The role of tandem acyl carrier protein domains in polyunsaturated fatty acid biosynthesis

Hui Jiang, ${ }^{\dagger}$ Ross Zirkle, ${ }^{\ddagger}$ James G. Metz, ${ }^{\ddagger}$ Lisa Braun,${ }^{\ddagger}$ Leslie Richter, ${ }^{\ddagger}$ Steven G. Van Lanen, ${ }^{\dagger}$ and Ben Shen ${ }^{*, t, \perp, \S}$
${ }^{\dagger}$ Division of Pharmaceutical Sciences, ${ }^{\perp}$ University of Wisconsin National Cooperative Drug Discovery Group, ${ }^{8}$ Department of Chemistry, University of Wisconsin, Madison, WI 53705, and ${ }^{*}$ Martek Biosciences Co., 4909 Nautilus Court North, Suite 208, Boulder, CO 80301.

*To whom correspondence should be addressed: Division of Pharmaceutical Sciences, School of Pharmacy, University of Wisconsin-Madison, 777 Highland Ave., Madison, WI 53705. Tel.: (608) 263-2673; Fax: (608) 262-5345; E-mail: bshen@pharmacy.wisc.edu

Supporting Information

Table of Contents

1. Materials and methods S2-S6
2. Reference S7
3. Table S1. S8-S9
4. Table S2. S10
5. Table S3. S11
6. Table S4. S12
7. Table S5. S13
8. Figure S1. S14
9. Figure S2. S15
10. Figure S3. S16

Materials and Methods

Strains and cosmids. Shewanella japonica PUFA synthase system ${ }^{1 \mathrm{a}}$ and Moritella marina PUFA synthase system ${ }^{1 \mathrm{~b}}$ were used in this work. A 39,669-bp fragment encoding the S. japonica PUFA synthase was cloned into cosmid SuperCos 1 (Stratagene, La Jolla, CA) to construct 3F3. ${ }^{\text {1a }}$

Construction of $\boldsymbol{p f a A}-A C P$ expression vectors and overproduction of PfaA-ACPs in E. coli. Six pfaA-ACP genes were amplified by PCR from 3F3 using the following primers: for ACP1 (forward) 5'-G CGG GAT CCA ACA GCC CTG AGC TCA CAA AA-3' /(reverse) 5'-CG CGC GGC CGC TTA GCC TGC GGC CGG TAG TTT A-3'; for ACP2 (forward) 5'-G CGG GAT CCA TCA GGT CTT AGC GCA GAA AC-3' /(reverse) 5^{\prime}-CG CGC GGC CGC TTA GCC TGC GGC GGG TAG TTT A-3'; for ACP3 (forward) 5^{\prime}-G CGG GAT CCA TCT GGC CTT AGC GCT GAA AC-3' /(reverse) 5^{\prime}-CG CGC GGC CGC TTA ACC AGC AGC GGG TAG CTT A-3'; for $A C P 4$ (forward) 5'-G CGG GAT CCA TCT GGT CTT AGC GCA GAA AC-3' /(reverse) 5'CG CGC GGC CGC TTA GCC TGC GGC GGG TAG TTT A-3'; for ACP5 (forward) 5'-G CGG GAT CCA TCA GGT TTA AGT GCG GAA CA-3' /(reverse) 5^{\prime}-CG CGC GGC CGC TTA GCC TGC GGC GGG TAG TTT A-3'; and for ACP6 (forward) 5'-G CGG GAT CCA ACA GCC CTG AGC GCT GAG CA-3' /(reverse) 5^{\prime}-CG CGC GGC CGC TTA GCC TGC GGC TGG CAG TTT A-3'. The PCR products were cloned as BamHI-NotI fragment into pETDuet-1 to obtain expression vectors pETACP1a ~ pETACP6a (Table S1) and sequenced to confirm PCR fidelity. The pfaA-ACP1 gene was also amplified by PCR from 3F3 using 5'-AGC CAT ATG ACA GCC CTG AGC TCA CAA-3' as a forward primer and 5'-GGC CTC GAG TTA TGC ATT TGC AGT GTC GCT-3' as a reverse primer. The resultant PCR product was cloned as NdeI-XhoI fragment into pET28a to obtain expression vectors pETACP1 (Table S1) and sequenced to confirm PCR fidelity. E. coli BL21(DE3) containing the expression vectors were grown at $37{ }^{\circ} \mathrm{C}$ until the OD_{600} reached 0.5 . IPTG (1 mM) was then added, and incubation continued at $37{ }^{\circ} \mathrm{C}$ for 4 h . The produced N - His_{6} tagged ACP proteins were purified by Ni-NTA agarose (QIAgen, Valencia, CA).

