Iridium-Catalyzed Enantioselective Hydrogenation of α,β-Unsaturated Carboxylic Acids

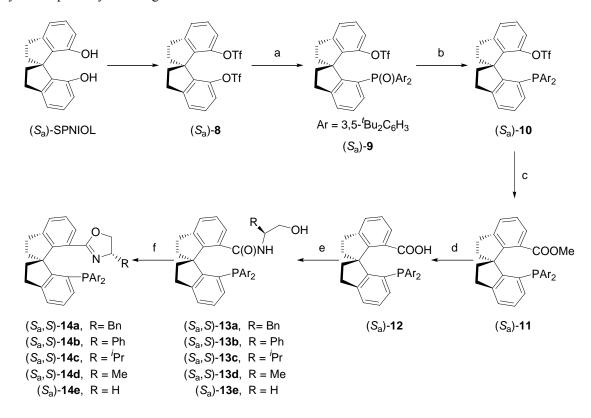
Shen Li, Shou-Fei Zhu, Can-Ming Zhang, Song Song, Qi-Lin Zhou*

State Key Laboratory and Institute of Elemento-organic Chemistry, Nankai University Tianjin 300071, China

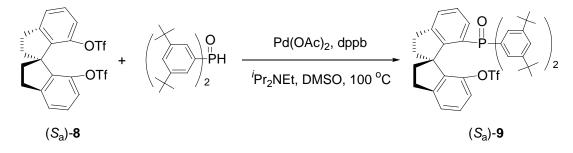
CONTENTS:

(A) Preparation and Analytical Data of Chiral Spiro Phosphino-Oxazoline Ligands	S2
(B) Preparation and Analytical Data of Iridium Complexes	S7
(C) General Procedure for Asymmetric Hydrogenation	S 8
(D) Analytical Data of Hydrogenation Products	S111
(E) NMR Spectra of New Ligands	S166
(F) NMR Spectra of Iridium Complexes	S30
(G) HPLC and SFC Charts of Hydrogenation Product Derivatives	S35

General. Unless otherwise noted, all reactions and manipulations were performed in an argon-filled glovebox (VAC DRI-LAB HE 493) or using standard Schlenk techniques. Melting points were measured on a RY-I apparatus and uncorrected. ¹H, ¹³C and ³¹P NMR spectra were recorded on a Varian Mercury Plus 400 spectrometer at 400 MHz (¹H NMR), 100 MHz (¹³C NMR) and 162 MHz (³¹P NMR) or a Bruker AV 300 spectrometer at 300 MHz (¹H NMR), 75 MHz (¹³C NMR) and 121.5 MHz (³¹P NMR) in CDCl₃. Chemical shifts were reported in ppm down field from internal Me₄Si and external 85% H₃PO₄, respectively. Optical rotations were determined using a Perkin Elmer 341 MC polarimeter. Mass spectra were recorded on IonSpec FT-ICR mass spectrometer with ESI or MALDI resource. Enantiomeric excesses of the asymmetric hydrogenation products were determined by chiral HPLC or SFC. HPLC analyses were performed using a Hewlett Packard Model HP 1100 Series instruments. SFC analyses were performed using a Mettler-Toledo Model Analytix SFC. Anhydrous Et₂O, THF and toluene were distilled from sodium benzophenone ketyl. Anhydrous CH₂Cl₂, NEt₃, DMSO and DMF were freshly distilled from calcium hydride under nitrogen atmosphere. Anhydrous MeOH and EtOH were distilled from magnesium under nitrogen atmosphere. Pd(OAc)₂, 1,4-bis(diphenylphospino)butane (dppb) and 1,3-bis(diphenylphosphino)propane (dppp) were purchased from Acros or Aldrich Co. and used as received. Hydrogen gas (99.999%) was purchased from Boc Gas Inc., Tianjin. [Ir(COD)Cl]₂ was prepared from IrCl₃·3H₂O according to the literatures.¹ NaBARF·3H₂O was prepared according to the literatures.² The catalysts **1a-1c** were prepared according to our previous procedure.³

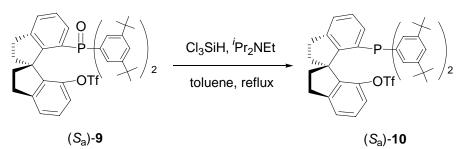

¹ Herde, J. L.; Lambert, J. C.; Senoff, C. V. Inorg. Synth. 1974, 15, 18-20.

 ² (a) Nishida, H.; Takada, N.; Yoshimura, M.; Sonoda, T.; Kobayashi, H. *Bull. Chem. Soc. Jpn.* **1984**, *57*, 2600–2604. (b) Brookhart, M.; Grant, B.; Jr. Volpe, A. F. Organometallics **1992**, *11*, 3920–3922.

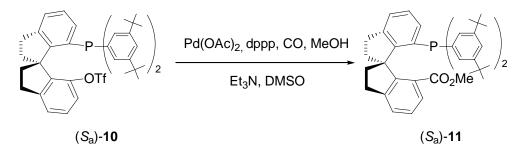

³ Zhu, S.-F.; Xie J.-B.; Zhang, Y.-Z.; Li, S.; Zhou, Q.-L. J. Am. Chem. Soc. 2006, 128, 12886–12891.

(A) Preparation and Analytical Data of Chiral Spiro Phosphino-Oxazoline Ligands

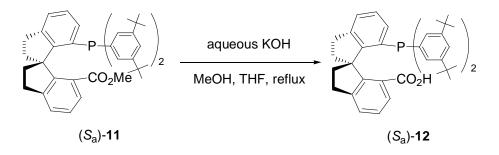
The synthetic pathway of the ligands is outlined as follow:



Synthesis of (S_a) -7-di(3,5-di-*tert*-butylphenyl)phosphinyl-7'-trifluoromethanesulfonyloxy-1,1'-spirobiindane $((S_a)$ -9)


To a mixture of (S_a) -7,7'-bis(trifluoromethanesulfonyloxy)-1,1'-spirobiindane ³ ((S_a)-8, 10.0 g, 19.4 mmol), di(3,5-di-tert-butylphenyl)phosphine oxide (16.5 g, 38.7 mmol), palladium acetate (220 mg, 0.98 mmol) and dppb (415 mg, 0.98 mmol) was added 75 mL of degassed DMSO and diisopropylethylamine (10.5 g, 81.3 mmol). The resulting mixture was heated with stirring at 100 °C for 6 hours. After cooling to room temperature, the reaction mixture was diluted with EtOAc, washed with 5% aqueous HCl and saturated NaHCO₃. The organic phase was dried over anhydrous Na₂SO₄ and concentrated under reduced pressure. The residue was chromatographed on a silica gel column eluted with petroleum ether/EtOAc (7:1 in volume) to give (S_a) -7-di (3,5-di-tert-butylphenyl)phosphinyl-7'-trifluoromethanesulfonyloxy-1,1'-spirobiindane ((S_a)-9, 14.0 g, 91%) as a white solid, mp: 235–236 °C. [a]²⁸_D –172.6 (c 0.5, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃) δ 7.55 (s, 1H, Ar-H), 7.42-7.40 (m, 2H, Ar-H), 7.26-7.03 (m, 8H, Ar-H), 6.56 (d, J = 8.0 Hz, 1H, Ar-H), 3.27-3.22 (m, 1H, CH₂), 3.15–3.01 (m, 4H, CH₂), 2.38–2.24 (m, 3H, CH₂), 1.26 (s, 18H, CH₃), 1.17 (s, 18H, CH₃); ³¹P NMR (162 MHz, CDCl₃) δ 32.5 (s); ¹³C NMR (100 MHz, CDCl₃) δ 153.1, 153.0, 150.5, 150.4, 149.4, 146.2, 146.1, 145.3, 142.1, 136.5, 135.4, 133.5, 133.4, 131.8, 130.8, 128.8, 128.3, 128.0, 127.8, 126.2, 126.1, 125.9, 125.6, 125.5, 124.9, 123.9, 119.7, 117.7, 116.5, 62.2, 40.0, 39.8, 35.1, 31.9, 31.4, 31.3, 31.0. HRMS (MALDI) calcd for [M+H, C₄₆H₅₇F₃O₄PS]⁺: 793.3662. Found 793.3667.

Synthesis of (S_a) -7-di(3,5-di-*tert*-butylphenyl)phosphino-7'-trifluoromethanesulfonyloxy-1,1'-spirobiindane $((S_a)$ -10)

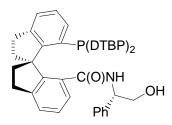

To a mixture of (S_a)-9 (13.8 g, 17.4 mmol) and diisopropylethylamine (110 mL, 714 mmol) in toluene (175 mL) was added Cl₃SiH (30 mL, 280 mmol) at 0 °C. The reaction mixture was stirred at 110 °C for 3 days. After cooling to room temperature, the mixture was quenched with small amount of 12 N aqueous NaOH and diluted with EtOAc. The resulting suspension was filtered through Celite and the solid was washed with EtOAc. The combined organic layer was dried over MgSO₄ and concentrated under reduced pressure. The crude product was purified by column chromatography on silica gel with petroleum ether/EtOAc (10:1 in volume) to give (S_a)-7-di(3,5-di-*tert*-butylphenyl)phosphino-7'-trifluoromethanesulfonyloxy-1,1'-spirobiindane ((S_a)-3d, 13.0 g, 96%) as a white solid, mp: 170–172 °C. [α]_D³¹ –108.6 (c 0.5, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃) δ 7.29–7.22 (m, 5H, Ar-H), 7.16 (t, J = 7.6 Hz, 1H, Ar-H), 7.03–6.99 (m, 2H, Ar-H), 6.89 (dd, J = 8.0 and 1.6 Hz, 2H, Ar-H), 6.81 (dd, J = 8.0 and 1.6 Hz, 2H, Ar-H), 3.07–2.95 (m, 3H, CH₂), 2.84–2.78 (m, 1H, CH₂), 2.38–2.27 (m, 2H, CH₂), 2.13–2.01 (m, 2H, CH₂), 1.20 (s, 18H, CH₃), 1.18 (s, 18H, CH₃); ³¹P NMR (162 MHz, CDCl₃) δ –16.6 (s); ¹³C NMR (100 MHz, CDCl₃) δ 152.2, 152.0, 150.4, 150.3, 148.4, 146.5, 143.6, 143.5, 141.4, 137.4, 137.3, 136.5, 136.3, 134.0, 133.8, 133.7, 129.0, 128.6, 128.4, 128.0, 127.8, 127.2, 125.4, 124.2, 122.2, 122.1, 118.5, 61.9, 39.3, 39.1, 35.0, 31.6, 31.5, 30.9 HRMS (MALDI) calcd for [M+H, C₄₆H₅₇F₃O₃PS]⁺: 777.3713. Found 777.3714.

Synthesis of (S_a)-7-di(3,5-di-*tert*-butylphenyl)phosphino-7'-carbomethoxy-1,1'-spirobiindane ((S_a)-11)

A mixture of (S_a)-**10** (10.0 g, 12.9 mmol), Pd(OAc)₂ (444 mg, 2.0 mmol), dpp (820 mg, 2.0 mmol), MeOH (72 mL), DMSO (104 mL) and NEt₃ (29 mL) was saturated with CO and heated to 70 °C with stirring at CO atmosphere. The reaction was monitored by TLC for a full conversion. After cooling to room temperature, the mixture was concentrated under reduced pressure. The residue was purified by column chromatography on silica gel with petroleum ether/EtOAc (20:1 in volume) to afford (S_a)-7-di(3,5-di-*tert*-butylphenyl)phosphino-7'-carbomethoxy-1,1'-spirobiindane ((S_a)-**11**, 7.6 g, 86%) as a white solid, mp: 231–233 °C. [α]₁₂³² –120.8 (*c* 0.5, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃) δ 7.73 (d, *J* = 7.2 Hz, 1H, Ar-H), 7.44 (d, *J* = 7.2 Hz, 1H, Ar-H), 7.33–7.26 (m, 4H, Ar-H), 7.13 (t, *J* = 7.2 Hz, 1H, Ar-H), 7.03–7.02 (m, 1H, Ar-H), 6.90 (d, *J* = 7.6 Hz, 2H, Ar-H), 6.79 (d, *J* = 7.6 Hz, 2H, Ar-H), 3.12 (s, 3H, CH₃), 3.10–2.97 (m, 3H, CH₂), 2.87–2.84 (m, 1H, CH₂), 2.64–2.56 (m, 1H, CH₂), 2.28–2.24 (m, 1H, CH₂), 2.16–2.14 (m, 2H, CH₂), 1.25 (s, 18H, CH₃), 1.19 (s, 18H, CH₃); ³¹P NMR (162 MHz, CDCl₃) δ –17.0 (s); ¹³C NMR (100 MHz, CDCl₃) δ 167.7, 155.7, 155.4, 150.7, 150.2, 150.1, 150.0, 145.8, 143.4, 138.0, 137.9, 136.6, 136.5, 133.9, 132.9, 132.7, 129.6, 128.7, 128.6, 128.5, 128.4, 128.3, 128.1, 126.8, 126.2, 125.1, 122.0, 121.7, 64.0, 51.0, 40.2, 38.3, 34.0, 31.6, 31.2, 30.8. HRMS (EI) calcd for [M, C₄₇H₅₉O₂P]: 686.4253. Found 686.4251.

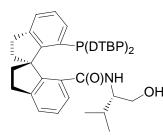
Synthesis of (S_a) -7-di(3,5-di-*tert*-butylphenyl)phosphino-7'-carboxy-1,1'-spirobiindane $((S_a)$ -12)

A mixture of (*S*_a)-**11** (7.3 g, 10.6 mmol), MeOH (150 mL), THF (150 mL) and 60% aqueous KOH (30 mL) was heated to 90 °C with stirring under nitrogen atmosphere and monitored with TLC for full conversion. After cooling to room temperature, the concentrated hydrochloric acid was carefully added with vigorous stirring to pH < 2. The mixture was diluted with water (100 mL) and extracted with EtOAc (200 mL) for three times. The organic lays was combined and washed with saturate brine and dried over anhydrous Na₂SO₄. After evaporated under reduced pressure, the residue was subjected to chromatography on silica gel column with petroleum ether/EtOAc (6:1 in volume) to afford (*S*_a)-7-di(3,5-di-*tert*-butylphenyl)phosphino-7'-carboxy-1,1'-spirobiindane ((*S*_a)-**12**, 6.3 g, 88%) as a white solid, mp: 245–247 °C. [a]²⁶_D –105.2 (c 0.5, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃) δ 10.16 (brs, 1H, COOH), 7.55 (d, J = 7.6 Hz, 1H, Ar-H), 7.43 (d, J = 7.2 Hz, 1H, Ar-H), 7.24–7.19 (m, 4H, Ar-H), 7.05 (t, J = 7.2 Hz, 1H, Ar-H), 6.87 (dd, J = 7.2 and 4.4 Hz, 1H, Ar-H), 6.77 (dd, J = 8.0 and 1.6 Hz, 2H, Ar-H), 6.71 (dd, J = 7.6 and 1.6 Hz, 2H, Ar-H), 3.12–2.90 (m, 4H, CH₂), 2.53–2.45 (m, 1H, CH₂), 2.37–2.29 (m, 1H, CH₂), 2.23–2.17 (m, 2H, CH₂), 1.14 (s, 18H, CH₃), 1.13 (s, 18H, CH₃); ³¹P NMR (162 MHz, CDCl₃) δ –17.0 (s); ¹³C NMR (100 MHz, CDCl₃) δ 171.0, 155.8, 155.5, 152.4, 150.0, 146.1, 143.8, 138.3, 138.2, 136.2, 136.1, 133.8, 132.1, 131.9, 130.2, 129.1, 128.1, 127.9, 127.1, 126.7, 126.1, 124.9, 122.0, 121.6, 63.9, 41.0, 38.1, 34.9, 31.5, 31.4, 30.9. HRMS (MALDI) calcd for [M–H, C₄₆H₅₆O₂P]⁻: 671.4023. Found 671.4012.


