, 9.85.

<Compound 2b>

The synthetic details of $\mathbf{1 0}$ and $\mathbf{1 1}$ are described in reference 8 .

5-Fluoro-1-indanone ($\mathbf{7 b}$): Compound $\mathbf{1 1}$ ($618 \mathrm{mg}, 4.12 \mathrm{mmol}$) was dissolved in benzene (6 ml), and then a mixture of conc. $\mathrm{HCl}(1 \mathrm{ml})$ and isoamyl nitrite (670 mg) was added to the solution. After stierring at $40^{\circ} \mathrm{C}$ for 3 h , the suspention was stirred at r.t. overnight. The solid obtained by filtration under suction was dried in a vacuum oven, and was purified by sublimation: $374 \mathrm{mg}, 51$ \% yield.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)=7.92(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=7.2$ and 5.4 Hz$), 7.13-7.22(\mathrm{~m}, 2 \mathrm{H}), 3.86(\mathrm{~s}, 2 \mathrm{H})$

2,8-Difluorodiindeno[1,2-b;1',2'-e]pyrazine (9b): A mixture of compound $\mathbf{7 b}$ ($1.00 \mathrm{~g}, 5.58 \mathrm{mmol}$), $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{4}(3.18 \mathrm{~g})$, ethanol (5 ml) and ammonium hydroxide ($14 \%, 10 \mathrm{ml}$) was refluxed overnight. After, nitrobenzene (15 ml) was added, the solution was refluxed for 30 min . The slurry was filtrated under suction, and the obtained solid was dried in a vacuum oven. The solid was purified by sublimation: $355 \mathrm{mg}, 44 \%$ yield.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)=8.07(\mathrm{dd}, 2 \mathrm{H}, \mathrm{J}=8.8$ and 5.4 Hz$), 7.34(\mathrm{dd}, 2 \mathrm{H}, \mathrm{J}=8.6$ and 2.4 Hz$)$, 7.21 (dd, 2H, $J=8.8$ and 2.4 Hz), 4.05 (s, 4H)

2,8-Difluorodiindeno[1,2-b;1',2'-e]pyrazine-6,12-dione (2b): 2 b was synthesized by following the procedure described for 2a: $201 \mathrm{mg}, 63$ \% yield.
Mp : sublimated (ca. $320^{\circ} \mathrm{C}$). IR (KBr) : 1732, 1598, 1504, 1464, 1429, 1385, 1284, 1253, 1206 , 1151, 1138, 1071, 974, 890, 860, 824, 789, 620, $498 \mathrm{~cm}^{-1}$. MS/EI (70 eV) : m/z 320 (M). Anal. Calcd. For $\mathrm{C}_{18} \mathrm{H}_{6} \mathrm{~F}_{2} \mathrm{~N}_{2} \mathrm{O}_{2}$: C, 67.51; H, 1.89; N, 8.75. Found: C, 67.27; H, 1.94; N, 8.67.

Absorption spectra:

Figure S1. Absorption spectra of 1a-d.

Figure S2. Absorption spectra of 2a,b.

Differential pulse voltammograms:

Figure S3. Differential pulse voltammograms of 1a-d.

Figure S4. Differential pulse voltammograms of 2a,b.

Fabrication of OFET:

(top-contact geometry)
OFETs were constructed on heavily doped n-type silicon wafers covered with 200 nm-thick thermally grown silicon dioxide. The silicon dioxide acts as a gate dielectric layer, and the silicon wafer serves as a gate electrode. Organic compounds were deposited on the silicon dioxide by vacuum evaporation at a rate of $0.3-0.5 \AA \mathrm{~s}^{-1}$ under pressure of $10^{-5} \mathrm{~Pa}$. The thickness of the semiconductor layer was 50 nm . During the evaporation, the temperature of the substrate was maintained by heating a copper block on which the substrate was mounted. Gold was used as source and drain electrodes and deposited on the organic semiconductor layer through a shadow mask with a channel width (W) of $1000 \mu \mathrm{~m}$ and a channel length (L) of $50 \mu \mathrm{~m}$. Finally, the FET measurements were carried out at room temperature in the vacuum chamber ($10^{-5} \mathrm{~Pa}$) without exposure to air with Hewlett-Packard 4140A and 4140B models.