In vitro 4'-phosphopantetheinylation of PfaA-ACPs from apo- into holo-form catalyzed by Svp PPTase. In vitro 4'-phosphopantetheinylation of PfaA-ACPs from apo- into holo-form was performed using Svp PPTase. ${ }^{2}$ A typical reaction of $100 \mu \mathrm{~L}$, containing $100 \mu \mathrm{M} \mathrm{ACP}, 500 \mu \mathrm{M}$ CoA, $5 \mu \mathrm{M}$ Svp PPTase, $12.5 \mathrm{mM} \mathrm{MgCl}_{2}$, 2.5 mM DTT in 100 mM Tris• $\mathrm{HCl}, \mathrm{pH} 7.5$, was incubated at $25^{\circ} \mathrm{C}$ for 30 min . The conversion of apo- to holo-ACP was analyzed by HPLC and ESI-MS analyses as described below.

In vivo 4'-phosphopantetheinylation of PfaA-ACPs from apo- into holo-form by coexpression of pfaA-ACPs with pfaE. The pfaE gene was amplified by PCR from 3 F 3 using the following primers: (forward) 5^{\prime}-CAA GCG CAT ATG TCT TAT TGC TAT TAT AAA-3' /(reverse) 5'-AGA CTC GAG TCA GTT GGT TTT TAT GAA CAT TT-3'. The PCR product was cloned as NdeI-XhoI fragment into the same sites of pETACP1a ~ pETACP6a to obtain coexpression vectors pETACP1a+E ~ pETACP6a+E (Table S1). Expression of the ACP genes and purification of the ACPs were performed identical to as above.

HPLC and ESI-MS analyses of apo- and holo-forms of PfaA-ACPs. HPLC analysis of purified ACP proteins was carried out on a Jupiter C-18 column ($5 \mu \mathrm{~m}, 300 \AA, 250 \times 4.6 \mathrm{~mm}$, Phenomenex, Belmont, CA), eluted with a gradient from 15% to $90 \% \mathrm{CH}_{3} \mathrm{CN}$ in 0.1% TFA- $\mathrm{H}_{2} \mathrm{O}$ in 30 min at a flow rate of $1.0 \mathrm{~mL} / \mathrm{min}$, and UV detection was at 220 nm . Individual protein peaks were collected and lyophilized for ESI-MS analyses. The latter was performed on an Agilent (Palo Alto, CA) 1000 HPLC-MSD SL instrument.

Construction of S. japonica PUFA synthases expression constructs and production of EPA/DPA in E. coli. The genes responsible for EPA and DPA biosynthesis from S. japonica have been previously cloned, sequenced and analyzed. ${ }^{1 \text { a }} S$. japonica genes $p f a B$ and $p f a D$ were amplified by PCR and cloned as NcoI-NotI and NdeI-XhoI fragments respectively into multiple cloning site 1 (MCS1) and multiple cloning site 2 (MCS2) of pACYCDuet-1 to create expression plasmid pREZ65. The 5^{\prime} and 3^{\prime} ends of pfaC were PCR amplified and cloned with central portion of $p f a C$ as an $A v r \mathrm{II}$ fragment and the entire $p f a C$ gene cloned as an $N d e \mathrm{I}-X h o \mathrm{I}$ fragment into pCOLADuet-1 to create the expression plasmid pREZ71. The $p f a E$ gene was amplified by PCR and cloned as an NdeI-XhoI fragment into MCS2 of pETDuet-1. The pfaA gene was subsequently cloned into the construct containing pfaE by PCR amplification the 5^{\prime} and 3^{\prime} ends of pfaA and cloning the central portion of the gene as an EcoRV-PflMI fragment. The entire $p f a A$ was then cloned as a BbsI (NcoI)-NotI fragment into MCS1 to generate the expression plasmid pREZ67. E. coli strain BLR(DE3) was co-transformed with the three expression plasmids pREZ65, pREZ71 and pREZ67 containing $p f a B$ and $p f a D ; p f a C$; and $p f a E$ and $p f a A$, respectively. Cultures were grown in 25 mL of LB at $20^{\circ} \mathrm{C}$ until the OD_{600} reached 0.5 . IPTG (1 mM) was then added, and incubation continued at $20^{\circ} \mathrm{C}$ for 12 h . The cells were then collected by centrifugation for PUFA analysis.