Synthesis of Compounds 13

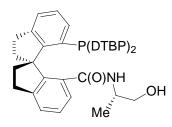
(S_a,S) -N-(1-Benzyl-2-hydroxy-ethyl)-7'-di(3,5-di-*tert*-butylphenyl)phosphino-1,1'-spirobiindane-7-carboxyla mide ((S_a,S) -13a)

Typical procedure: To a mixture of (S_a) -**12** (1.0 g, 1.48 mmol), *L*-phenylalaninol (702 mg, 4.65 mmol), 1-hydroxybenzotriazole (HOBt, 504 mg, 3.29 mmol) and dicyclohexylcarbodiimide (DCC, 881 mg, 4.27 mmol), 80 mL THF was added with stirring at 0 °C under nitrogen atmosphere. The resulting mixture was heated at 40 °C for36 h. After concentration under reduced pressure the residue was chromatographied on silica gel column with petroleum ether/EtOAc (4:1 in volume) to afford (S_a ,S)-N-(1-Hydroxymethyl-2-methylbenzyl)-7'-di(3,5-di-*tert*-butylphenyl)phosphino-1,1'-spirobiindane-7-carboxylamide ((S_a ,S)-**13a**, 840 mg, 71%) as a white solid, mp: 211–212 °C. [α]_D²⁶ –167.4 (*c* 0.5, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃) δ 7.37 (s, 1H, Ar-H), 7.33–7.16 (m, 9H, Ar-H), 7.06 (d, J = 8.4 Hz, 2H, Ar-H), 7.00 (d, J = 7.6 Hz, 3H, Ar-H), 6.67 (d, J = 7.2 Hz, 2H, Ar-H), 5.26 (d, J = 6.0 Hz, 1H, NH), 3.17–2.75 (m, 9H, OH, CH and CH₂), 2.45–2.15 (m, 5H, CH₂), 1.20 (s, 18H, CH₃), 1.16 (s, 18H, CH₃); ³¹P NMR (162 MHz, CDCl₃) δ –16.4 (s); ¹³C NMR (100 MHz, CDCl₃) δ 171.1, 155.5, 155.3, 151.1, 151.0, 150.1, 148.3, 146.0, 145.2, 145.1, 139.3, 139.2, 138.8, 137.0, 136.9, 134.1, 133.8, 133.7, 129.4, 129.3, 129.2, 128.6, 127.5, 127.3, 127.1, 127.0, 126.7, 126.6, 126.1, 123.7, 121.5, 64.4, 63.3, 56.1, 41.8, 41.7, 40.4, 35.4, 35.2, 35.0, 31.6, 31.5, 31.0, 25.2. HRMS (MALDI) calcd for [M+H, C₅₅H₆₉NO₂P]⁺: 806.5060. Found 806.5065.


(S_a,S) -N-(2-Hydroxy-1-phenyl-ethyl)-7'-di(3,5-di-*tert*-butylphenyl)phosphino-1,1'-spirobiindane-7-carboxyla mide ((S_a,S) -13b)

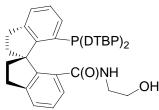
Yield: 81%, white solid, mp: 150–152 °C. $[\alpha]_D^{25}$ –150.6 (*c* 0.5, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃) δ 7.42–7.23 (m, 5H, Ar-H), 7.16–6.98 (m, 8H, Ar-H), 6.82 (d, *J* = 7.2 Hz, 2H, Ar-H), 6.70 (d, *J* = 7.6 Hz, 2H, Ar-H), 5.80 (d, *J* = 5.6 Hz, 1H, NH), 4.34 (dd, *J* = 10.4 and 6.4 Hz, 1H, CH), 3.49–3.43 (m, 1H, CH₂), 3.31–3.26 (m, 1H, CH₂), 3.06–2.82 (m, 4H, OH and CH₂), 2.74–2.62 (m, 2H, CH₂), 2.23–2.10 (m, 3H, CH₂), 1.19 (s, 18H, CH₃), 1.15 (s, 18H, CH₃); ³¹P NMR (162 MHz, CDCl₃) δ –16.1 (s); ¹³C NMR (100 MHz, CDCl₃) δ 170.7, 155.5, 155.3, 150.8, 150.7, 150.2, 150.1, 146.9, 146.6, 144.1, 144.0, 138.7, 138.3, 138.2, 136.8, 136.6, 134.1, 133.8, 133.7,

133.5, 129.1, 128.9, 128.7, 127.7, 127.5, 127.3, 126.9, 126.1, 123.3, 121.8, 66.1, 63.3, 60.6, 58.3, 41.0, 40.9, 40.8, 35.1, 35.0, 31.6, 31.5, 31.0, 30.9. HRMS (ESI) calcd for [M+H, C₅₄H₆₇NO₂P]⁺: 792.4904. Found 792.4905.


(S_a,S) -N-(2-Hydroxy-1-isopropyl-ethyl)-7'-di(3,5-di-*tert*-butylphenyl)phosphino-1,1'-spirobiindane-7-carbox ylamide $((S_a,S)$ -13c)

Yield: 72%, white solid, mp: 164–166 °C. $[\alpha]_D^{26}$ –169.8 (*c* 0.5, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃) δ 7.39 (s, 1H, Ar-H), 7.33–7.13 (m, 7H, Ar-H), 7.07 (d, *J* = 8.4 Hz, 2H, Ar-H), 6.65 (d, *J* = 7.6 Hz, 2H, Ar-H), 5.31 (d, *J* = 6.4 Hz, 1H, NH), 3.79 (brs, 1H, OH), 3.29 (dd, *J* = 12.0 and 5.6 Hz, 1H, CH), 3.16–2.76 (m, 6H, CH₂), 2.45–2.24 (m, 4H, CH₂), 1.74–1.62 (m, 1H, CH), 1.24 (s, 18H, CH₃), 1.15 (s, 18H, CH₃), 0.64 (d, *J* = 6.8 Hz, 6H, CH₃); ³¹P NMR (162 MHz, CDCl₃) δ –16.2 (s); ¹³C NMR (100 MHz, CDCl₃) δ 171.3, 155.5, 155.3, 151.0, 150.9, 150.1, 148.1, 146.2, 145.0, 144.9, 139.4, 139.3, 137.0, 136.8, 134.0, 133.9, 133.8, 133.7, 129.4, 129.2, 127.4, 127.3, 127.1, 127.0, 126.6, 126.0, 123.8, 121.5, 63.3, 61.6, 41.8, 41.7, 40.3, 27.7, 20.4, 10.2, HPMS (ESI) called for [M+H] C, H NO Pl⁺; 758 5060. Found

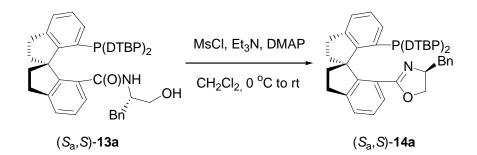
35.2, 34.9, 31.6, 31.5, 31.0, 27.7, 20.4, 19.2. HRMS (ESI) calcd for $[M+H, C_{51}H_{69}NO_2P]^+$: 758.5060. Found 758.5056.


(S_a,S) -N-(2-Hydroxy-1-methyl-ethyl)-7'-di(3,5-di-*tert*-butylphenyl)phosphino-1,1'-spirobiindane-7-carboxyl amide $((S_a,S)$ -13d)

Yield: 70%, white solid, mp: 236–238 °C. $[\alpha]_D^{27}$ –144.5 (*c* 0.5, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃) δ 7.41 (s, 1H, Ar-H), 7.31–7.14 (m, 7H, Ar-H), 7.07 (d, *J* = 8.0 Hz, 2H, Ar-H), 6.75 (d, *J* = 7.6 Hz, 2H, Ar-H), 5.35 (d, *J* = 6.4 Hz, 1H, NH), 3.46 (brs, 1H, OH), 3.35–3.29 (m, 1H, CH), 3.11–2.91 (m, 5H, CH₂), 2.84–2.71 (m, 2H, CH₂), 2.39–2.24 (m, 3H, CH), 1.27 (s, 18H, CH₃), 1.20 (s, 18H, CH₃), 0.27 (d, *J* = 6.8 Hz, 3H, CH₃); ³¹P NMR (162 MHz, CDCl₃) δ –16.2 (s); ¹³C NMR (100 MHz, CDCl₃) δ 170.8, 155.9, 155.6, 151.0, 150.3, 150.1, 147.2, 146.2, 144.7, 139.0, 138.9, 136.9, 136.8, 134.3, 134.1, 133.9, 133.6, 129.5, 129.3, 127.5, 127.4, 127.3, 127.2,

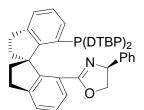
 $127.1, 126.5, 126.0, 123.7, 121.6, 67.2, 63.3, 48.7, 41.5, 41.4, 41.0, 35.2, 35.0, 31.7, 31.6, 31.1, 31.0, 15.6. HRMS (ESI) calcd for [M+H, C_{49}H_{65}NO_2P]^+: 730.4747, Found 730.4744.$

$(S_a)-N-(2-Hydroxyethyl)-7'-di(3,5-di-tert-butylphenyl) phosphino-1,1'-spirobiindane-7-carboxylamide ((S_a)-13e)$



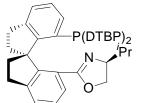
Yield: 62%, white solid, mp: 170–172 °C. $[\alpha]_D^{18}$ –122.6 (*c* 0.5, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃) δ 7.41 (s, 1H, Ar-H), 7.34–7.15 (m, 7H, Ar-H), 7.03 (d, *J* = 8.4 Hz, 2H, Ar-H), 6.71 (d, *J* = 7.6 Hz, 2H, Ar-H), 5.45 (t, *J* = 4.8 Hz, 1H, NH), 3.15–2.76 (m, 9H, OH and CH₂), 2.69–2.62 (m, 1H, CH₂), 2.43–2.25 (m, 3H, CH₂), 1.25 (s, 18H, CH₃), 1.18 (s, 18H, CH₃); ³¹P NMR (162 MHz, CDCl₃) δ –16.6 (s); ¹³C NMR (100 MHz, CDCl₃) δ 171.4, 155.9, 155.7, 151.0, 150.2, 147.5, 146.1, 144.8, 144.7, 138.7, 138.6, 136.5, 136.3, 134.0, 133.8, 133.6, 129.0, 128.7, 127.5,

127.4, 127.3, 127.2, 126.7, 126.5, 126.0, 123.7, 121.7, 63.3, 62.4, 60.6, 43.7, 41.2, 40.8, 35.2, 35.0, 31.6, 31.5, 31.2, 31.0, 21.2, 14.4. HRMS (ESI) calcd for $[M+H, C_{48}H_{63}NO_2P]^+$: 716.4591. Found 716.4590.


Synthesis of Ligands 14

 $(S_a,S)-7-[4,5-Dihydro-4-benzyloxazol-2-yl]-7'-di(3,5-di-tert-butylphenyl) phosphino-1,1'-spirobiinane ((S_a,S)-14a)$

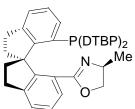
Typical procedure: To a solution of (S_a ,S)-**13a** (840 mg, 1.04 mmol), triethylamine (0.32 mL), and 4-dimethylaminopyridine (DMAP, 5 mg, 0.04 mmol) in 65 mL dichloromethane was added methanesulfonyl chloride (120 µL, 1.55 mmol) at 0 °C. The mixture was stirred for 30 min, then another portion of triethylamine (1.35 mL) was added. The resulting mixture was warmed to room temperature. The reaction was monitored with TLC for a complete conversion. The crude product was purified by chromatography on a silica gel column with petroleum ether/ethyl acetate (8:1 in volume with 2% triethylamine) to afford (S_a ,S)-7-[4,5-dihydro-4-benzyloxazol-2-yl]-7'-di(3,5-di-*tert*-butylphenyl)phosphino-1,1'-spirobinane ((S_a ,S)-**14a**, 682 mg, 83%) as a white solid, mp: 159–161 °C. [α]_D²⁵ –185.6 (*c* 0.5, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃) δ 7.60 (d, *J* = 6.8 Hz, 1H, Ar-H), 7.34–7.04 (m, 11H, Ar-H), 6.94–6.91 (m, 3H, Ar-H), 6.82 (d, *J* = 8.0 Hz, 1H, Ar-H), 4.17–4.09 (m, 1H, CH), 3.51 (t, *J* = 7.6 Hz, 1H, CH₂), 3.37 (t, *J* = 8.8 Hz, 1H, CH₂), 3.04–2.84 (m, 4H, CH₂), 2.78 (dd, *J* = 13.6 and 4.4 Hz, 1H, CH₂), 2.63 (dd, *J* = 12.8 and 8.0 Hz, 1H, CH₂), 1.81–1.72 (m, 1H, CH₂), 1.20 (s, 18H, CH₃), 1.18 (s, 18H, CH₃); ³¹P NMR (162 MHz, CDCl₃) δ –15.6 (s); ¹³C NMR (100 MHz, CDCl₃) δ 164.7, 154.2, 154.0, 150.2, 150.1, 149.9, 149.0, 145.4, 144.6, 144.5, 138.9, 137.6, 137.5, 137.4, 134.3, 134.0, 132.9, 129.3, 129.0, 128.8, 128.5, 128.3, 126.8, 126.7, 126.3, 126.2, 124.8, 121.9, 121.5, 71.1, 67.5, 63.5, 41.2, 39.3, 39.1, 35.0, 31.6, 31.2, 30.9. HRMS (MALDI) calcd for [M+H, C₅₅H₆₇NOP]⁺: 788.4955. Found 788.4961.


$(S_{a},S)-7-[4,5-Dihydro-4-phenyloxazol-2-yl]-7'-di(3,5-di-tert-butylphenyl) phosphino-1,1'-spirobiinane ((S_{a},S)-14b)$

Yield: 81%. White solid, mp: 153–155 °C. $[\alpha]_{D}^{17}$ –180.9 (*c* 0.5, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃) δ 7.87 (d, *J* = 7.6 Hz, 1H, Ar-H), 7.45–7.25 (m, 8H, Ar-H), 7.18 (t, *J* = 7.2 Hz, 1H, Ar-H), 7.07 (dd, *J* = 13.6 and 7.6 Hz, 5H, Ar-H), 6.92 (d, *J* = 8.0 Hz, 2H, Ar-H), 4.97–4.93 (m, 1H, CH), 3.71–3.62 (m, 2H, CH₂), 3.17–3.00 (m, 3H, CH₂), 2.90–2.76 (m, 2H, CH₂), 2.31 (dd, *J* = 12.0 and 8.0 Hz, 1H, CH₂), 2.10–1.95 (m, 2H, CH₂), 1.27 (s, 18H, CH₃), 1.24 (s, 18H, CH₃); ³¹P NMR (162 MHz, CDCl₃) δ –15.7 (s); ¹³C NMR (100 MHz, CDCl₃) δ 165.9, 154.4, 154.2, 150.3, 150.2, 150.0, 149.4, 145.5, 144.4, 144.3,

143.1, 138.0, 137.9, 137.4, 137.3, 134.1, 133.9, 133.2, 129.2, 128.9, 128.7, 128.5, 127.3, 127.1, 126.9, 126.8, 126.3, 124.9, 121.9, 121.7, 74.0, 69.7, 63.7, 39.9, 38.9, 35.1, 35.0, 32.7, 31.2, 31.0. HRMS (ESI) calcd for [M+H, $C_{54}H_{65}NOP$]⁺: 774.4798. Found 774.4800.