(bottom-contact geometry)

The heavily doped n-type silicon was used as substrate, and a layer of 300 nm of SiO_{2} (grown by thermal oxidation) was used as the gate dielectric layer. $\mathrm{Cr}(10 \mathrm{~nm}) / \mathrm{Au}(20 \mathrm{~nm})$ were successively evaporated and photolithographically delineated to obtain the source and drain electrodes. The channel length and width were $25 \mu \mathrm{~m}$ and 294 mm , respectively. Organic thin films (50 nm) were deposited on the channel regions by vacuum evaporation $\left(10^{-5} \mathrm{~Pa}\right)$. The output and transfer characteristics of $\mathbf{1}$ and $\mathbf{2}$ by bottom-contact configuration are shown in Fig. S5-S10. The deposition temperature of $\mathbf{1 a - d}$ is about $180,200,220,230^{\circ} \mathrm{C}$, respectively. And that of 2 a and 2 b is 200 and $180^{\circ} \mathrm{C}$.

I_{d} versus V_{d} and I_{d} versus V_{g} characteristics:

Figure S5. Output and transfer characteristic of $\mathbf{1 b}$ with bottom-contact geometry.

Figure S6. Output and transfer characteristic of 1c with bottom-contact geometry.

Figure S7. Output and transfer characteristic of $\mathbf{1 d}$ with bottom-contact geometry .

Figure S8. Output and transfer characteristic of 2a with bottom-contact geometry.

Figure S9. Output and transfer characteristic of 2b (black) with bottom-contact geometry.

Figure S10. Output characteristics of 1 b and 2 b (black) with top-contact geometry.

X-ray crystallographic data:

The measurements were carried out on a Rigaku RAXIS-RAPID Imaging Plate diffractometer (Mo-K α radiation, $\lambda=0.71075 \AA$). The data were collected at 93 K and the structures were solved by the direct method (SIR97) and expanded using Fourier techniques. Non-hydrogen atoms were refined anisotropically. Hydrogen atoms were placed in geometrically calculated positions.
<ORTEP drawing, lattice parameter, bond length and bond angle of $\mathbf{1 b}>$

$\mathrm{a}=3.718(7) \AA$	$\alpha=100.42(8)^{\circ}$	$\mathbf{V}=323(3) \AA^{3}$	
$\mathrm{~b}=6.23(1) \AA$	$\beta=96.69(7)^{\circ}$	$\mathbf{Z}=1$	
$\mathrm{c}=14.34(3) \AA$	γ	$=92.52(7)^{\circ}$	Space group

atom	atom	distance	atom	atom	distance
$\mathrm{F}(1)$	$\mathrm{C}(8)$	$1.373(8)$	$\mathrm{C}(4)$	$\mathrm{C}(5)$	$1.395(10)$
$\mathrm{O}(1)$	$\mathrm{C}(3)$	$1.204(8)$	$\mathrm{C}(4)$	$\mathrm{C}(7)$	$1.379(9)$
$\mathrm{C}(1)$	$\mathrm{C}(2)$	$1.405(9)$	$\mathrm{C}(5)$	$\mathrm{C}(6)$	$1.469(9)$
$\mathrm{C}(1)$	$\mathrm{C}(6)$	$1.406(9)$	$\mathrm{C}(5)$	$\mathrm{C}(10)$	$1.410(10)$
$\mathrm{C}(2)$	$\mathrm{C}(3)$	$1.492(9)$	$\mathrm{C}(7)$	$\mathrm{C}(8)$	$1.37(1)$
$\mathrm{C}(2)$	$\mathrm{C}(6)$	$1.387(10)$	$\mathrm{C}(8)$	$\mathrm{C}(9)$	$1.37(1)$
$\mathrm{C}(3)$	$\mathrm{C}(4)$	$1.505(10)$	$\mathrm{C}(9)$	$\mathrm{C}(10)$	$1.397(9)$
$\mathrm{C}(7)$	$\mathrm{H}(1)$	0.94	$\mathrm{C}(10)$	$\mathrm{H}(3)$	0.98
$\mathrm{C}(9)$	$\mathrm{H}(2)$	0.98			