GC-MS analysis of PUFA production. PUFA production was monitored by GC-FID-MS analysis of corresponding fatty acyl methyl esters (FAMEs). To the cells, 2 mL of 1.5 M anhydrous HCl in methanol and 1 mL toluene were added. The resulting sample was then stirred at $100^{\circ} \mathrm{C}$ for 2 h . After cooling to room temperature, the organic layer was washed with 1 mL of saturated brine, and removed by vacuum. The resulting FAMEs were identified and quantified by comparing the GC-FID-MS peaks with authentic FAME standards.

Construction of PfaA-ACP point-mutants. First, a pair of pET-linker and a pair of pUC-linker were inserted into the BglII-XhoI fragment of pET28a and EcoRI-HindIII fragment of pUC18, generating pETm and pUCm , respectively (Figure S3). The MCSs of pETm and pUCm were modified to contain all needed restriction endonuclease sites. Second, each ACP gene was cloned from pREZ67 to pETm or pUCm via several cycles of cloning steps. Each ACP point-mutant gene was obtained by mutagenesis PCR using primers listed in Table S5. Third, each ACP-point-mutant gene was cloned into pREZ67 via several cycles of reverse cloning steps to obtain 16 pREZ67 derivate expression plasmids (Table S1).

For pREZ67-1m: The 2.3-kb KpnI-BglII fragment of pREZ67 was cloned into the identical sites of pETm to generate plasmid pACP1-5. The 1.1-kb KpnI-EagI fragment of pACP1-5 was cloned into the identical sites of pETm to generate plasmid pACP1. Reaction was performed using pACP1 as template with the ACP1mu5 and ACP1mu3 as primers. Successful reaction mixtures consisted of 20 ng of template plasmid, 300 nM each primer, $500 \mu \mathrm{M}$ dNTPs, 2.5 units of
platinum pfx DNA polymerase (Invitrogen, Carlsbad, CA), 1 mM MgSO , and $1 \times \mathrm{pfx}$ amplification buffer (Invitrogen, Carlsbad, CA). The PCR program was as follows: initial denaturing at $94^{\circ} \mathrm{C}$ for 2 min , followed by 18 cycles at $94^{\circ} \mathrm{C}$ for $30 \mathrm{~s}, 55^{\circ} \mathrm{C}$ for 30 s , and $68^{\circ} \mathrm{C}$ for 7 min , and completed by additional 10 min at $68^{\circ} \mathrm{C}$. Upon completion, 10 units of DpnI was added directly to the PCR mixture and digested at $37{ }^{\circ} \mathrm{C}$ for 1 h . The $10 \mu \mathrm{~L}$ of mixture was directly transformed into $\mathrm{DH} 5 \alpha$. The resulting mutant construct was confirmed by sequencing to give plasmid pACP1m. The 1.1-kb KpnI-EagI fragment of pACP1m was cloned into the identical sites of pACP1-5 to generate plasmid pACP1-5-1m. The 2.3-kb KpnI-BglII fragment of pACP1-5-1m was cloned into the identical sites of pREZ67 to generate plasmid pREZ67-1m.