$(S_{a},S)-7-[4,5-Dihydro-4-isopropyloxazol-2-yl]-7'-di(3,5-di-tert-butylphenyl) phosphino-1,1'-spirobiinane ((S_{a},S)-14c)$

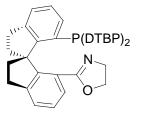


Yield: 72%, white solid, mp: 173–175 °C. $[\alpha]_D^{26}$ –224.0 (*c* 0.5, CH₂Cl₂). ¹H NMR (300 MHz, CDCl₃) δ 7.52 (d, *J* = 5.7 Hz, 1H, Ar-H), 7.20–7.08 (m, 5H, Ar-H), 6.96 (t, *J* = 7.5 Hz, 1H, Ar-H), 6.82 (d, *J* = 6.9 Hz, 3H, Ar-H), 6.73 (d, *J* = 7.2 Hz, 2H, Ar-H), 3.54–3.46 (m, 1H, CH), 3.38–3.32 (m, 2H, CH₂), 3.01–2.70 (m, 5H, CH₂), 2.57–2.49 (m, 1H, CH₂), 2.12–2.06 (m, 1H, CH₂), 1.86–1.79 (m, 1H, CH₂), 1.73–1.62 (m, 1H, CH), 1.11 (s, 18H, CH₃), 1.09 (s, 18H, CH₃), 0.77 (d, *J* = 6.6 Hz, 3H, CH₃), 0.63 (d, *J* = 6.6 Hz, 3H, CH₃); ³¹P NMR (122 MHz, CDCl₃) δ –16.3 (s); ¹³C NMR (75 MHz, CDCl₃) δ 164.0, 154.2,

153.9, 150.0, 149.9, 149.7, 149.6, 148.6, 145.1, 144.1, 144.0, 137.6, 137.5, 137.4, 137.2, 133.9, 133.6, 132.6, 128.8, 128.6, 128.4, 128.1, 126.6, 126.4, 125.9, 124.6, 121.7, 121.3, 72.6, 69.7, 63.3, 39.0, 38.9, 34.8, 33.0, 31.4, 31.0, 30.7, 19.6, 18.4. HRMS (ESI) calcd for $[M+H, C_{51}H_{67}NOP]^+$: 740.4955. Found 740.4959.

$(S_a,S)-7-[4,5-Dihydro-4-methyloxazol-2-yl]-7'-di(3,5-di-tert-butylphenyl) phosphino-1,1'-spirobiinane ((S_a,S)-14d)$

Yield: 87%, white solid, mp: 153–155 °C. $[\alpha]_D^{22}$ –186.6 (*c* 0.5, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃) δ 7.66 (d, *J* = 7.6 Hz, 1H, Ar-H), 7.40–7.32 (m, 4H, Ar-H), 7.25 (d, *J* = 7.2 Hz, 1H, Ar-H), 7.14 (t, *J* = 7.6 Hz, 1H, Ar-H),

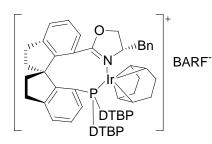


Found 712.4639.

8.0 Hz, 1H, CH₂), 3.37 (t, J = 7.6 Hz, 1H, CH₂), 3.14–2.93 (m, 4H, CH₂), 2.74 (dd, J = 15.6 and 8.8 Hz, 1H, CH₂), 2.29–2.25 (m, 1H, CH₂), 2.06–1.89 (m, 2H, CH₂), 1.29 (s, 18H, CH₃), 1.26 (s, 18H, CH₃), 0.89 (d, J = 6.8 Hz, 3H, CH₃); ³¹P NMR (162 MHz, CDCl₃) δ –15.8 (s); ¹³C NMR (100 MHz, CDCl₃) δ 163.7, 154.7, 154.4, 150.2, 149.9, 149.2, 145.4, 144.6, 144.5, 138.0, 137.9, 137.6, 137.5, 134.0, 133.8, 133.0, 128.9, 128.7, 128.6, 128.4, 126.8, 126.7, 126.2, 124.8, 121.9, 121.6, 73.2, 63.6, 61.8, 39.8, 38.9, 35.1, 35.0, 31.7, 31.3, 31.0, 21.1. HRMS (ESI) calcd for [M+H, C₄₉H₆₃NOP]⁺: 712.4642.

7.02–7.00 (m, 3H, Ar-H), 6.92–6.90 (m, 2H, Ar-H), 4.03–3.94 (m, 1H, CH), 3.68 (t, J =

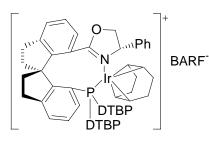
$(S_{\rm a}) - 7 - (4, 5 - {\rm Dihydrooxazol-2-yl}) - 7' - {\rm di}(3, 5 - {\rm di-}tert - {\rm butylphenyl}) \\ {\rm phosphino-1,1'-spirobiinane} \ ((S_{\rm a}) - 14e) - 14e) - 14e - 14e$


Yield: 72%, white solid, mp: 229–231 °C. $[\alpha]_D^{22}$ –184.4 (*c* 0.5, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃) δ 7.57 (d, *J* = 7.2 Hz, 1H, Ar-H), 7.35–7.20 (m, 5H, Ar-H), 7.06 (t, *J* = 7.6 Hz, 1H, Ar-H), 6.93–6.89 (m, 3H, Ar-H), 6.82 (d, *J* = 8.0 Hz, 2H, Ar-H), 3.75–3.69 (m, 1H, CH₂), 3.56–3.50 (m, 1H, CH₂), 3.41–3.28 (m, 2H, CH₂), 3.06–2.91 (m, 3H, CH₂), 2.78–2.69 (m, 2H, CH₂), 2.06–2.21 (m, 1H, CH₂), 1.99–1.89 (m, 2H, CH₂), 1.20 (s, 18H, CH₃), 1.17 (s, 18H, CH₃); ³¹P NMR (162 MHz, CDCl₃) δ –15.8 (s); ¹³C NMR (100 MHz, CDCl₃) δ 165.1, 154.0, 153.8, 150.2, 150.2, 149.9, 149.9, 149.7, 145.2, 144.7, 144.6,

138.0, 137.9, 137.5, 137.4, 133.9, 133.7, 133.0, 128.8, 128.7, 128.6, 128.4, 126.8, 126.7, 126.2, 124.5, 121.8, 121.5, 66.8, 63.5, 54.8, 40.0, 39.3, 35.1, 35.0, 31.7, 31.3, 31.0. HRMS (ESI) calcd for $[M+H, C_{48}H_{61}NOP]^+$: 698.4485. Found 698.4483.

(B) Preparation and Analytical Data of Iridium Complexes

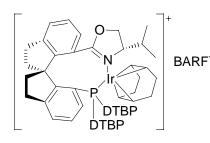
Typical procedure: Ligand (0.085 mmol), $[Ir(COD)Cl]_2$ (32 mg, 0.047 mmol) and NaBARF·3H₂O (100 mg, 0.107 mmol) were added to 2 mL of CH₂Cl₂ in a Schlenk tube under argon atmosphere. The mixture was heated to reflux for 0.5 hours. The TLC analysis revealed no free ligand existed. After cooling to room temperature, the mixture was concentrated under reduced pressure and the residue was purified by a flash column chromatography on silica gel with CH₂Cl₂/petroleum ether (1:1) to offer an orange-yellow solid.


(S_a,S) -1d

Yield: 83%. mp: 204 °C. $[a]_{D}^{21}$ +119.8 (*c* 0.5, CH₂Cl₂). ¹H NMR (300 MHz, CDCl₃) δ 8.05 (d, J = 6.3 Hz, 2H, Ar-H), 7.65 (brs, 9H, Ar-H), 7.49–7.43 (m, 8H, Ar-H), 7.24–7.13 (m, 6H, Ar-H), 6.98 (d, J = 6.9 Hz, 2H, Ar-H), 6.68 (d, J = 8.1 Hz, 1H, Ar-H), 6.09 (d, J = 12.6 Hz, 1H, Ar-H), 4.81–4.68 (m, 1H, CH=CH), 4.16–4.12 (m, 1H, CH=CH), 4.01–3.92 (m, 1H, CH=CH), 3.87–3.71 (m, 2H, CH=CH and CH), 3.13–2.43 (m, 7H, CH₂), 2.18–1.94 (m, 5H, CH₂), 1.47–0.71 (m, 42H, CH₂ and CH₃), 0.32–0.13 (m, 2H, CH₂); ³¹P NMR (122 MHz, CDCl₃) δ 16.2 (s); ¹³C NMR (75 MHz, CDCl₃) δ 173.1, 173.0, 162.1, 161.5, 160.8, 152.9, 152.1,

148.3, 148.2, 147.8, 147.7, 145.8, 144.0, 134.9, 134.1, 132.6, 132.3, 132.2, 132.0, 131.3, 130.5, 130.0, 129.6, 129.4, 129.2, 128.8, 128.3, 128.1, 128.0, 127.9, 127.5, 127.3, 127.0, 126.6, 126.4, 75.0, 73.9, 73.8, 70.7, 67.9, 67.6, 66.9, 62.9, 41.4, 40.8, 35.1, 33.7, 31.2, 31.0, 30.7, 30.6, 30.4, 30.1, 29.7, 29.0. HRMS (ESI) calcd for $C_{63}H_{78}IrNOP^+$: 1088.5445. Found 1088.5441.

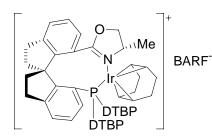
 (S_a, S) -1e



Yield: 85%. mp: 231 °C. $[\alpha]_D^{21}$ +165.6 (*c* 0.5, CH₂Cl₂). ¹H NMR (300 MHz, CDCl₃) δ 8.06–8.04 (m, 1H, Ar-H), 7.78–7.64 (m, 9H, Ar-H), 7.50–7.13 (m, 17H, Ar-H), 6.69 (brs, 1H, Ar-H), 6.17 (brs, 1H, Ar-H), 4.41 (dd, *J* = 9.6 and 3.9 Hz, 1H, CH=CH), 4.21 (dd, *J* = 9.0 and 3.9 Hz, 1H, CH=CH), 3.47–3.41 (m, 1H, CH), 3.16 (t, *J* = 9.3 H, 1H, CH₂), 2.95–2.63 (m, 4H, CH₂), 2.32–2.14 (m, 2H, CH₂), 2.06–1.93 (m, 3H, CH₂), 1.71–1.68 (m, 1H, CH₂), 1.51–0.75 (m, 40H, CH₂ and CH₃), 0.53–0.16 (m, 3H, CH₂); ³¹P NMR (122 MHz, CDCl₃) δ 16.9 (s); ¹³C NMR (75 MHz, CDCl₃) δ 172.5, 172.4, 162.8, 162.1, 161.5,

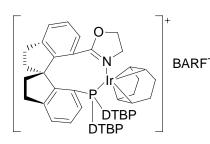
160.8, 152.5, 150.8, 148.4, 148.2, 147.9, 147.8, 145.8, 144.0, 138.2, 134.9, 132.7, 132.3, 132.2, 132.0, 130.4,

130.3, 130.0, 129.8, 129.6, 129.2, 128.7, 128.3, 128.0, 127.9, 127.7, 127.4, 127.3, 126.6, 126.4, 126.0, 124.1, 122.8, 120.8, 119.2, 117.5, 79.1, 76.4, 76.3, 70.1, 69.9, 69.8, 69.5, 68.1, 63.0, 41.6, 35.0, 33.6, 31.2, 31.1, 30.7, 30.4, 29.8, 28.7. HRMS (ESI) calcd for $C_{62}H_{76}IrNOP^+$: 1074.5288. Found 1074.5282.


 $(S_{a},S)-1f$

Yield: 74%. mp: 201 °C. $[\alpha]_D^{21}$ +128.8 (*c* 0.5, CH₂Cl₂). ¹H NMR (300 MHz, CDCl₃) δ 8.02 (d, *J* = 6.9 Hz, 1H, Ar-H), 7.66–7.59 (m, 10H, Ar-H), 7.43–7.32 (m, 8H, Ar-H), 7.17–7.00 (m, 3H, Ar-H), 6.76 (d, *J* = 9.0 Hz, 1H, Ar-H), 6.05 (d, *J* = 12.9 Hz, 1H, Ar-H), 4.55–4.54 (m, 1H, CH=CH), 4.12–4.08 (m, 1H, CH=CH), 3.78–3.77 (m, 2H, CH=CH), 3.52 (d, *J* = 8.4 Hz, 1H, CH), 3.10–3.07 (m, 1H, CH₂), 2.84–2.52 (m, 4H, CH₂), 2.15–1.92 (m, 4H, CH₂ and CH), 1.12–0.65 (m, 50H, CH₂ and CH₃), 0.24–0.07 (m, 2H, CH₂); ³¹P NMR (122 MHz, CDCl₃) δ 16.1 (s); ¹³C NMR (75 MHz, CDCl₃) δ 173.0, 172.9, 162.9, 162.2, 161.6, 160.9, 153.0, 152.2, 152.1,

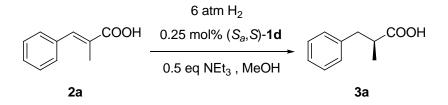
148.4, 148.3, 147.7, 147.6, 145.7, 144.0, 134.9, 132.8, 132.4, 132.3, 132.1, 131.4, 130.4, 130.1, 129.7, 129.3, 128.9, 128.5, 128.1, 127.9, 127.8, 127.5, 127.4, 126.5, 125.5, 124.1, 122.9, 120.6, 119.3, 117.5, 74.2, 71.5, 70.9, 70.7, 67.4, 66.7, 66.4, 62.9, 41.3, 35.0, 33.6, 31.2, 31.0, 30.9, 30.6, 30.5, 30.4, 30.0, 29.3, 18.8, 14.1. HRMS (ESI) calcd for $C_{59}H_{78}IrNOP^+$: 1040.5445. Found 1040.5438.


 (S_a,S) -1g

Yield: 81%. mp: 216 °C. $[\alpha]_D^{21}$ +125.6 (*c* 0.5, CH₂Cl₂). ¹H NMR (300 MHz, CDCl₃) δ 7.90 (d, *J* = 5.7 Hz, 1H, Ar-H), 7.66–7.57 (m, 10H, Ar-H), 7.44–7.33 (m, 8H, Ar-H), 7.19–7.06 (m, 3H, Ar-H), 6.67 (brs, 1H, Ar-H), 6.10 (brs, 1H, Ar-H), 4.56 (brs, 1H, CH=CH), 3.83–3.76 (m, 3H, CH=CH), 3.52 (brs, 1H, CH), 3.05–2.40 (m, 6H, CH₂), 2.08–1.93 (m, 4H, CH₂), 1.43–0.66 (m, 45H, CH₂ and CH₃), 0.27–0.14 (m, 2H, CH₂); ³¹P NMR (122 MHz, CDCl₃) δ 15.8 (s); ¹³C NMR (75 MHz, CDCl₃) δ 171.7, 162.9, 162.2, 161.5, 160.9, 152.8, 148.1, 148.0, 147.8, 147.7, 145.6, 143.9, 134.9, 132.5, 132.3, 132.2, 131.8, 130.1, 129.7, 129.3, 128.9, 128.4, 128.0, 127.9,

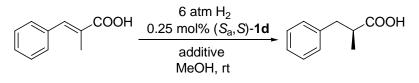
127.8, 127.6, 127.4, 127.1, 126.5, 126.0, 124.1, 122.9, 120.6, 119.2, 117.5, 76.5, 74.8, 70.2, 69.1, 68.8, 67.7, 63.0, 61.8, 41.4, 35.0, 33.7, 31.0, 30.6, 30.4, 30.1, 28.7, 21.2. HRMS (ESI) calcd for $C_{57}H_{74}IrNOP^+$: 1012.5132. Found 1012.5141.