atom	atom	atom	angle	atom	atom	atom	angle
$\mathrm{C}(2)$	$\mathrm{C}(1)$	$\mathrm{C}(6)$	$114.5(6)$	$\mathrm{C}(4)$	$\mathrm{C}(5)$	$\mathrm{C}(10)$	$119.8(6)$
$\mathrm{C}(1)$	$\mathrm{C}(2)$	$\mathrm{C}(3)$	$126.8(6)$	$\mathrm{C}(6)$	$\mathrm{C}(5)$	$\mathrm{C}(10)$	$131.4(6)$
$\mathrm{C}(1)$	$\mathrm{C}(2)$	$\mathrm{C}(6)$	$124.1(6)$	$\mathrm{C}(1)$	$\mathrm{C}(6)$	$\mathrm{C}(2)$	$121.4(6)$
$\mathrm{C}(3)$	$\mathrm{C}(2)$	$\mathrm{C}(6)$	$109.1(6)$	$\mathrm{C}(1)$	$\mathrm{C}(6)$	$\mathrm{C}(5)$	$129.6(6)$

$\mathrm{O}(1)$	$\mathrm{C}(3)$	$\mathrm{C}(2)$	$127.8(6)$	$\mathrm{C}(2)$	$\mathrm{C}(6)$	$\mathrm{C}(5)$	$109.0(6)$
$\mathrm{O}(1)$	$\mathrm{C}(3)$	$\mathrm{C}(4)$	$127.6(6)$	$\mathrm{C}(4)$	$\mathrm{C}(7)$	$\mathrm{C}(8)$	$115.7(7)$
$\mathrm{C}(2)$	$\mathrm{C}(3)$	$\mathrm{C}(4)$	$104.5(6)$	$\mathrm{F}(1)$	$\mathrm{C}(8)$	$\mathrm{C}(7)$	$118.4(6)$
$\mathrm{C}(3)$	$\mathrm{C}(4)$	$\mathrm{C}(5)$	$108.5(6)$	$\mathrm{F}(1)$	$\mathrm{C}(8)$	$\mathrm{C}(9)$	$117.5(7)$
$\mathrm{C}(3)$	$\mathrm{C}(4)$	$\mathrm{C}(7)$	$128.6(7)$	$\mathrm{C}(7)$	$\mathrm{C}(8)$	$\mathrm{C}(9)$	$124.1(7)$
$\mathrm{C}(5)$	$\mathrm{C}(4)$	$\mathrm{C}(7)$	$122.8(6)$	$\mathrm{C}(8)$	$\mathrm{C}(9)$	$\mathrm{C}(10)$	$120.3(7)$
$\mathrm{C}(4)$	$\mathrm{C}(5)$	$\mathrm{C}(6)$	$108.8(6)$	$\mathrm{C}(5)$	$\mathrm{C}(10)$	$\mathrm{C}(9)$	$117.2(6)$
$\mathrm{C}(4)$	$\mathrm{C}(7)$	$\mathrm{H}(1)$	121.7	$\mathrm{C}(8)$	$\mathrm{C}(9)$	$\mathrm{H}(2)$	121.0
$\mathrm{C}(5)$	$\mathrm{C}(10)$	$\mathrm{H}(3)$	121.0	$\mathrm{C}(8)$	$\mathrm{C}(7)$	$\mathrm{H}(1)$	122.5
$\mathrm{C}(10)$	$\mathrm{C}(9)$	$\mathrm{H}(2)$	118.6	$\mathrm{C}(9)$	$\mathrm{C}(10)$	$\mathrm{H}(3)$	122.6