For pREZ67-2m: The 1.2-kb EagI-BglII fragment of pACP1-5 was cloned into the identical sites of pETm to generate plasmid pACP2-5. The 1.0-kb EagI-HindIII fragment of pACP2-5 was cloned into the identical sites of pUCm to generate plasmid pUCACP2-4. The 0.3-kb EagIDraIII fragment of pUCACP2-4 was cloned into the identical sites of pUCm to generate plasmid pUCACP2. Reaction was performed using pUCACP2 as template with the ACP1mu5 and ACP1mu3 as primers. The mutagenesis PCR, DpnI digestion, and transformation of DH5 α were performed identical to as above. The resulting mutant constructed was confirmed by sequencing to give plasmid pUCACP 2 m . The $0.3-\mathrm{kb}$ EagI-DraIII fragment of pUCACP2m was cloned into the identical sites of pUCACP2-4 to generate plasmid pUCACP2-4-2m. The 1.0-kb EagI-HindIII fragment of pUCACP2-4-2m was cloned into the identical sites of pACP2-5 to generate plasmid pACP2-5-2m. The 1.2-kb EagI-BglII fragment of pACP2-5-2m was cloned into the identical sites of pACP1-5 to generate plasmid pACP1-5-2m. The 2.3-kb KpnI-BglII fragment of pACP1-$5-2 \mathrm{~m}$ was cloned into the identical sites of pREZ67 to generate plasmid pREZ67-2m.

For pREZ67-3m: The 0.7-kb DraIII-HindIII fragment of pUCACP2-4 was cloned into the identical sites of pUCm to generate plasmid pUCACP3-4. Reaction was performed using pUCACP3-4 as template with the ACP1mu5 and ACP1mu3 as primers. The mutagenesis PCR, DpnI digestion, and transformation of $\mathrm{DH} 5 \alpha$ were performed identical to as above. The resulting mutants constructed were selected by sequencing to give plasmid pUCACP3-4-34m. The $0.3-\mathrm{kb}$ DraIII-BlpI fragment of pUCACP3-4-34m was cloned into the identical sites of pUCACP3-4 to generate plasmid pUCACP3-4-3m. The $0.7-\mathrm{kb}$ DraIII-HindIII fragment of pUCACP3-4-3m was cloned into the identical sites of pUCACP2-4 to generate plasmid pUCACP2-4-3m. The $1.0-\mathrm{kb}$ EagI-HindIII fragment of pUCACP2-4-3m was cloned into the identical sites of pACP2-5 to generate plasmid pACP2-5-3m. The 1.2-kb EagI-BglII fragment of pACP2-5-3m was cloned into the identical sites of pACP1-5 to generate plasmid pACP1-5-3m. The 2.3-kb KpnI-BglII fragment of pACP1-5-3m was cloned into the identical sites of pREZ67 to generate plasmid pREZ67-3m.

For pREZ67-4m: The 0.4-kb BlpI-HindIII fragment of pUCACP3-4-34m was cloned into the identical sites of pUCACP3-4 to generate plasmid pUCACP3-4-4m. The 0.7-kb DraIII-HindIII fragment of pUCACP3-4-4m was cloned into the identical sites of pUCACP2-4 to generate plasmid pUCACP2-4-4m. The $1.0-\mathrm{kb}$ EagI-HindIII fragment of pUCACP2-4-4m was cloned into the identical sites of pACP2-5 to generate plasmid pACP2-5-4m. The 1.2-kb EagI-BglII fragment of pACP2-5-4m was cloned into the identical sites of pACP1-5 to generate plasmid pACP1-5-4m. The $2.3-\mathrm{kb}$ KpnI-BglII fragment of pACP1-5-4m was cloned into the identical sites of pREZ67 to generate plasmid pREZ67-4m.

For pREZ67-5m: The 0.2-kb HindIII-BglII fragment of pACP2-5 was cloned into the identical sites of pETm to generate plasmid pACP5. Reaction was performed using pACP5 as template with the ACP5mu5 and ACP5mu3 as primers. The mutagenesis PCR, DpnI digestion, and transformation of DH5 α were performed identical to as above. The resulting mutant constructed was confirmed by sequencing to give plasmid pACP5m. The $0.2-\mathrm{kb}$ HindIII-BglII fragment of pACP5m was cloned into the identical sites of pACP2-5 to generate plasmid pACP2-5-5m. The $1.2-\mathrm{kb}$ EagI-BglII fragment of pACP2-5-5m was cloned into the identical sites of pACP1-5 to generate plasmid pACP1-5-5m. The 2.3-kb KpnI-BglII fragment of pACP1-5-5m was cloned into the identical sites of pREZ67 to generate plasmid pREZ67-6m.