 (S_a) -1h



Yield: 82%. mp: 196 °C. $[\alpha]_D^{21}$ +122.6 (*c* 0.5, CH₂Cl₂). ¹H NMR (300 MHz, CDCl₃) δ 7.65 (brs, 9H, Ar-H), 7.50–7.35 (m, 8H, Ar-H), 7.27–7.24 (m, 1H, Ar-H), 7.18–7.07 (m, 4H, Ar-H), 6.75 (brs, 1H, Ar-H), 6.24 (br d, J = 10.8 Hz, 1H, Ar-H), 4.38–4.24 (m, 2H, CH=CH), 3.90–3.63 (m, 3H, CH=CH and CH₂), 3.39–3.29 (m, 1H, CH₂), 3.16–3.07 (m, 1H, CH₂), 2.95–2.56 (m, 4H, CH₂), 2.43–2.30 (m, 1H, CH₂), 2.08–1.90 (m, 5H, CH₂), 1.48–0.80 (m, 40H, CH₂ and CH₃), 0.47–0.40 (m, 3H, CH₂); ³¹P NMR (122 MHz, CDCl₃) δ 16.7 (s); ¹³C NMR (75 MHz, CDCl₃) δ 170.9, 162.8, 162.1, 161.5, 160.8, 152.3, 150.9, 150.8, 148.0, 147.9, 147.7, 147.6,

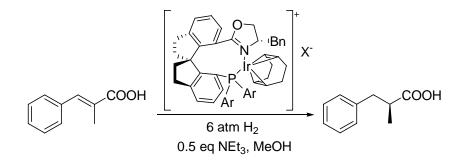
145.5, 143.8, 134.9, 132.3, 132.2, 131.5, 130.9, 130.0, 129.7, 129.2, 128.8, 128.4, 128.0, 127.9, 127.8, 127.7, 127.6, 127.1, 126.9, 126.7, 126.4, 126.3, 124.3, 122.8, 121.1, 119.2, 117.5, 76.7, 71.9, 71.6, 70.7, 70.5, 69.4, 63.1, 51.6, 41.7, 35.0, 34.0, 31.6, 31.5, 31.0, 30.5, 30.2, 29.7, 29.6, 28.8. HRMS (ESI) calcd for $C_{56}H_{72}IrNOP^+$: 998.4975. Found 998.4977.


(C) General Procedure for Asymmetric Hydrogenation

Asymmetric hydrogenation of α -methylcinnamic acid (2a)

To a hydrogenation tube was charged with a stir bar, α -methylcinnamic acid (2a, 81 mg, 0.5 mmol), catalyst (S_a , S)-1d (2.4 mg, 0.00125 mmol), NEt₃ (25 mg, 0.25 mmol) and 2 mL MeOH at ambient atmosphere. The hydrogenation tube was then put into an autoclave. The air in the autoclave was replaced with hydrogen for three times. The autoclave was then charged with hydrogen, the reaction mixture was concentrated on a rotator vapor. The conversion of substrate was determined by ¹H NMR analysis. The crude product was purified by a flash chromatography on silica gel column to give pure product as a colorless liquid that offered the yield. 2-Methyl-3-phenyl-propionic acid (3a, 82 mg, 0.5 mmol) was reacted with aniline (50 µL, 0.55 mmol) in the presences of DMAP (4 mg, 0.033 mmol) and DCC (110 mg, 0.53 mmol) in 0.5 mL THF for 30 min. The reaction mixture was filtrated through celite. The filtrate was diluted with Et₂O, washed with 3 N HCl, saturated NaHCO₃ and dried with Na₂SO₄. After a flash chromatography on silica gel column was determined by HPLC with Chiralpak AS column.

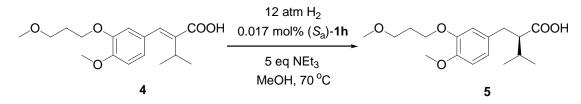
Effect of amount of triethylamine in asymmetric hydrogenation of α -methylcinnamic acid



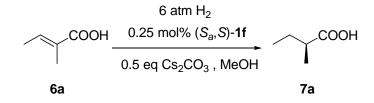
Additive	Reaction time (h)	Conversion (%)	Ee (%)
none	2	60	99
0.1 eq NEt3	2	65	>99
0.2 eq NEt3	2	75	>99
0.5 eq NEt3	0.5	100	>99
1.0 eq NEt3	0.5	100	>99

Reaction conditions: 0.5 mmol α -methylcinnamic acid, 0.25 mol% (*Sa*,*S*)-1d, 2 mL MeOH, *P*H2 = 6 atm, room temperature.

Comparison of anions of catalysts in asymmetric hydrogenation of α -methylcinnamic acid


The catalysts with different anions were prepared in situ and evaluated in asymmetric hydrogenation of α -methylcinnamic acid. All tested catalysts can catalyze the reaction, providing desired hydrogenated product with >99% ee. The catalysts with anions OTf, ClO₄ and BARF gave full conversions. Among these catalysts, only the catalyst with anion BARF is stable in air, it can be purified by a column chromatography on silica gel and can be handled in air. So we used this catalyst for all following experiments.

Anions	Reaction time (h)	Conversion (%)	Ee (%)
BARF	0.5	100	>99
OTf	1	100	>99
ClO4	0.5	100	>99
BF4	18	45	>99
PF6	18	80	>99


Reaction conditions: 0.5 mmol α -methylcinnamic acid, 0.25 mol% catalysts (Ar = 3,5-^{*t*}Bu₂C₆H₃), 2 mL MeOH, *P*H2 = 6 atm, room temperature.

Asymmetric hydrogenation of (*E*)-2-[3-(3-methoxypropoxy)-4-methoxybenzylidene]-3-methylbutanoic acid (4)

To a 20 mL hydrogenation tube was charged with a stir bar, (*E*)-2-[3-(3-methoxypropoxy)-4-methoxybenzylidene]-3-methylbutanoic acid (**4**, 771 mg, 2.5 mmol), catalyst (S_a)-**1h** (0.8 mg, 0.000417 mmol), NEt₃ (1.26 g, 12.5 mmol) and 3.5 mL MeOH at ambient atmosphere. The hydrogenation tube was put into an autoclave. The air in the autoclave was replaced with hydrogen for three times. The autoclave was then charged with hydrogen to 12 atm, and the reaction mixture was stirred at 70 °C for 7 h. After releasing hydrogen, the reaction mixture was concentrated on a rotator vapor. The crude product was acidified with 3N aqueous HCl and extracted with Et₂O. The conversion of substrate was determined by ¹H NMR analysis. A flash chromatography on silica gel column gave pure product **5** as a white solid that offered the yield. The product **5** (155 mg, 0.5 mmol) was reacted with aniline (50 µL, 0.55 mmol) in the presences of DMAP (4 mg, 0.033 mmol) and DCC (110 mg, 0.53 mmol) in 0.5 mL THF for 30 min. The reaction mixture was filtrated through celite. The filtrate was diluted with Et₂O, washed with 3 N HCl, saturated NaHCO₃ and dried with Na₂SO₄. After a flash chromatography on silica gel column with Et₂O, the desired amide was obtained and analyzed on SFC with a Chiralpak AD-H column to determined ee value.

Asymmetric hydrogenation of tiglic acid (6a)

To a hydrogenation tube was added a stir bar, tiglic acid (**6a**, 50 mg, 0.5 mmol), catalyst (S_a ,S)-**1f** (2.4 mg, 0.00125 mmol), Cs₂CO₃ (82 mg, 0.25 mmol) and 2 mL MeOH at ambient atmosphere. The hydrogenation tube was put into an autoclave. The air in the autoclave was replaced with hydrogen for three times. The autoclave was then charged with hydrogen to 6 atm, and the reaction mixture was stirred at room temperature for 30 min. After releasing hydrogen, the reaction mixture was acidified with 3N aqueous HCl and extracted with Et₂O. The extract was concentrated on a rotator vapor. The conversion of substrate was determined by ¹H NMR analysis. The crude product was purified by a flash chromatography on silica gel column to give pure product **7a** as a colorless liquid that offered the yield. The product **7a** (51 mg, 0.5 mmol) was reacted with aniline (50 µL, 0.55 mmol) in the prensences of DMAP (4 mg, 0.033 mmol) and DCC (110 mg, 0.53 mmol) in 0.5 mL THF for 30 min. The reaction mixture was filtrated through celite. The filtrate was diluted with Et₂O, washed with 3 N HCl, saturated NaHCO₃ and dried with Na₂SO₄. After a flash chromatography on silica gel column with Et₂O, the desired amide was obtained and analyzed on HPLC with a Chiralpak AD-H column to determined ee value.

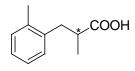
Comparison of catalysts and additives in asymmetric hydrogenation of tiglic acid

A number of organic and inorganic bases gave full conversions and high enantioselectivities, with Cs₂CO₃ being the best choice in the asymmetric hydrogenation of tiglic acids.

6 atm H ₂							
COOH 0.25 mol% catalyst COOH							
additives, MeOH, rt							
6a 7a							
Catalyst	Additive	Time (h)	Conversion (%)	Ee (%)			
(<i>S</i> a, <i>S</i>)-1d	0.5 eq NEt ₃	2	95	97			
(<i>S</i> a, <i>S</i>)-1e	0.5 eq NEt ₃	1	100	94			
(<i>S</i> a, <i>S</i>)-1f	0.5 eq NEt ₃	1	95	98			
(Sa,S)-1g	0.5 eq NEt ₃	1	90	97			
(Sa)-1h	0.5 eq NEt ₃	3	100	96			
(<i>S</i> a, <i>S</i>)-1f	0.5 eq pyridine	24	0				
(<i>S</i> a, <i>S</i>)-1f	0.5 eq iPr ₂ NEt	1	95	99			
(<i>S</i> a, <i>S</i>)-1f	0.5 eq KOH	4	95	98			
(<i>S</i> a, <i>S</i>)-1f	0.5 eq NaHCO ₃	18	85	98			
(<i>S</i> a, <i>S</i>)-1f	0.5 eq Na ₂ CO ₃	1	100	98			
(<i>S</i> a, <i>S</i>)-1f	$0.5 \text{ eq } \text{Cs}_2\text{CO}_3$	0.5	100	>99			

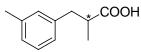
Reaction conditions: 0.5 mmol tiglic acid, 0.25 mol% catalyst, 2 mL MeOH, PH2 = 6 atm, room temperature.

(D) Analytical Data of Hydrogenation Products


(S)-2-Methyl-3-phenylpropionic acid (3a)⁴

соон

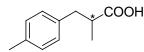
Colorless oil, 99% yield, 99.2% ee (S), $[\alpha]_D^{20}$ +30.2 (c 0.82, CHCl₃), HPLC condition for corresponding amide: Chiralpak AS column (25 cm × 0.46 cm ID), n-hexane/2-propanol = 95:5, 1.0 mL/min, 254 nm UV detector, t_R = 18.14 min for (S)-enantiomer and t_R = 22.03 min for (R)-enantiomer. ¹H NMR (400 MHz, CDCl₃): δ 9.95 (brs, 1H, COOH),


13.2 and 8.0 Hz, 1H, CH₂), 1.18 (d, *J* = 6.8 Hz, 3H, CH₃).

(+)-2-Methyl-3-*o*-tolylpropionic acid (3b)⁵

Colorless oil, 97% yield, 99% ee, $[\alpha]_{D}^{26}$ +37.3 (c 0.55, acetone), HPLC condition for corresponding amide: Chiralcel OD-H column (25 cm × 0.46 cm ID), *n*-hexane/2-propanol = 90:10, 1.0 mL/min, 254 nm UV detector, $t_{\rm R}$ = 12.61 min (major) and $t_{\rm R} = 16.39$ min (minor). ¹H NMR (300 MHz, CDCl₃): δ 9.65 (brs, 1H, COOH), 7.17–7.12 (m, 4H, Ar-H), 3.11 (dd, J = 13.2 and 6.0 Hz, 1H, CH₂), 2.76 (sextet, J = 6.9Hz, 1H, CH), 2.65 (dd, J = 13.5 and 8.4 Hz, 1H, CH₂), 2.33 (s, 3H, CH₃), 1.20 (d, J = 6.9 Hz, 3H, CH₃).

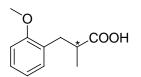
(+)-2-Methyl-3-*m*-tolylpropionic acid (3c)⁵


Colorless oil, 98% yield, 99% ee, $\left[\alpha\right]_{\rm D}^{26}$ +35.1 (c 0.52, acetone), HPLC condition for corresponding amide: Chiralpak AS column (25 cm × 0.46 cm ID), *n*-hexane/2-propanol = 98:2, 1.0 mL/min, 254 nm UV detector, $t_{\rm R}$ = 26.54 min (major)

⁴ Davies, S. G.; Dixon, D. J.; Doisneau, G. J.-M.; Prodger, J. C.; Sanganee, H. J. Tetrahedron: Asymmetry 2002, 13, 647–658.

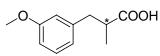
⁵ Cheng, X.; Zhang, Q.; Xie, J.-H.; Wang, L.-X.; Zhou, Q.-L. Angew. Chem. Int. Ed. 2005, 44, 1118–1121.

and $t_{\rm R} = 32.74$ min (minor). ¹H NMR (300 MHz, CDCl₃): δ 9.60 (brs, 1H, COOH), 7.18 (t, J = 7.5 Hz, 1H, Ar-H), 7.04–6.96 (m, 3H, Ar-H), 3.05 (dd, J = 13.2 and 6.3 Hz, 1H, CH₂), 2.76 (sextet, J = 6.9 Hz, 1H, CH), 2.62 (dd, J = 13.2 and 8.1 Hz, 1H, CH₂), 2.32 (s, 3H, CH₃), 1.17 (d, J = 6.9 Hz, 3H, CH₃).


(+)-2-Methyl-3-*p*-tolyl-propionic acid (3d)⁵

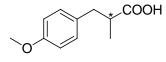
Colorless oil, 98% yield, 99% ee, $[\alpha]_D^{26}$ +32.2 (*c* 0.58, acetone), HPLC condition for corresponding amide: Chiralpak AD-H column (25 cm × 0.46 cm ID), *n*-hexane/2-propanol = 94:6, 1.0 mL/min, 254 nm UV detector, t_R = 16.33 min (minor) and t_R = 18.49 min (major). ¹H NMR (300 MHz, CDCl₃): δ 9.50 (brs, 1H, COOH), 2.02 (dd t_R = 12.2 and 6.2 Hz 1H CU) 2.74 (center t_R = 7.5 Hz 1H CU) 2.63 (dd t_R

7.11–7.05 (m, 4H, Ar-H), 3.03 (dd, J = 13.2 and 6.3 Hz, 1H, CH₂), 2.74 (sextet, J = 7.5 Hz, 1H, CH), 2.63 (dd, J = 13.2 and 7.8 Hz, 1H, CH₂), 2.32 (s, 3H, CH₃), 1.17 (d, J = 6.9 Hz, 3H, CH₃).