<ORTEP drawing, lattice parameter, bond length and bond angle of 2b (red solid)>

$\mathrm{a}=6.22(2) \AA$	$\alpha=90^{\circ}$	$\mathbf{V}=639 \AA^{3}$	
$\mathrm{~b}=7.75(2) \AA$	$\beta=97.5(1)^{\circ}$	$\mathbf{Z}=2$	
$\mathrm{c}=13.38(3) \AA$	γ	$=90^{\circ}$	Space group

atom	atom	distance	atom	atom	distance
$\mathrm{F}(1)$	$\mathrm{C}(2)$	$1.358(4)$	$\mathrm{C}(3)$	$\mathrm{C}(4)$	$1.389(5)$
$\mathrm{O}(1)$	$\mathrm{C}(7)$	$1.206(3)$	$\mathrm{C}(4)$	$\mathrm{C}(5)$	$1.381(4)$
$\mathrm{N}(1)$	$\mathrm{C}(8)$	$1.333(4)$	$\mathrm{C}(5)$	$\mathrm{C}(6)$	$1.396(4)$
$\mathrm{N}(1)$	$\mathrm{C}(9)$	$1.335(3)$	$\mathrm{C}(5)$	$\mathrm{C}(9)$	$1.469(5)$
$\mathrm{C}(1)$	$\mathrm{C}(2)$	$1.378(4)$	$\mathrm{C}(6)$	$\mathrm{C}(7)$	$1.494(5)$
$\mathrm{C}(1)$	$\mathrm{C}(6)$	$1.386(4)$	$\mathrm{C}(7)$	$\mathrm{C}(8)$	$1.508(4)$
$\mathrm{C}(2)$	$\mathrm{C}(3)$	$1.370(4)$	$\mathrm{C}(8)$	$\mathrm{C}(9)$	$1.399(4)$
$\mathrm{C}(1)$	$\mathrm{H}(1)$	0.95	$\mathrm{C}(4)$	$\mathrm{H}(3)$	0.96
$\mathrm{C}(3)$	$\mathrm{H}(2)$	0.97			