For pREZ67-6m: The $0.5-\mathrm{kb}$ BglII-BseRI fragment of pREZ67 was cloned into the identical sites of pETm to generate plasmid pACP6. Reaction was performed using pACP6 as template with ACP6mu5 and ACP6mu3 as primers. The mutagenesis PCR, DpnI digestion, and transformation of DH5 α were performed identical to as above. The resulting mutant constructed was confirmed by sequencing to give plasmid pACP6m. The $0.5-\mathrm{kb}$ BglII-BseRI fragment of pACP6m was cloned into the identical sites of pREZ67 to generate plasmid pREZ67-6m.

For pREZ67-34m: The 0.7-kb DraIII-HindIII fragment of pUCACP3-4-34m was cloned into the identical sites of pUCACP2-4 to generate plasmid pUCACP2-4-34m. The 1.0-kb EagI-HindIII fragment of pUCACP2-4-34m was cloned into the identical sites of pACP2-5 to generate plasmid pACP2-5-34m. The 1.2-kb EagI-BglII fragment of pACP2-5-34m was cloned into the identical sites of pACP1-5 to generate plasmid pACP1-5-34m. The 2.3-kb KpnI-BglII fragment of pACP1-5-34m was cloned into the identical sites of pREZ67 to generate plasmid pREZ6734 m .

For pREZ67-123m: The 0.7-kb DraIII-HindIII fragment of pUCACP3-4-3m was cloned into the identical sites of pUCACP2-4-2m to generate plasmid pUCACP2-4-23m. The 1.0-kb EagIHindIII fragment of pUCACP2-4-23m was cloned into the identical sites of pACP2-5 to generate plasmid pACP2-5-23m. The 1.2-kb EagI-BglII fragment of pACP2-5-23m was cloned into the identical sites of pACP1-5-1m to generate plasmid pACP1-5-123m. The 2.3-kb KpnI-BglII fragment of pACP1-5-123m was cloned into the identical sites of pREZ67 to generate plasmid pREZ67-123m.

For pREZ67-345m: The 1.0-kb EagI-HindIII fragment of pUCACP2-4-34m was cloned into the identical sites of pACP2-5-5m to generate plasmid pACP2-5-345m. The 1.2-kb EagI-BglII fragment of pACP2-5-345m was cloned into the identical sites of pACP1-5 to generate plasmid pACP1-5-345m. The 2.3-kb KpnI-BglII fragment of pACP1-5-345m was cloned into the identical sites of pREZ67 to generate plasmid pREZ67-345m.

For pREZ67-456m: The 1.0-kb EagI-HindIII fragment of pUCACP2-4-4m was cloned into the identical sites of pACP2-5-5m to generate plasmid pACP2-5-45m. The 1.2-kb EagI-BglII fragment of pACP2-5-45m was cloned into the identical sites of pACP1-5 to generate plasmid pACP1-5-45m. The 2.3-kb KpnI-BglII fragment of pACP1-5-45m was cloned into the identical sites of pREZ67-6m to generate plasmid pREZ67-456m.

For pREZ67-1234m: The 0.7-kb DraIII-HindIII fragment of pUCACP3-4-34m was cloned into the identical sites of pUCACP2-4-2m to generate plasmid pUCACP2-4-234m. The 1.0-kb EagIHindIII fragment of pUCACP2-4-234m was cloned into the identical sites of pACP2-5 to generate plasmid pACP2-5-234m. The 1.2-kb EagI-BglII fragment of pACP2-5-234m was cloned into the identical sites of pACP1-5-1m to generate plasmid pACP1-5-1234m. The $2.3-\mathrm{kb}$ KpnI-BglII fragment of pACP1-5-1234m was cloned into the identical sites of pREZ67 to generate plasmid pREZ67-1234m.

For pREZ67-3456m: The 1.0-kb EagI-HindIII fragment of pUCACP2-4-34m was cloned into the identical sites of pACP2-5-5m to generate plasmid pACP2-5-345m. The 1.2-kb EagI-BglII fragment of pACP2-5-345m was cloned into the identical sites of pACP1-5 to generate plasmid pACP1-5-345m. The 2.3-kb KpnI-BglII fragment of pACP1-5-345m was cloned into the identical sites of pREZ67-6m to generate plasmid pREZ67-3456m.