(+)-3-(2-Methoxyphenyl)-2-methylpropionic acid (3e)⁵

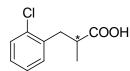
Colorless oil, 98% yield, 99% ee, $[\alpha]_D^{25}$ +33.6 (*c* 0.54, acetone), HPLC condition for corresponding amide: Chiralpak AS column (25 cm × 0.46 cm ID), *n*-hexane/2-propanol = 98:2, 1.0 mL/min, 254 nm UV detector, t_R = 34.58 min (major) and t_R = 40.72 min (minor). ¹H NMR (300 MHz, CDCl₃): δ 9.53 (brs, 1H, COOH), 7.23–7.11 (m, 2H, Ar-H), 6.89–6.83 (m, 2H, Ar-H), 3.80 (s, 3H, CH₃), 3.05 (dd, *J* = 13.2 and 6.6 Hz, 1H, CH₂), 1H, CH₃ 2.70 (dd, *L* = 13.2 and 7.8 Hz, 1H, CH₃) 1.16 (d, *L* = 6.9 Hz, 3H, CH₂)

2.86 (sextet, J = 7.2 Hz, 1H, CH), 2.70 (dd, J = 13.2 and 7.8 Hz, 1H, CH₂), 1.16 (d, J = 6.9 Hz, 3H, CH₃).


(+)-3-(3-Methoxyphenyl)-2-methylpropionic acid (3f)⁵

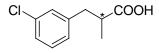
Colorless oil, 99% yield, 98% ee, $[\alpha]_D^{25}$ +24.8 (*c* 0.62, acetone), HPLC condition for corresponding amide: Chiralpak AS column (25 cm × 0.46 cm ID), *n*-hexane/2-propanol = 97:3, 1.0 mL/min, 254 nm UV detector, t_R = 32.28 min (major) and t_R = 37.52 min (minor). ¹H NMR (400 MHz, CDCl₃): δ 9.98 (brs, 1H,

COOH), 7.20 (t, J = 8.0 Hz, 1H, Ar-H), 6.78–6.73 (m, 3H, Ar-H), 3.79 (s, 3H, CH₃), 3.06 (dd, J = 13.6 and 6.4 Hz, 1H, CH₂), 2.77 (sextet, J = 7.2 Hz, 1H, CH), 2.64 (dd, J = 13.6 and 8.0 Hz, 1H, CH₂), 1.18 (d, J = 6.8 Hz, 3H, CH₃).


(+)-3-(4-Methoxyphenyl)-2-methylpropionic acid (3g)⁵

Colorless oil, 97% yield, 99% ee, $[a]_{D}^{25}$ +31.0 (*c* 0.51, acetone), HPLC condition for corresponding amide: Chiralcel OD-H column (25 cm × 0.46 cm ID), *n*-hexane/2-propanol = 90:10, 1.0 mL/min, 254 nm UV detector, t_{R} = 16.91 min (minor) and t_{R} = 20.12 min (major). ¹H NMR (400 MHz, CDCl₃): δ 9.94 (brs, 1H, 0.14 M) = 0.02 (11.04 M) = 0.04 M

COOH), 7.10 (d, J = 8.4 Hz, 2H, Ar-H), 6.83 (d, J = 8.4 Hz, 2H, Ar-H), 3.79 (s, 3H, CH₃), 3.01 (dd, J = 13.6 and 6.4 Hz, 1H, CH₂), 2.72 (sextet, J = 7.2 Hz, 1H, CH), 2.62 (dd, J = 13.6 and 8.0 Hz, 1H, CH₂), 1.16 (d, J = 6.8 Hz, 3H, CH₃).

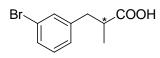

(+)-3-(2-Chlorophenyl)-2-methylpropionic acid (3h)⁵

Colorless oil, 97% yield, 96% ee, $[\alpha]_D^{29}$ +36.8 (*c* 0.66, acetone), HPLC condition for corresponding amide: Chiralpak AD-H column (25 cm × 0.46 cm ID), *n*-hexane/2-propanol = 94:6, 1.0 mL/min, 254 nm UV detector, t_R = 14.65 min (major) and t_R = 16.37 min (minor). ¹H NMR (300 MHz, CDCl₃): δ 9.56 (brs, 1H, COOH), 7.37–7.34 (m, 1H, Ar-H), 7.25–7.16 (m, 3H, Ar-H), 3.18 (dd, *J* = 12.9 and 6.3 Hz, 1H,

CH₂), 2.97–2.79 (m, 2H, CH and CH₂), 1.22 (d, *J* = 6.6 Hz, 3H, CH₃).

(+)-3-(3-Chlorophenyl)-2-methylpropionic acid (3i)⁵

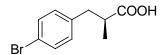
Colorless oil, 98% yield, 99% ee, $[\alpha]_D^{29}$ +36.3 (*c* 0.74, acetone), HPLC condition for corresponding amide: Chiralcel OD-H column (25 cm × 0.46 cm ID), *n*-hexane/2-propanol = 97:3, 1.0 mL/min, 254 nm UV detector, t_R = 52.69 min (minor) and t_R = 57.72 min (major). ¹H NMR (300 MHz, CDCl₃): δ 9.53 (brs, 1H, 1H) = 2.05 (111 + 112) = 1.62 H = 112 + 112


COOH), 7.22–7.18 (m, 3H, Ar-H), 7.08–7.05 (m, 1H, Ar-H), 3.05 (dd, J = 13.2 and 6.3 Hz, 1H, CH₂), 2.76 (sextet, J = 6.9 Hz, 1H, CH), 2.65 (dd, J = 13.2 and 7.8 Hz, 1H, CH₂), 1.19 (d, J = 6.9 Hz, 3H, CH₃).

(S)-3-(4-Chlorophenyl)-2-methylpropionic acid (3j)⁵

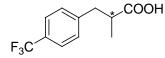
COOH Colorless oil, 97% yield, 98% ee, $\left[\alpha\right]_{\rm D}^{27}$ +30.2 (*c* 0.60, acetone), HPLC condition for

corresponding amide: Chiralpak AS column (25 cm \times 0.46 cm ID), *n*-hexane/2-propanol = 95:5, 1.0 mL/min, 254 nm UV detector, $t_R = 19.61$ min for (S)-enantiomer and $t_R = 25.02$ min for (R)-enantiomer. ¹H NMR (300 MHz, CDCl₃): δ 9.73 (brs, 1H, COOH), 7.26 (d, J = 8.4 Hz, 2H, Ar-H), 7.12 (d, J = 8.1 Hz, 2H, Ar-H), 3.02 (dd, J = 12.9 and 6.3 Hz, 1H, CH₂), 2.78–2.62 (m, 2H, CH and CH₂), 1.19 (d, J = 6.6 Hz, 3H, CH₃).


(+)-3-(3-Bromophenyl)-2-methylpropionic acid (3k)⁵

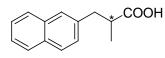
Colorless oil, 97% yield, 99% ee, $[\alpha]_{D}^{26}$ +25.4 (c 0.52, acetone), HPLC condition for corresponding amide: Chiralpak AS column (25 cm × 0.46 cm ID), *n*-hexane/2-propanol = 98:2, 1.0 mL/min, 254 nm UV detector, $t_{\rm R}$ = 44.55 min (major) and $t_{\rm R} = 54.12$ min (minor). ¹H NMR (400 MHz, CDCl₃): δ 10.49 (brs, 1H, COOH), 7.36–7.34 (m, 2H, Ar-H), 7.18–7.10 (m, 2H, Ar-H), 3.04 (dd, J = 13.2 and 7.2 Hz, 1H, CH₂), 2.75 (sextet,

J = 7.2 Hz, 1H, CH), 2.65 (dd, J = 13.2 and 7.6 Hz, 1H, CH₂), 1.19 (d, J = 6.9 Hz, 3H, CH₃).


(S)-3-(4-Bromophenyl)-2-methylpropionic acid (31)⁶

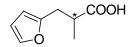
Colorless oil, 97% yield, 98% ee, $[\alpha]_D^{26}$ +28.8 (*c* 0.56, CHCl₃), HPLC condition for corresponding amide: Chiralpak AS column (25 cm × 0.46 cm ID), *n*-hexane/2-propanol = 95:5, 1.0 mL/min, 254 nm UV detector, $t_{\rm R}$ = 23.67 min for (S)-enantiomer and $t_{\rm R} = 29.95$ min for (R)-enantiomer. ¹H NMR (400 MHz, CDCl₃):

δ 10.95 (brs, 1H, COOH), 7.40 (d, J = 8.4 Hz, 2H, Ar-H), 7.06 (d, J = 8.4 Hz, 2H, Ar-H), 3.01 (dd, J = 13.2 and 6.8 Hz, 1H, CH₂), 2.74 (sextet, J = 7.2 Hz, 1H, CH), 2.64 (dd, J = 13.6 and 7.6 Hz, 1H, CH₂), 1.18 (d, J = 6.8 Hz, 3H, CH₃).


(+)-2-Methyl-3-(4-trifluoromethylphenyl)propionic acid (3m)⁵

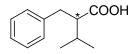
White solid, mp 58–60 °C, 98% yield, 97% ee, $[\alpha]_{D}^{25}$ +25.8 (*c* 0.62, acetone), HPLC condition for corresponding amide: Chiralpak AD-H column (25 cm \times 0.46 cm ID), *n*-hexane/2-propanol = 95:5, 1.0 mL/min, 254 nm UV detector, $t_{\rm R}$ = 21.20 min (minor) and $t_{\rm R} = 24.23$ min (major). ¹H NMR (400 MHz, CDCl₃): δ 11.15 (brs, 1H, COOH), 7.55 (d, J = 8.0 Hz, 2H, Ar-H), 7.30 (d, J = 8.0 Hz, 2H, Ar-H), 3.11 (dd, J = 12.8 and 6.0 Hz, 1H, CH₂),

2.84–2.72 (m, 2H, CH and CH₂), 1.21 (d, *J* = 6.4 Hz, 3H, CH₃).


(+)-2-Methyl-3-(naphthalen-2-yl)propionic acid (3n)⁵

White solid, mp 74–76 °C, 96% yield, 99% ee, $[\alpha]_{D}^{25}$ +32.4 (*c* 0.70, acetone), HPLC condition for corresponding amide: Chiralpak AD-H column (25 cm \times 0.46 cm ID), *n*-hexane/2-propanol = 97.3, 1.0 mL/min, 254 nm UV detector, $t_{\rm R}$ = 65.29 min (minor) and $t_{\rm R} = 67.22$ min (major). ¹H NMR (400 MHz, CDCl₃): δ 10.97 (brs, 1H,

COOH), 7.82-7.77 (m, 3H, Ar-H), 7.64 (s, 1H, Ar-H), 7.48-7.42 (m, 2H, Ar-H), 7.34-7.31 (m, 1H, Ar-H), 3.25 (dd, J = 12.8 and 5.6 Hz, 1H, CH₂), 2.93–2.81 (m, 2H, CH and CH₂), 1.22 (d, J = 6.8 Hz, 3H, CH₃).

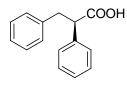

(-)-3-Furan-2-yl-2-methylpropionic acid (30)⁷

Yellow solid, mp 112–113 °C, 98% yield, 98% ee, $[\alpha]_{D}^{26}$ –5.33 (c 0.60, acetone), HPLC condition for corresponding amide: Chiralcel OD-H column (25 cm × 0.46 cm ID), *n*-hexane/2-propanol = 90:10, 1.0 mL/min, 254 nm UV detector, $t_{\rm R}$ = 12.37 min (minor) and $t_{\rm R} = 15.54$ min (major). ¹H NMR (400 MHz, CDCl₃): δ 10.98 (brs, 1H, COOH), 7.31–7.30 (m, 1H, CH), 6.28-6.27 (m, 1H, CH), 6.06 (d, J = 3.2 Hz, 1H, CH), 3.06 (dd, J = 14.8 and 6.4 Hz, 1H, CH₂), 2.86 (sextet, J =

6.8 Hz, 1H, CH), 2.75 (dd, J = 14.8 and 7.2 Hz, 1H, CH₂), 1.22 (d, J = 6.8 Hz, 3H, CH₃).

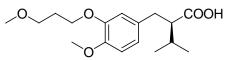
(+)-2-Benzyl-3-methylbutanoic acid (3p)⁸

Colorless oil, 97% yield, 99% ee, $\left[\alpha\right]_{D}^{26}$ +50.4 (c 0.56, acetone), HPLC condition for corresponding amide: Chiralcel OD-H column (25 cm × 0.46 cm ID), *n*-hexane/2-propanol = 94:6, 1.0 mL/min, 254 nm UV detector, $t_{\rm R}$ = 14.91 min (major) and $t_{\rm R} = 18.82$ min (minor). ¹H NMR (400 MHz, CDCl₃): δ 9.81 (brs, 1H, COOH),


Kotake, T.; Hayashi, Y.; Rajesh, S.; Mukai, Y.; Takiguchi, Y.; Kimura, T.; Kiso, Y. Tetrahedron 2005, 61, 3819–3833.

Harmata, M.; Gamlath, C. B.; Barnes, C. L.; Jones, D. E. J. Org. Chem. 1995, 60, 5077-5092.

Hoen, R.; Boogers, J. A. F.; Bernsmann, H.; Minnaard, A. J.; Meetsma, A.; de Vries, A. H. M.; de Vries, J. G.; Feringa, B. L. Angew. Chem. Int. Ed. 2005, 44, 4209-4212.


7.26-7.15 (m, 5H, Ar-H), 2.89-2.80 (m, 2H, CH₂ and CH), 2.50-2.45 (m, 1H, CH₂), 2.01-1.89 (m, 1H, CH), 1.02 $(dd, J = 11.6 and 6.8 Hz, 6H, CH_3).$

(*R*)-2,3-diphenylpropionic acid $(3q)^{91}$

White solid, mp 79-81 °C, 95% yield, 94% ee, $[\alpha]_{D}^{25}$ -120 (c 0.53, acetone), SFC condition for corresponding amide: Chiralpak OJ-H column (25 cm × 0.46 cm ID), $CO_2/2$ -propanol = 70:30, 2.0 mL/min, 100 bar, 254 nm UV detector, $t_R = 3.98$ min for (*R*)-enantiomer and $t_{\rm R} = 4.40$ min for (*S*)-enantiomer. ¹H NMR (300 MHz, CDCl₃): δ 8.41 (brs, 1H, COOH), 7.31–7.08 (m, 10H, Ar-H), 3.84 (t, J = 7.8 Hz, 1H, CH), 3.40 (dd, *J* = 13.8 and 8.4 Hz, 1H, CH₂), 3.02 (dd, *J* = 13.8 and 6.9 Hz, 1H, CH₂).

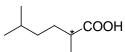
(*R*)-2-(3-(3-Methoxypropoxy)-4-methoxybenzyl)-3-methylbutanoic acid (5)¹⁰

White solid, mp 44–45 °C, 96% yield, 98% ee, $[\alpha]_{D}^{21}$ +42.2 (c 1.0, CH₂Cl₂), SFC condition for corresponding amide: Chiralpak AD-H column (25 cm × 0.46 cm ID), CO₂/2-propanol = 80:20, 2.0 mL/min, 100 bar, 254 nm UV detector, $t_{\rm R} = 5.40$ min for (S)-enantiomer and $t_{\rm R} =$

5.93 min for (R)-enantiomer. ¹H NMR (400 MHz, CDCl₃): δ 9.71 (brs, 1H, COOH), 6.73–6.68 (m, 3H, Ar-H), 4.06 (t, J = 6.4 Hz, 2H, CH₂), 3.79 (s, 3H, CH₃), 3.53 (t, J = 6.4 Hz, 2H, CH₂), 3.32 (s, 3H, CH₃), 2.81–2.71 (m, 2H, CH₂ and CH), 2.43–2.38 (m, 1H, CH₂), 2.08–2.01 (m, 2H, CH₂), 1.90 (sextet, J = 6.4 Hz, 1H, CH), 1.00 (dd, J = 13.2 and 6.8 Hz, 6H, CH₃).