atom	atom	atom	angle	atom	atom	atom	angle
$\mathrm{C}(8)$	$\mathrm{N}(1)$	$\mathrm{C}(9)$	$111.6(3)$	$\mathrm{C}(1)$	$\mathrm{C}(6)$	$\mathrm{C}(7)$	$128.6(3)$
$\mathrm{C}(2)$	$\mathrm{C}(1)$	$\mathrm{C}(6)$	$115.4(3)$	$\mathrm{C}(5)$	$\mathrm{C}(6)$	$\mathrm{C}(7)$	$109.8(3)$
$\mathrm{F}(1)$	$\mathrm{C}(2)$	$\mathrm{C}(1)$	$117.6(3)$	$\mathrm{O}(1)$	$\mathrm{C}(7)$	$\mathrm{C}(6)$	$128.5(3)$
$\mathrm{F}(1)$	$\mathrm{C}(2)$	$\mathrm{C}(3)$	$117.7(3)$	$\mathrm{O}(1)$	$\mathrm{C}(7)$	$\mathrm{C}(8)$	$127.4(3)$
$\mathrm{C}(1)$	$\mathrm{C}(2)$	$\mathrm{C}(3)$	$124.7(3)$	$\mathrm{C}(6)$	$\mathrm{C}(7)$	$\mathrm{C}(8)$	$104.0(3)$
$\mathrm{C}(2)$	$\mathrm{C}(3)$	$\mathrm{C}(4)$	$119.2(3)$	$\mathrm{N}(1)$	$\mathrm{C}(8)$	$\mathrm{C}(7)$	$126.1(3)$
$\mathrm{C}(3)$	$\mathrm{C}(4)$	$\mathrm{C}(5)$	$118.2(3)$	$\mathrm{N}(1)$	$\mathrm{C}(8)$	$\mathrm{C}(9)$	$125.3(3)$
$\mathrm{C}(4)$	$\mathrm{C}(5)$	$\mathrm{C}(6)$	$121.0(3)$	$\mathrm{C}(7)$	$\mathrm{C}(8)$	$\mathrm{C}(9)$	$108.7(3)$
$\mathrm{C}(4)$	$\mathrm{C}(5)$	$\mathrm{C}(9)$	$130.8(3)$	$\mathrm{N}(1)$	$\mathrm{C}(9)$	$\mathrm{C}(5)$	$127.6(3)$
$\mathrm{C}(6)$	$\mathrm{C}(5)$	$\mathrm{C}(9)$	$108.2(2)$	$\mathrm{N}(1)$	$\mathrm{C}(9)$	$\mathrm{C}(8)$	$123.2(3)$
$\mathrm{C}(1)$	$\mathrm{C}(6)$	$\mathrm{C}(5)$	$121.6(3)$	$\mathrm{C}(5)$	$\mathrm{C}(9)$	$\mathrm{C}(8)$	$109.2(3)$
$\mathrm{C}(2)$	$\mathrm{C}(1)$	$\mathrm{H}(1)$	122.9	$\mathrm{C}(4)$	$\mathrm{C}(3)$	$\mathrm{H}(2)$	120.3
$\mathrm{C}(6)$	$\mathrm{C}(1)$	$\mathrm{H}(1)$	121.7	$\mathrm{C}(3)$	$\mathrm{C}(4)$	$\mathrm{H}(3)$	121.3
$\mathrm{C}(2)$	$\mathrm{C}(3)$	$\mathrm{H}(2)$	120.5	$\mathrm{C}(5)$	$\mathrm{C}(4)$	$\mathrm{H}(3)$	120.5

<ORTEP drawing, lattice parameter, bond length and bond angle of 2b (black solid)>

$\mathrm{a}=3.788(6) \AA$	$\alpha=90^{\circ}$	$\mathbf{V}=630 \AA^{3}$	
$\mathrm{~b}=10.79(2) \AA$	$\beta=97.47(7)^{\circ}$	$\mathbf{Z}=2$	
$\mathrm{c}=15.55(3) \AA$	$\gamma=90^{\circ}$	Space group	$\mathrm{P} 2_{1} / \mathrm{c}$

atom	atom	distance	atom	atom	distance
$\mathrm{F}(1)$	$\mathrm{C}(2)$	$1.353(3)$	$\mathrm{C}(3)$	$\mathrm{C}(4)$	$1.387(3)$
$\mathrm{O}(1)$	$\mathrm{C}(7)$	$1.215(3)$	$\mathrm{C}(4)$	$\mathrm{C}(5)$	$1.387(3)$
$\mathrm{N}(1)$	$\mathrm{C}(8)$	$1.334(3)$	$\mathrm{C}(5)$	$\mathrm{C}(6)$	$1.409(3)$
$\mathrm{N}(1)$	$\mathrm{C}(9)$	$1.347(3)$	$\mathrm{C}(5)$	$\mathrm{C}(9)$	$1.464(3)$
$\mathrm{C}(1)$	$\mathrm{C}(2)$	$1.390(3)$	$\mathrm{C}(6)$	$\mathrm{C}(7)$	$1.496(3)$
$\mathrm{C}(1)$	$\mathrm{C}(6)$	$1.376(3)$	$\mathrm{C}(7)$	$\mathrm{C}(8)$	$1.506(3)$
$\mathrm{C}(2)$	$\mathrm{C}(3)$	$1.380(3)$	$\mathrm{C}(8)$	$\mathrm{C}(9)$	$1.410(3)$
$\mathrm{C}(1)$	$\mathrm{H}(1)$	1.17	$\mathrm{C}(4)$	$\mathrm{H}(3)$	0.96
$\mathrm{C}(3)$	$\mathrm{H}(2)$	1.06			