For pREZ67-2345m: The 1.0-kb EagI-HindIII fragment of pUCACP2-4-234m was cloned into the identical sites of pACP2-5-5m to generate plasmid pACP2-5-2345m. The 1.2-kb EagI-BglII fragment of pACP2-5-2345m was cloned into the identical sites of pACP1-5 to generate plasmid pACP1-5-2345m. The 2.3-kb KpnI-BglII fragment of pACP1-5-345m was cloned into the identical sites of pREZ67 to generate plasmid pREZ67-2345m.

For pREZ67-12345m: The 1.0-kb EagI-HindIII fragment of pUCACP2-4-234m was cloned into the identical sites of pACP2-5-5m to generate plasmid pACP2-5-2345m. The 1.2-kb EagI-BglII fragment of pACP2-5-2345m was cloned into the identical sites of pACP1-5-1m to generate plasmid pACP1-5-12345m. The 2.3-kb KpnI-BglII fragment of pACP1-5-12345m was cloned into the identical sites of pREZ67 to generate plasmid pREZ67-12345m.

For pREZ67-23456m: The 1.2-kb EagI-BglII fragment of pACP2-5-2345m was cloned into the identical sites of pACP1-5 to generate plasmid pACP1-5-2345m. The 2.3-kb KpnI-BglII fragment of pACP1-5-2345m was cloned into the identical sites of pREZ67-6m to generate plasmid pREZ67-23456m.

For pREZ67-123456m: The 2.3-kb KpnI-BglII fragment of pACP1-5-12345m was cloned into the identical sites of pREZ67-6m to generate plasmid pREZ67-123456m.

Production of EPA/DPA by these mutants in E. coli. Each pREZ67 derivate expression plasmid was co-transformed in E. coli BLR(DE3) with pREZ71 and pREZ65. Fermentation of these mutants and analysis of fatty acids production were performed as same as above.

Production of PUFAs by a hybrid PUFA synthase. The $p f a A$ homolog, orf8 was amplified by PCR from M. marina genomic DNA and cloned as an NcoI-SalI fragment into MCS1 of pETDuet-1, which contained a previously cloned fragment of S. japonica pfaE cloned into MCS2 to generate the final expression construct pLR5 (Table S1). This expression plasmid was co-transformed in E. coli BLR(DE3) with pREZ71 and pREZ65. Fermentation of this hybrid and analysis of fatty acids production were performed as same as above.

References

S1 (a) Weaver, G. A.; Zirkle, R.; Metz, J. G. U.S. Patent 7,217,856 B2, 2007; (b) Morita, N.; Tanaka, M.; Okuyama, H. Biochem. Soc. Trans. 2000, 28, 943-945.
S2 Sanchez, C.; Du, L.; Edwards, D. J.; Toney, M. D.; Shen, B. Chem. Biol. 2001, 8, 725-738.

Table S1. Plasmids used in the paper

plasmids	Descriptions		
pREZ71	$p f a C$ cloned as NdeI-XhoI fragment into pCOLADuet-1 pfaB cloned as BbsI-NotI fragment into NcoI-NotI of MCS1 of pACYCDuet-1 pfaD cloned as NdeI-XhoI fragment into MCS2 of pACYCDuet-1 pfaA cloned as BbsI-NotI fragment into NcoI-NotI of MCS1 of pETDuet-1 pfaE cloned as NdeI-XhoI fragment into MCS2 of pETDuet-1 orf8 cloned as NcoI-SalI fragment into MCS1 of pETDuet-1 pfaE cloned as NdeI-XhoI fragment into MCS2 of pETDuet-1		
pREZ67	Derived from pREZ67. The active Ser residue of ACP1 was mutated into Ala. pLR5		
pREZ67-1m			
pREZ67-2m	Derived from pREZ67. The active Ser residue of ACP2 was mutated into Ala. pREZ67-3m pREZ67-4m		
Derived from pREZ67. The active Ser residue of ACP3 was mutated into Ala. pREZ67-5m pREZ67-6m	Derived from pREZ67. The active Ser residue of ACP4 was mutated into Ala. Derived from pREZ67. The active Ser residue of ACP5 was mutated into Ala.		
pREZ67-34m active Ser residue of ACP6 was mutated into Ala.		\quad	Derived from pREZ67. The active Ser residues of ACP3 and ACP4 were mutated
:---			
into Ala.			