(S)-2-Methylbutanoic acid (7a)¹¹

Colorless oil, 92% yield, 99.1% ee, $\left[\alpha\right]_{D}^{16}$ +19.8 (c 0.76, ethanol), HPLC condition for COOH corresponding amide: Chiralpak AD-H column (25 cm \times 0.46 cm ID), *n*-hexane/2-propanol = 99:1, 1.0 mL/min, 254 nm UV detector, $t_{\rm R}$ = 35.91 min for (S)-enantiomer and $t_{\rm R}$ = 39.43 min for (R)-enantiomer. ¹H NMR (400 MHz, CDCl₃): δ 11.69 (brs, 1H, COOH), 2.44–2.36 (m, 1H, CH), 1.76–1.65 (m, 1H, CH₂), 1.55–1.44 (m, 1H, CH₂), 1.17 (d, *J* = 7.2 Hz, 3H, CH₃), 0.94 (t, *J* = 7.2 Hz, 3H, CH₃).


(S)-2-Methylpentanoic acid (7b)¹²

Colorless oil, 93% yield, 98% ee (S), $\left[\alpha\right]_{D}^{18}$ +14.9 (c 0.94, CHCl₃), HPLC condition for COOH corresponding amide: Chiralpak AD-H column (25 cm × 0.46 cm ID), n-hexane/2-propanol = 90:10, 1.0 mL/min, 254 nm UV detector, t_R = 6.99 min for (S)-enantiomer and t_R = 7.81 min for (R)-enantiomer. ¹H NMR (400 MHz, CDCl₃): δ 11.57 (brs, 1H, COOH), 2.52-2.43 (m, 1H, CH), 1.71–1.63 (m, 1H, CH₂), 1.46–1.31 (m, 3H, CH₂), 1.17 (d, *J* = 6.8 Hz, 3H, CH₃), 0.91 (t, *J* = 7.2 Hz, 3H, CH₃).

(S)-2-Methylhexanoic acid $(7c)^{13}$

Colorless oil, 89% yield, 99% ee, $[\alpha]_{D}^{18}$ +19.6 (c 1.30, ether), HPLC condition for COOH corresponding amide: Chiralpak AD-H column (25 cm × 0.46 cm ID), *n*-hexane/2-propanol = 97:3, 1.0 mL/min, 254 nm UV detector, $t_{\rm R}$ = 25.35 min for (S)-enantiomer and $t_{\rm R} = 29.83$ min for (R)-enantiomer. ¹H NMR (400 MHz, CDCl₃): δ 11.64 (brs, 1H, COOH), 2.50–2.41 (m, 1H, CH), 1.73–1.64 (m, 1H, CH₂), 1.48–1.39 (m, 1H, CH₂), 1.34–1.29 (m, 4H, CH₂), 1.17 (d, J = 7.2 Hz, 3H, CH₃), 0.89 (t, J = 6.8 Hz, 3H, CH₃).

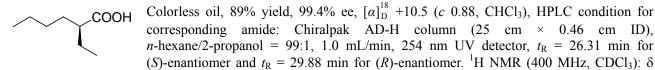
(+)-2,5-Dimethylhexanoic acid (7d)¹⁴

Colorless oil, 97% yield, 90% ee, $[\alpha]_D^{18}$ +14.5 (c 1.1, ethanol), HPLC condition for corresponding amide: Chiralpak AD-H column (25 cm × 0.46 cm ID), *n*-hexane/2-propanol = 97:3, 1.0 mL/min, 254 nm UV detector, t_R = 9.21 min (major) and $t_{\rm R} = 10.12$ min (minor). ¹H NMR (400 MHz, CDCl₃): δ 11.33 (brs, 1H, COOH), 2.47–2.38 (m, 1H, CH), 1.72–1.63 (m, 1H, CH₂), 1.58–1.48 (m, 1H, CH), 1.46–1.39 (m, 1H, CH₂), 1.25–1.17 (m,

Fox, M. E.; Jackson, M.; Lennon, I. C.; Klosin, J.; Abboud, K. A. J. Org. Chem. 2008, 73, 775-784

¹⁰ Göschke, R.; Stutz, S.; Heinzelmann, W.; Maibaum, J. Helv. Chim. Acta. 2003, 86, 2848–2870.

¹¹ Jansen, R.; Sheldrick, W. S.; Höfle, G. Liebigs. Ann. Chem. 1984, 78-84.


¹² Riley, R. G.; Silverstein, R. M. *Tetrahedron* **1974**, *30*, 1171–1174.

¹³ Levene, P. A.; Bass, L. W. J. Biol. Chem. **1926**, 70, 211–217.

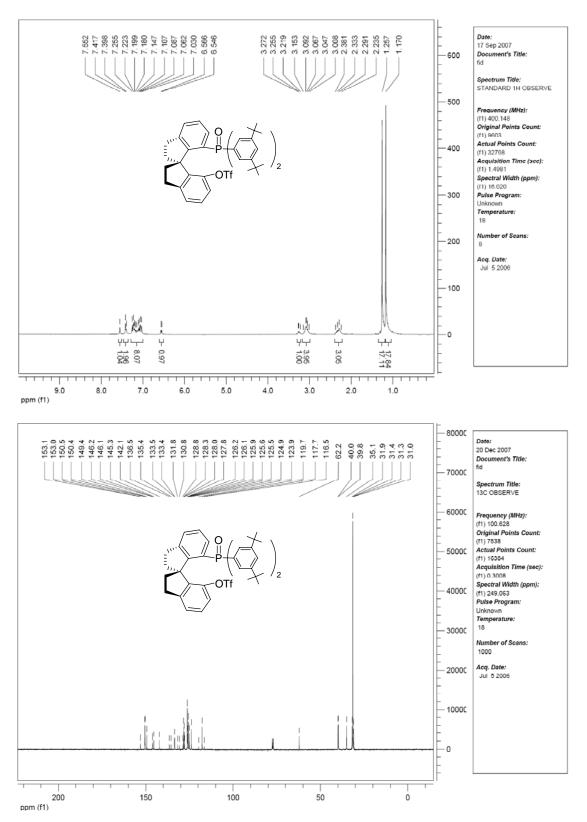
¹⁴ Boogaard, P. J.; Van Elburg, P. A.; De Kloe, K. P.; Watson, W. P.; Van Sittert, N. J. Xenobiotica 1999, 29, 987–1006.

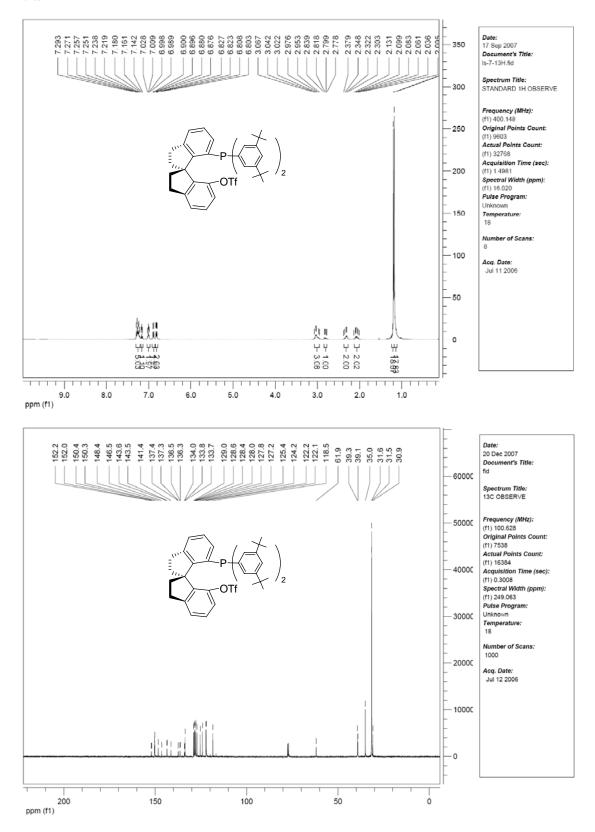
5H, CH₂ and CH₃), 0.88 (d, *J* = 7.2 Hz, 6H, CH₃).

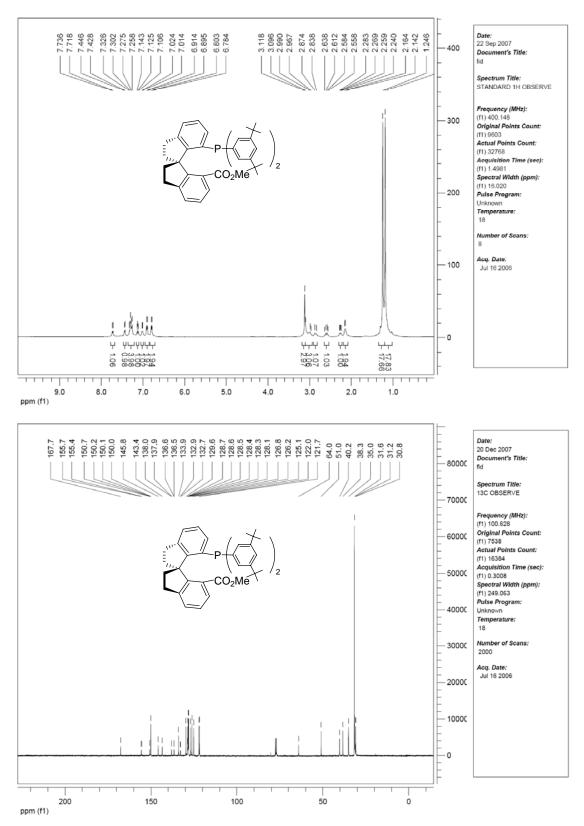
(S)-2-Ethylhexanoic acid (7e)¹⁵

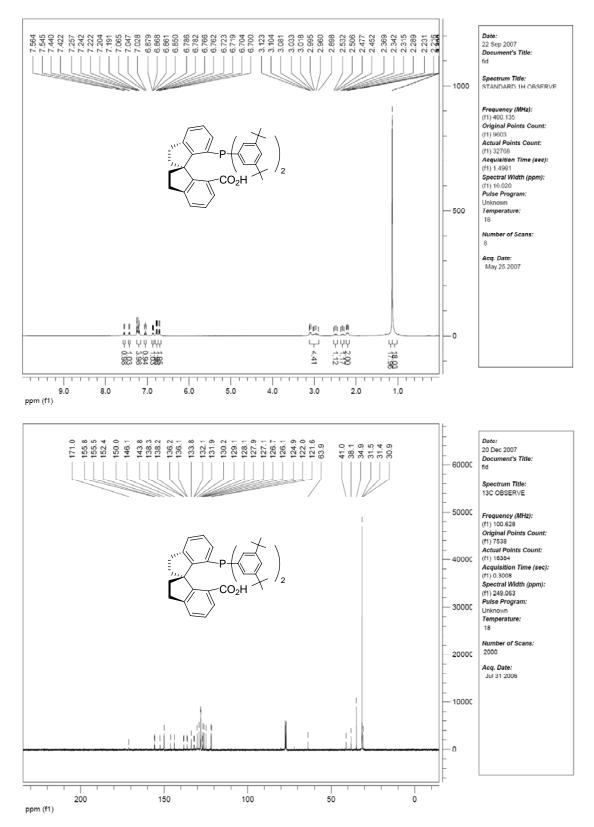
11.17 (brs, 1H, COOH), 2.32–2.25 (m, 1H, CH), 1.70–1.44 (m, 4H, CH₂), 1.37–1.25 (m, 4H, CH₂), 0.96–0.87 (m, 6H, CH₃).

(*R*)-2-Ethylpentanoic acid (7f)¹⁶

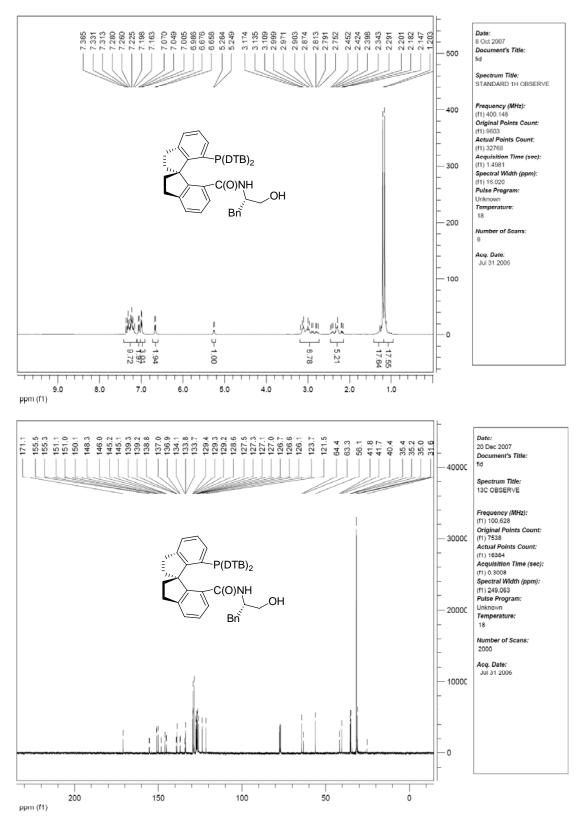


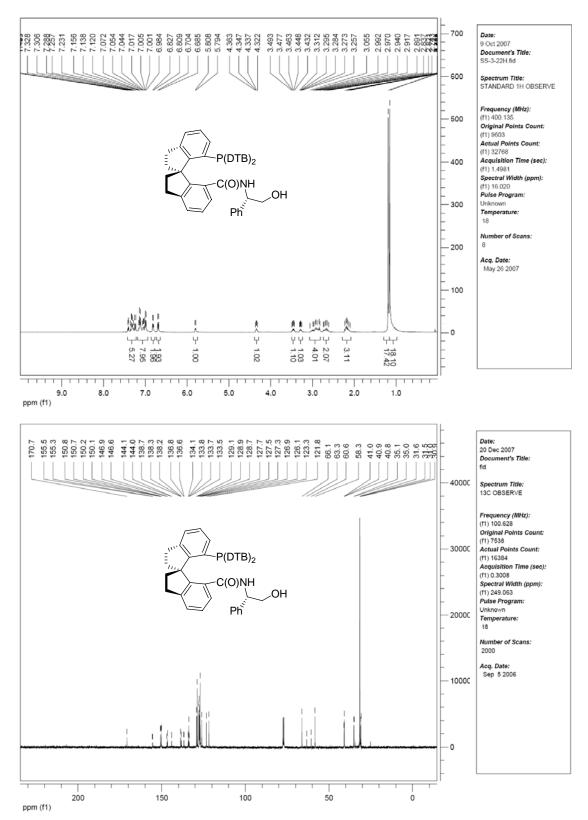

Colorless oil, 92% yield, 98% ee, $[\alpha]_{D}^{17}$ -4.1 (*c* 1.0, CHCl₃), HPLC condition for corresponding amide: Chiralpak AD-H column (25 cm × 0.46 cm ID), *n*-hexane/2-propanol = 95:5, 1.0 mL/min, 254 nm UV detector, t_{R} = 8.64 min for (*S*)-enantiomer and t_{R} = 9.84 min for (*R*)-enantiomer. ¹H NMR (400 MHz, CDCl₃): δ 11.28 (brs, 1H, COOH), 2.34–2.27 (m, 1H, CH), 1.70–1.28 (m, 6H, CH₂), 0.95–0.89 (m, 6H, CH₃).