atom	atom	atom	angle	atom	atom	atom	angle
$\mathrm{C}(8)$	$\mathrm{N}(1)$	$\mathrm{C}(9)$	$111.8(2)$	$\mathrm{C}(1)$	$\mathrm{C}(6)$	$\mathrm{C}(7)$	$128.7(2)$
$\mathrm{C}(2)$	$\mathrm{C}(1)$	$\mathrm{C}(6)$	$115.5(2)$	$\mathrm{C}(5)$	$\mathrm{C}(6)$	$\mathrm{C}(7)$	$109.1(2)$
$\mathrm{F}(1)$	$\mathrm{C}(2)$	$\mathrm{C}(1)$	$117.8(2)$	$\mathrm{O}(1)$	$\mathrm{C}(7)$	$\mathrm{C}(6)$	$128.0(2)$
$\mathrm{F}(1)$	$\mathrm{C}(2)$	$\mathrm{C}(3)$	$117.7(2)$	$\mathrm{O}(1)$	$\mathrm{C}(7)$	$\mathrm{C}(8)$	$127.1(2)$
$\mathrm{C}(1)$	$\mathrm{C}(2)$	$\mathrm{C}(3)$	$124.5(2)$	$\mathrm{C}(6)$	$\mathrm{C}(7)$	$\mathrm{C}(8)$	$104.8(2)$
$\mathrm{C}(2)$	$\mathrm{C}(3)$	$\mathrm{C}(4)$	$118.8(2)$	$\mathrm{N}(1)$	$\mathrm{C}(8)$	$\mathrm{C}(7)$	$126.5(2)$

$\mathrm{C}(3)$	$\mathrm{C}(4)$	$\mathrm{C}(5)$	$119.0(2)$	$\mathrm{N}(1)$	$\mathrm{C}(8)$	$\mathrm{C}(9)$	$125.3(2)$
$\mathrm{C}(4)$	$\mathrm{C}(5)$	$\mathrm{C}(6)$	$120.1(2)$	$\mathrm{C}(7)$	$\mathrm{C}(8)$	$\mathrm{C}(9)$	$108.2(2)$
$\mathrm{C}(4)$	$\mathrm{C}(5)$	$\mathrm{C}(9)$	$131.5(2)$	$\mathrm{N}(1)$	$\mathrm{C}(9)$	$\mathrm{C}(5)$	$127.7(2)$
$\mathrm{C}(6)$	$\mathrm{C}(5)$	$\mathrm{C}(9)$	$108.4(2)$	$\mathrm{N}(1)$	$\mathrm{C}(9)$	$\mathrm{C}(8)$	$122.9(2)$
$\mathrm{C}(1)$	$\mathrm{C}(6)$	$\mathrm{C}(5)$	$122.1(2)$	$\mathrm{C}(5)$	$\mathrm{C}(9)$	$\mathrm{C}(8)$	$109.4(2)$
$\mathrm{C}(2)$	$\mathrm{C}(1)$	$\mathrm{H}(1)$	110.4	$\mathrm{C}(4)$	$\mathrm{C}(3)$	$\mathrm{H}(2)$	118.2
$\mathrm{C}(6)$	$\mathrm{C}(1)$	$\mathrm{H}(1)$	133.9	$\mathrm{C}(3)$	$\mathrm{C}(4)$	$\mathrm{H}(3)$	129.3
$\mathrm{C}(2)$	$\mathrm{C}(3)$	$\mathrm{H}(2)$	122.9	$\mathrm{C}(5)$	$\mathrm{C}(4)$	$\mathrm{H}(3)$	111.6