Table S1. Plasmids used in the paper (continued)

plasmids	Descriptions
pETACP6a	pfaA-ACP6 gene cloned as BamHI-NotI fragment into pETDuet-1 (N-His ${ }_{6}$ tagged ACP6, 100aa)
pETACP1a+E	pfaA-ACP1 gene cloned as BamHI-NotI fragment into MCS1 of pETDuet-1 pfaE cloned as NdeI-XhoI fragment into MCS2 of pETDuet-1 ($\mathrm{N}-\mathrm{His}_{6}$ tagged ACP1, 100aa)
pETACP2a+E	pfaA-ACP2 gene cloned as BamHI-NotI fragment into MCS1 of pETDuet-1 pfaE cloned as NdeI-XhoI fragment into MCS2 of pETDuet-1 (N-His ${ }_{6}$ tagged ACP2, 100aa)
pETACP3a+E	pfaA-ACP3 gene cloned as BamHI-NotI fragment into MCS1 of pETDuet-1 pfaE cloned as NdeI-XhoI fragment into MCS2 of pETDuet-1 ($\mathrm{N}-\mathrm{His}_{6}$ tagged ACP3, 100aa)
pETACP4a+E	pfaA-ACP4 gene cloned as BamHI-NotI fragment into MCS1 of pETDuet-1 pfaE cloned as NdeI-XhoI fragment into MCS2 of pETDuet-1 ($\mathrm{N}-\mathrm{His}_{6}$ tagged ACP4, 100aa)
pETACP5a+E	pfaA-ACP5 gene cloned as BamHI-NotI fragment into MCS1 of pETDuet-1 pfaE cloned as NdeI-XhoI fragment into MCS2 of pETDuet-1 (N-His ${ }_{6}$ tagged ACP5, 100aa)
pETACP6a+E	pfaA-ACP6 gene cloned as BamHI-NotI fragment into MCS1 of pETDuet-1 pfaE cloned as NdeI-XhoI fragment into MCS2 of pETDuet-1 ($\mathrm{N}-\mathrm{His}_{6}$ tagged ACP6, 100aa)

Table S2. ESI-MS analysis of purified ACPs

	apo-form		holo-form		
	Calcd	Found	Calcd	Found (in vitro assay) ${ }^{\text {a,c }}$	Found (in vivo assay) ${ }^{\text {b,c }}$
ACP1 (116aa) (pET28a construct)	12454	12450	12794	12790	ND
ACP1 (100aa)	10896	10894	11236	ND	11232
ACP2 (100aa)	10781	10778	11121	ND	11117
ACP3 (100aa)	10882	10879	11222	ND	11218
ACP4 (100aa)	10869	10872	11207	ND	11205
ACP5 (100aa)	10799	10802	11139	ND	11134
ACP6 (100aa)	10797	10795	11137	ND	11133
(pETDuet-1 constructs)					

[^0]Table S3. FAME results from EPA expression system.

		\% EPA ${ }^{\text {a }}$	Rel \% EPA	\% DPA ${ }^{\text {a }}$	EPA/DPA
Control	Wild-type	8.9		1.4	6.4
		9.2		1.4	6.4
		8.6		1.4	6.3
	Average	8.9 ± 0.3	100	1.4 ± 0.1	
Single mutation	ACP1m	7.4		1.5	4.9
		7.7		1.5	5.1
	ACP2m	7.6		1.5	5.1
		7.9		1.5	5.4
	ACP3m	7.1		1.2	5.9
		7.7		1.5	5.2
	ACP4m	8.5		1.4	6.1
		7.1		1.2	5.8
	ACP5m	6.7		1.1	6.3
		6.7		1.0	6.5
	ACP6m	9.2		1.4	6.7
		8.9		1.4	6.4
	Average	7.7 ± 0.8	87	1.3 ± 0.2	
Double mutation	ACP34m	8.0		1.2	6.7
		8.5		1.2	6.9
	Average	8.2 ± 0.3	92	1.2 ± 0.1	
Triple mutation	ACP123m	6.9		0.70	9.8
	ACP345m	6.239		0.65	9.6
	ACP456m	6.7		0.67	10.0
	Average	6.6 ± 0.3	74	0.7 ± 0.1	
Quadruple mutation	ACP1234m	5.8		0.70	8.2
	ACP3456m	5.4		0.45	12.1
	ACP2345m	5.2		0.61	8.5
		5.4		0.67	8.0
	Average	5.4 ± 0.2	61	0.6 ± 0.1	
Quintuple mutation	ACP12345m	2.7		0.39	6.9
		3.1		0.33	9.4
	ACP23456m	3.7		0.33	11.3
		3.8		0.33	11.4
	Average	3.3 ± 0.5	37	0.3 ± 0.1	
Hextuple mutation	ACP123456m	0.0		0.0	
		0.0		0.0	
	Average	0.0	0.0	0.0	