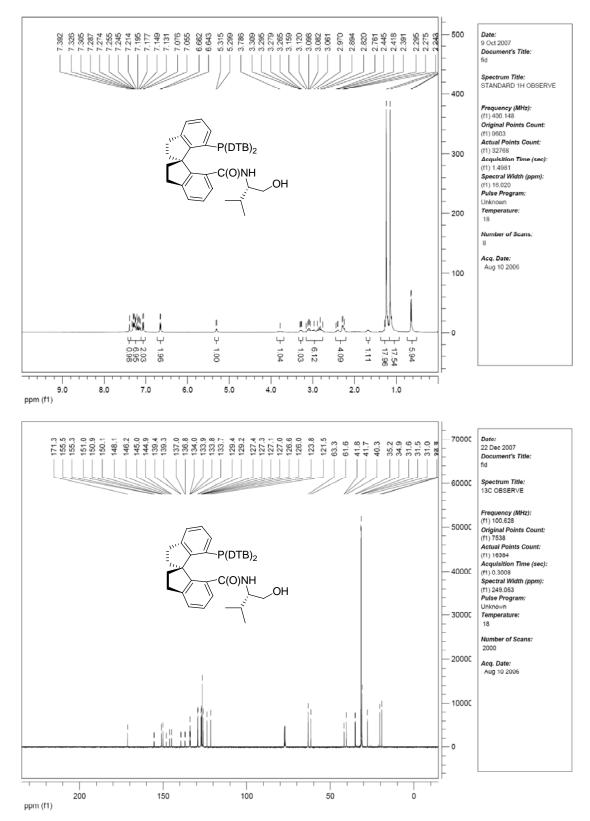

¹⁵ Larcheveque, M.; Ignatova, E.; Cuvigny, T. J. Organomet. Chem. 1979, 177, 5-15.


¹⁶ Cassani, F.; Celentano, G.; Erba, E.; Pocar, D. Synthesis 2004, 1041–1046.