Table S4. EPA and DPA production by the S. japonica-M. marina hybrid PUFA synthase Orf8/PfaB/PfaC/PfaD/PfaE

	$\% \mathrm{EPA}^{\mathrm{a}}$	$\% \mathrm{DPA}^{\mathrm{a}}$	$\% \mathrm{DHA}^{\mathrm{a}}$	EPA/DPA
	8.9	1.4	0.0	6.4
Pfa PUFA synthase	9.2	1.4	0.0	6.5
(PfaA/PfaB/PfaC/PfaD/PfaE)	8.6	1.4	0.0	6.3
	8.9 ± 0.3	1.4 ± 0.1	0.0	
	8.7	3.3	0.0	2.6
Hybrid PUFA synthase	8.6	3.2	0.0	2.7
(Orf8/PfaB/PfaC/PfaD/PfaE)	9.2	3.4	0.0	2.7
	8.9 ± 0.3	3.3 ± 0.1	0.0	

${ }^{\mathrm{a}} \% \mathrm{EPA}, \% \mathrm{DPA}$, and \%DHA: percentage of EPA, DPA, and DHA of total fatty acid, respectively.

Table S5. Primers used for PCR mutagenesis

Figure S1. Purified PfaA-ACP1 on 15\% SDS-PAGE. Lane 1, protein markers; lane 2, PfaAACP1 (100aa, calculated molecular weight of 10896).

```
pfaA-ACP4 SGLSAETVLNTMLEVVAEKTGYPTDMLELSMDMEADLGIDSIKRVEILGTVQDELPTLPE
pfaA-ACP3 SGLSAETVLNTMLEVVAEKTGYPTEMLELSMDMEADLGIDSIKRVEILGTVQDELPTLPE
pfaA-ACP2
pfaA-ACP1
pfaA-ACP6
pfaA-ACP5
pfaA-ACP4 LSPEDLAECRTLGEIVDYMGSKLPAA
pfaA-ACP3 LSPEDLAECRTLGEIVDYMNSKLPAA
pfaA-ACP2 LSPEDLAECRTLGEIVSYMGSKLPAA
pfaA-ACP1 LSPEDLAECRTLGEIVDYMGSKLPAA
pfaA-ACP6 LNPEDLAECRTLGEIVSYMGAKLPAA
pfaA-ACP5 LNPEDLAECRTLGEIVSYMGGKLPAA
*.***************.**..*****
```

Figure S2. Sequence alignment of six PfaA-ACPs from S. japonica. The active Ser residue in each ACP is shown in red.
(a)

```
    KpnI SacI EagI Hind III Bol II
5'-GATCGGTACCGAGCTCGGGCGGCCGGGGAAGCTTGGGAGATCTACTGACTTACCTCCTC-3'
    3'-CCATGGCTCGAGCCCGCCGGCCCCTTCGAACCCTCTAGATGACTGAATGGAGGAGAGCT-5'
        BseR I
```

(b)

```
5'-AATTGGTACCGAGCTCGGGCGGCCGGGGCACTGGGTGGGAAGCTTGGGAGATCTGGGCCTAGGAGGCCT}-3
    3'-CCATGGCTCGAGCCCGCCGGCCCCGTGACCCACCCTTCGAACCCTCTAGACCCGGATCCTCCGGATCGA-5'
```

Figure S3. DNA sequences of pET-linker (a) and pUC-linker (b).

[^0]: ${ }^{\text {a }}$ Phosphopantetheinylation of PfaA-ACP1 catalyzed by Svp PPTase in vitro.
 ${ }^{\mathrm{b}}$ Phosphopantetheinylation of PfaA-ACPs by coexpression of $p f a A-A C P s$ with $p f a E$ in vivo.
 ${ }^{\text {c }}$ Not determined.