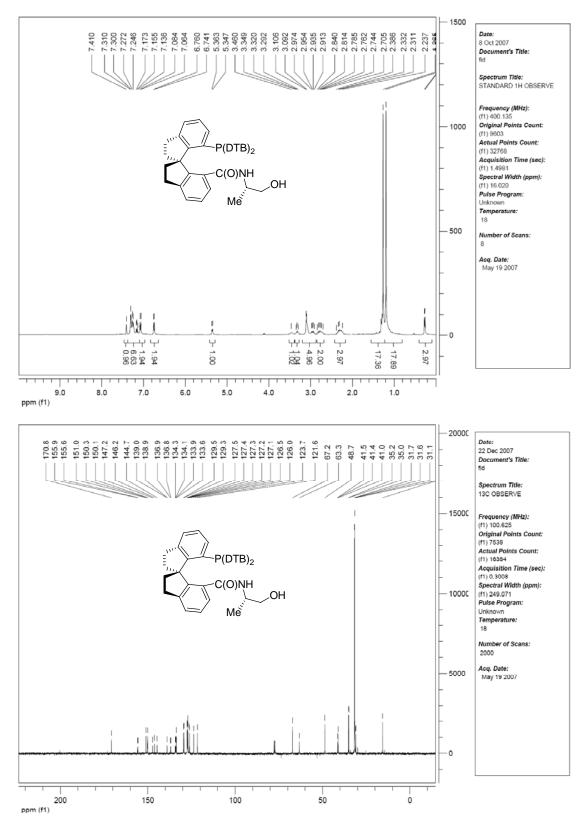
(E) NMR Spectra of New Ligands



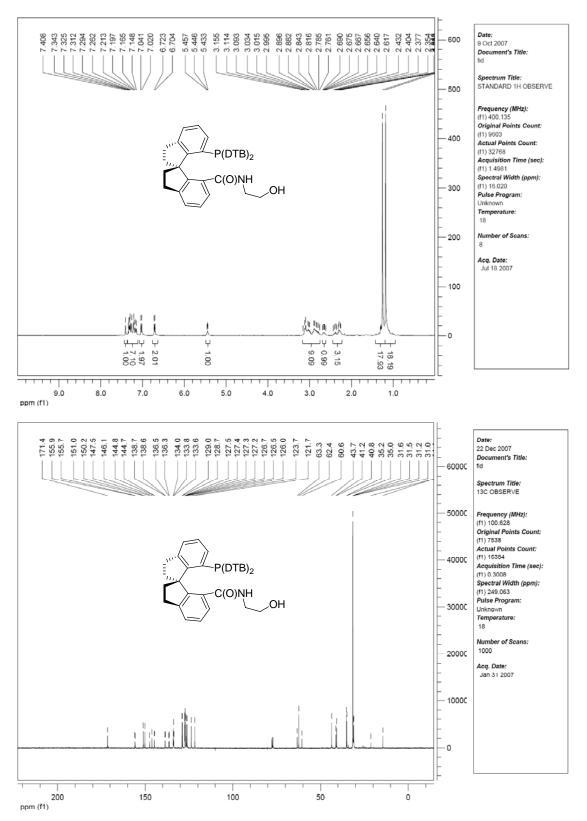




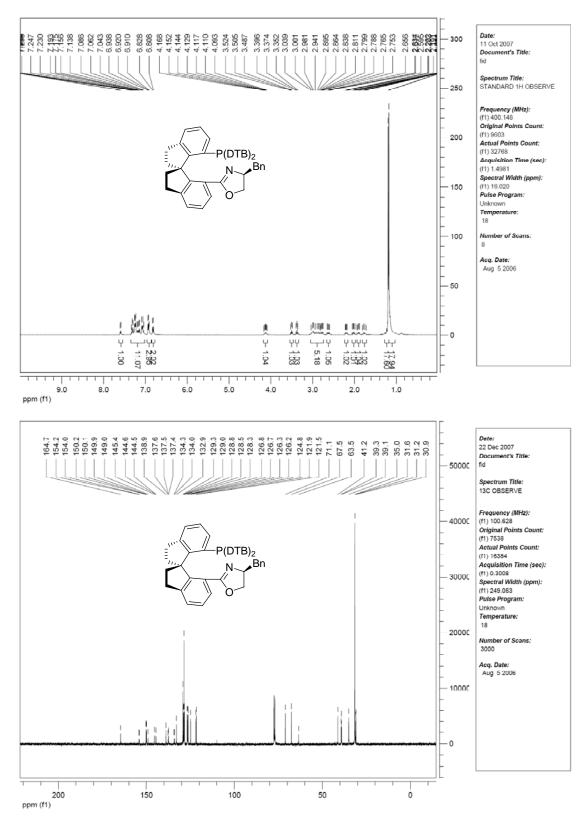
 (S_a, S) -13b

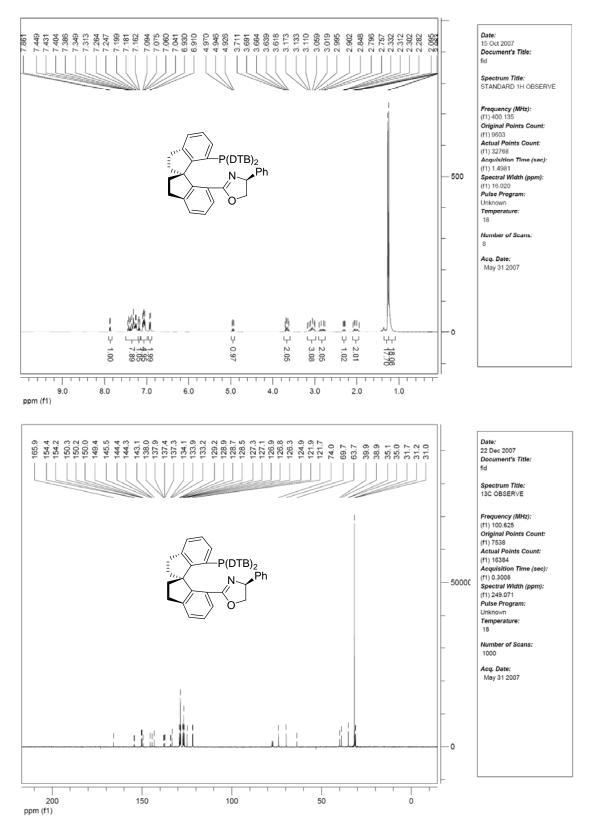


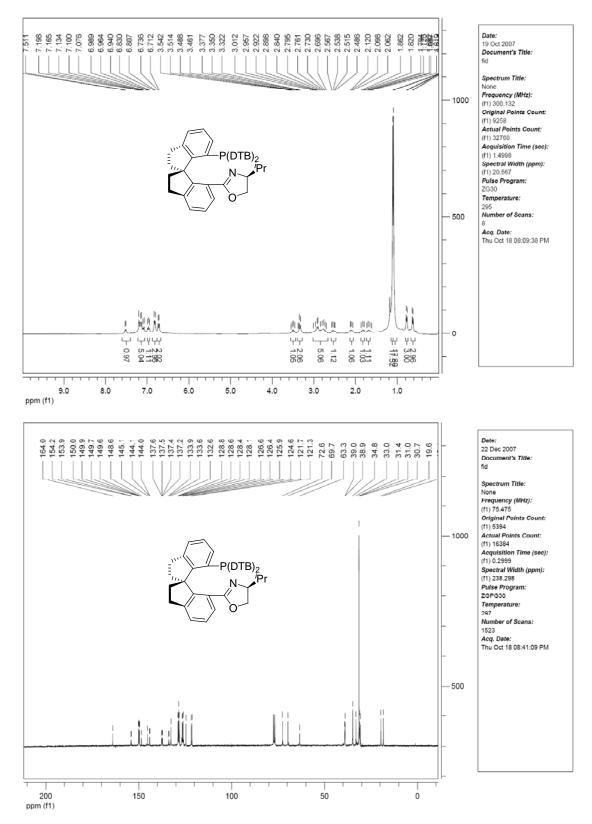
 (S_a, S) -13c

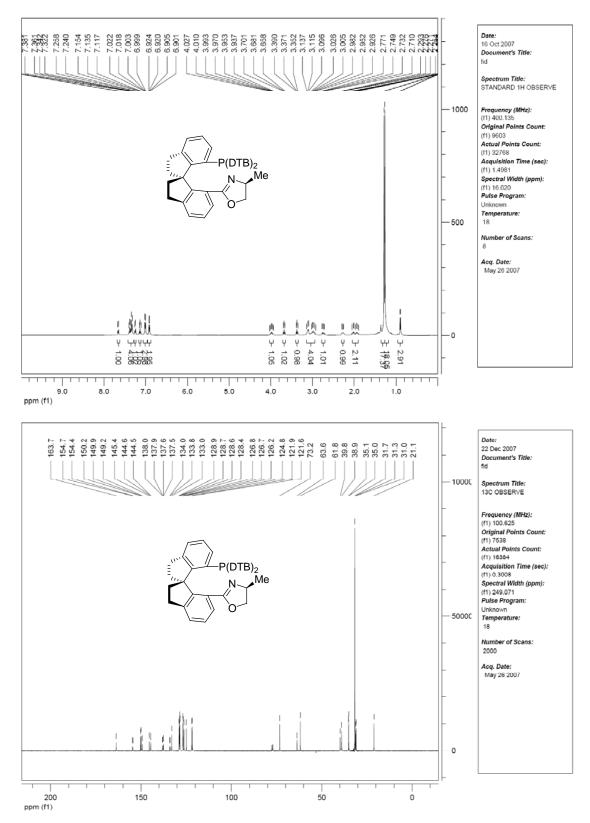


S22

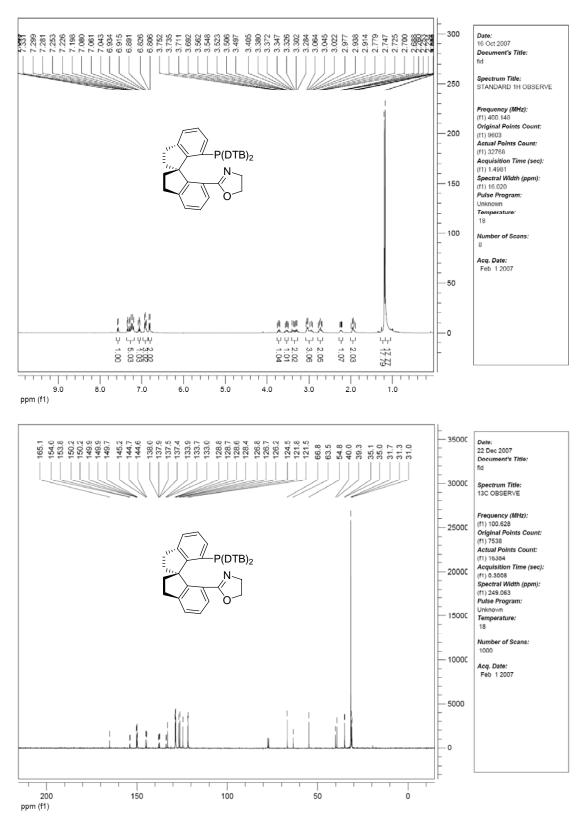

 (S_a, S) -13d


(*S*_a)-13e

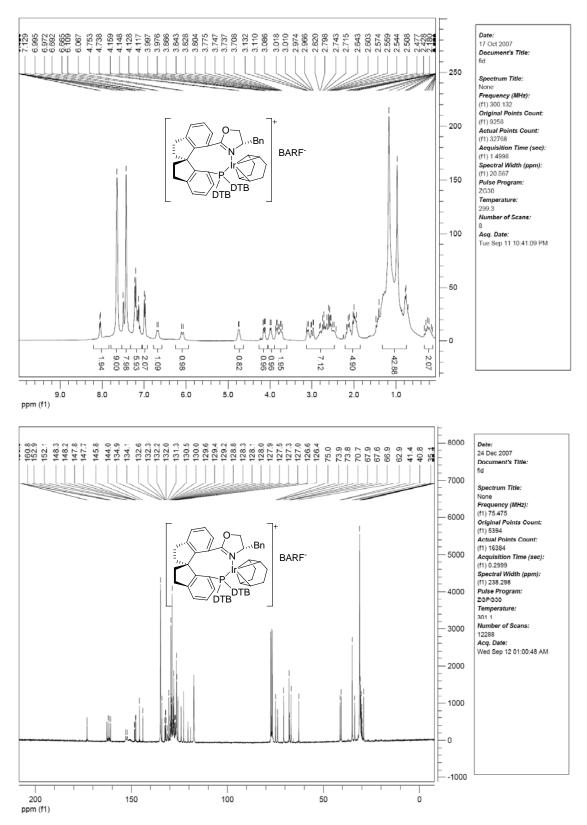

```
(S_a, S)-14a
```



 (S_a, S) -14b

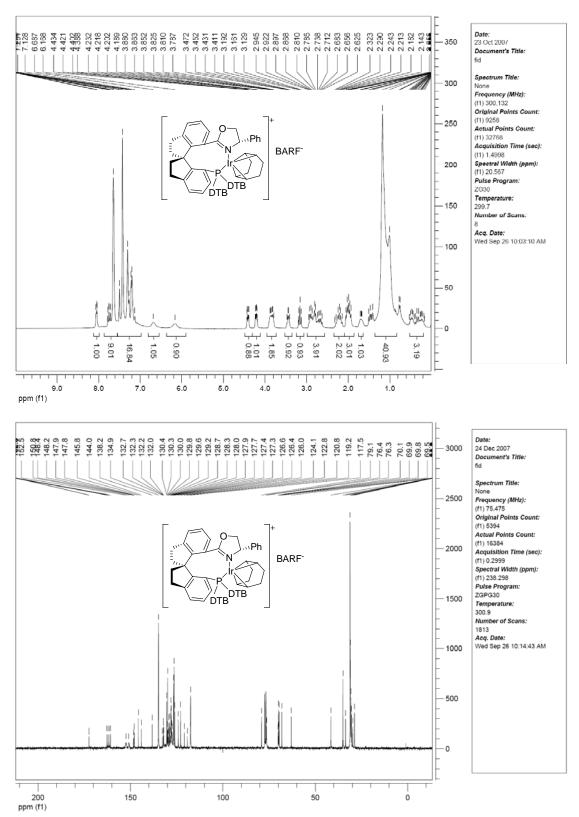
 (S_a, S) -14c



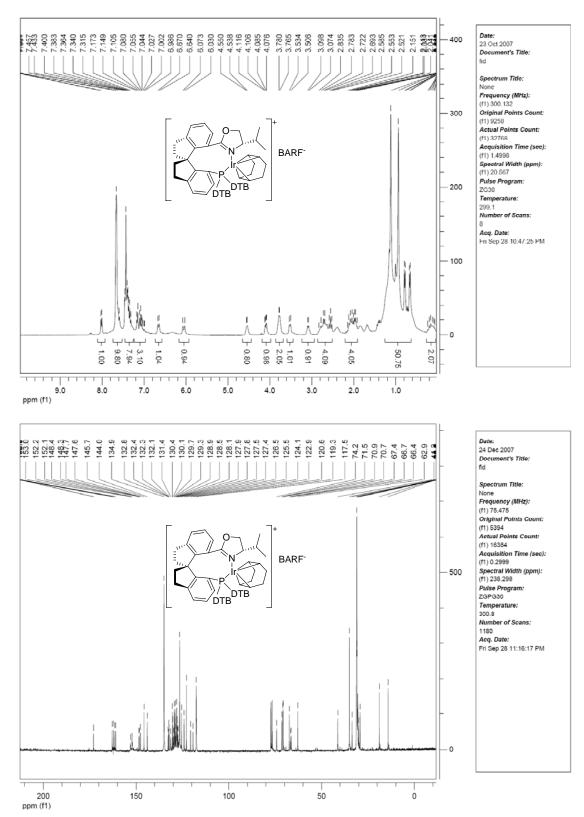
 (S_a, S) -14d

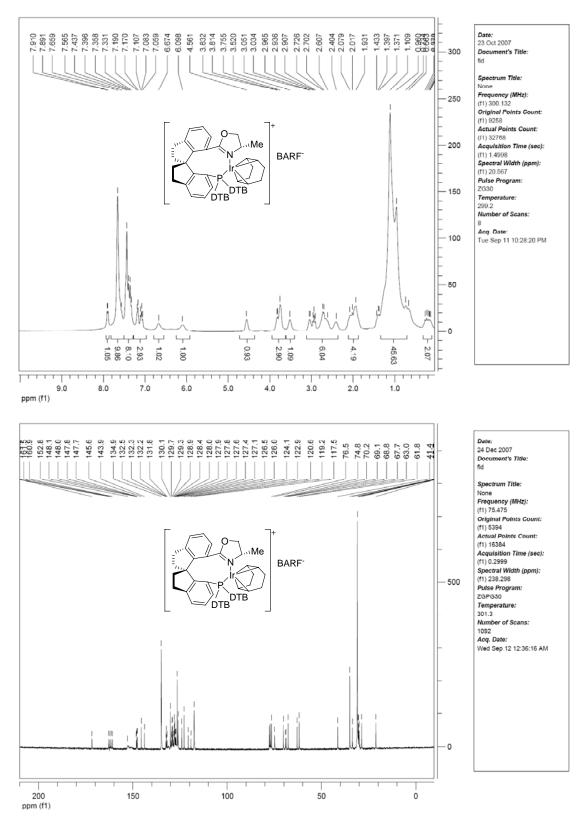

S28

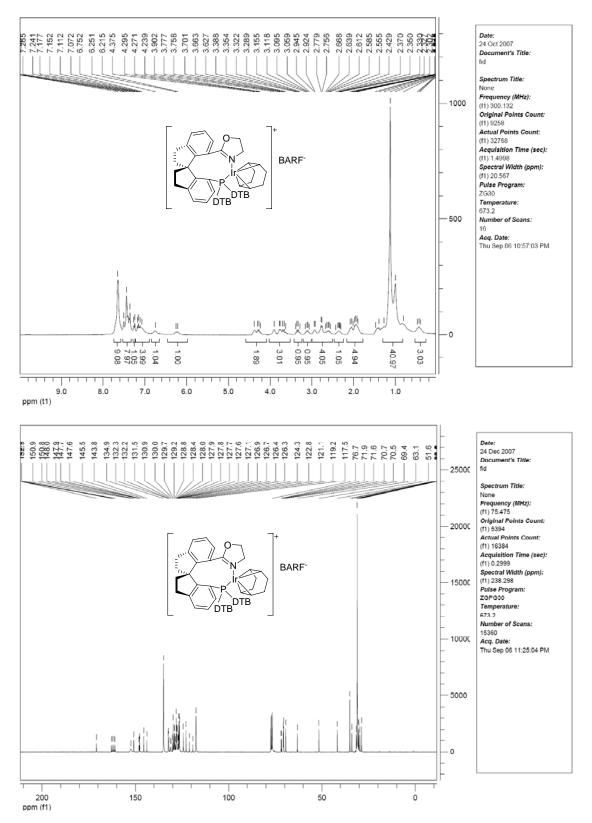
(S_a)-14e

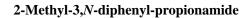


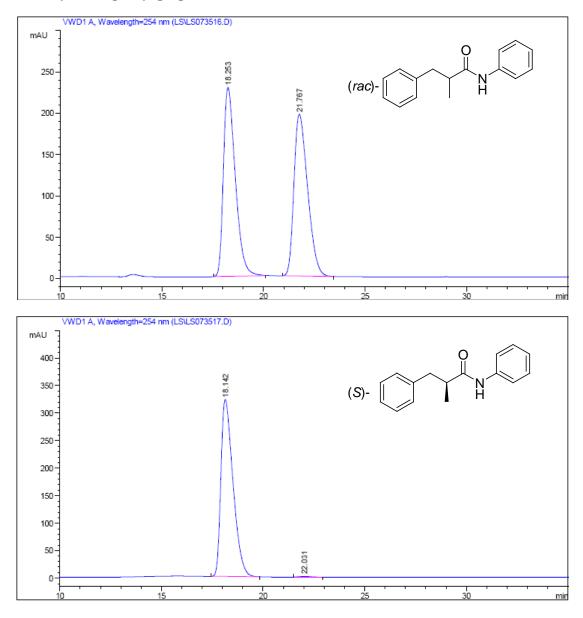
(F) NMR Spectra of Iridium Complexes


(S_a,S) -1d


 (S_a, S) -1e

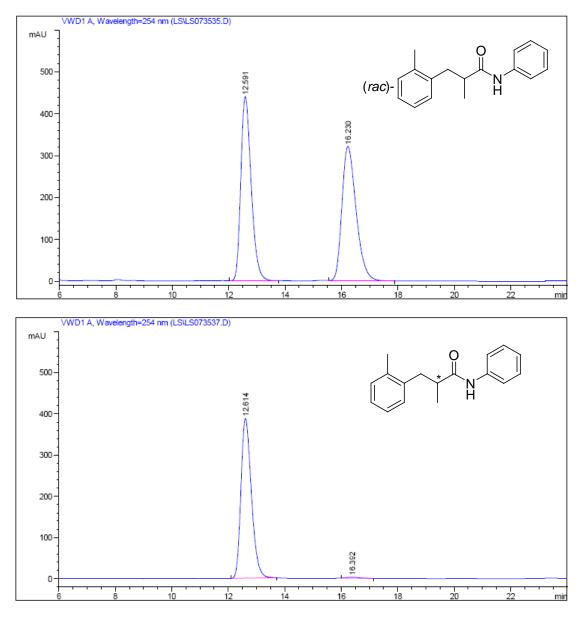

 (S_a,S) -1f


 (S_a, S) -1g



 (S_a) -1h

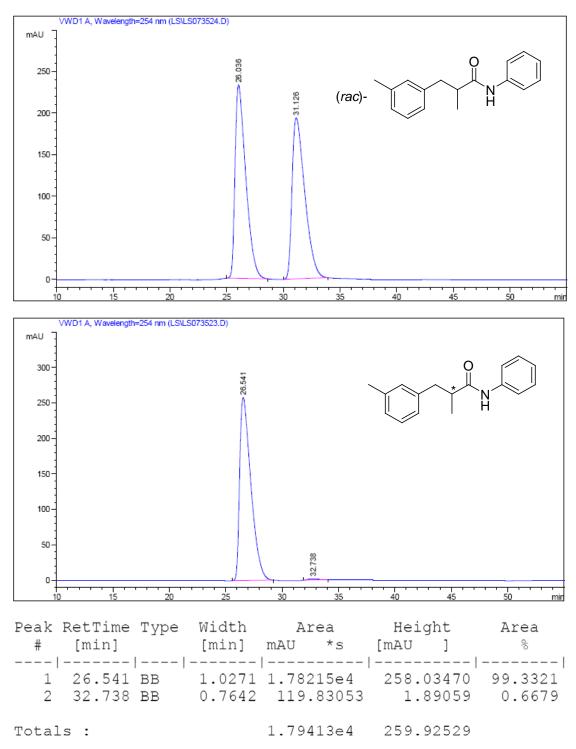
(G) HPLC and SFC Charts of Hydrogenation Product Derivatives



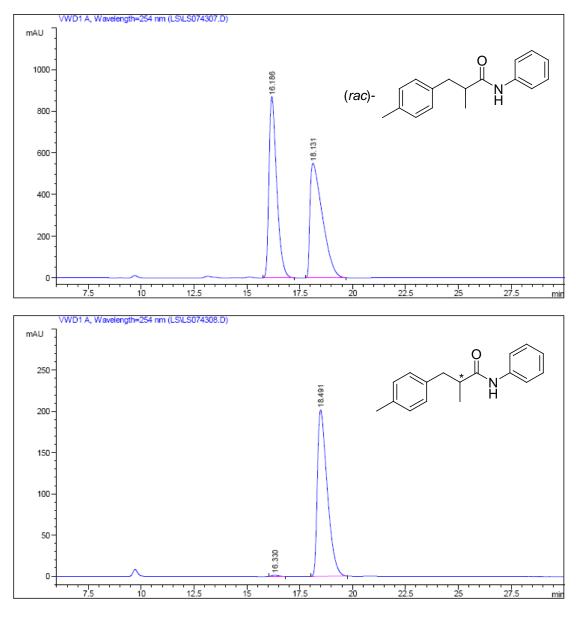
Signal 1: VWD1 A, Wavelength=254 nm

								Area H				
	[min]					-	-					
1	18.142	BB	0.6324	1.331	.13e4	321.8	88812	99.6147				
2	22.031	BB	0.5067	51.	48203	1.2	27706	0.3853				
Total	ls :			1.336	528e4	323.3	16518					

2-Methyl-N-phenyl-3-o-tolyl-propionamide

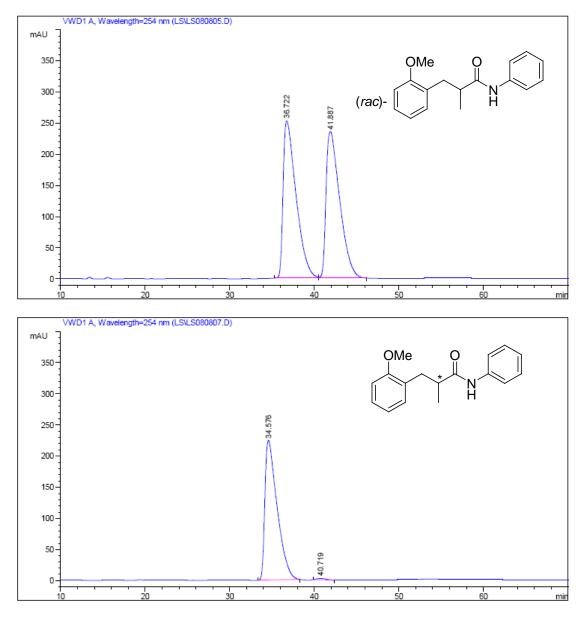

Signal 1: VWD1 A, Wavelength=254 nm

Peak	RetTime	Туре	Width	Area		Area		Height		Area
#	[min]		[min]	mAU	*s	[mAU]	00		
1	12.614	BB	0.3993	9978.	80371	387.7	3157	99.2831		
2	16.392	BB	0.4676	72.	05061	2.3	35528	0.7169		


Totals :

1.00509e4 390.08685

2-Methyl-N-phenyl-3-*m*-tolyl-propionamide


2-Methyl-N-phenyl-3-p-tolyl-propionamide

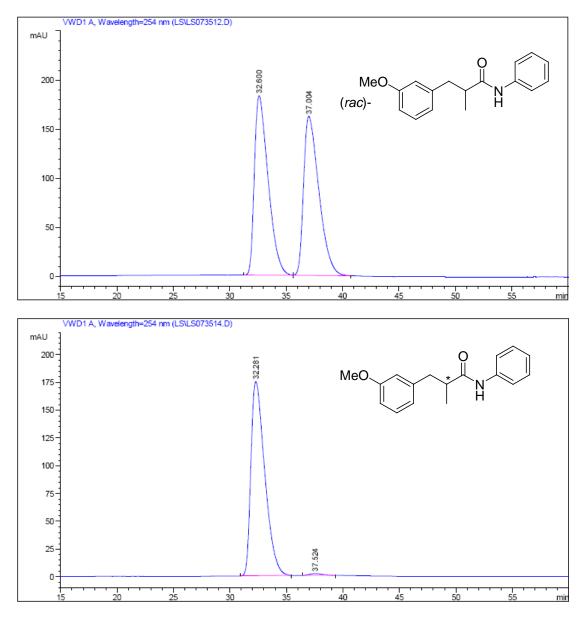
Signal 1: VWD1 A, Wavelength=254 nm

Peak RetTime	Туре	Width	Area		Height		Area
# [min]		[min]	mAU	*s	[mAU]	00
1 16.330	BB	0.3260	31.	82479	1.4	48319	0.4826
2 18.491	BB	0.4938	6562.	82666	202.1	13493	99.5174
Totals :			6594.	65145	203.0	61812	

3-(2-Methoxyphenyl)-2-methyl-N-phenyl-propionamide

Signal 1: VWD1 A, Wavelength=254 nm

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	mAU *s	[mAU]	0)0
1	34.576	BB	1.4209	2.24725e4	224.27034	99.2370
2	40.719	BB	0.8694	172.79388	2.34236	0.7630


2.26453e4

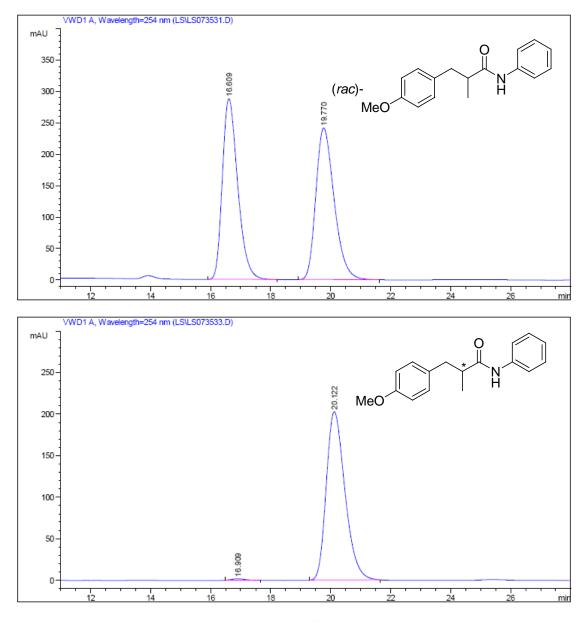
226.61269

Totals :

S39

3-(3-Methoxyphenyl)-2-methyl-N-phenyl-propionamide

Signal 1: VWD1 A, Wavelength=254 nm

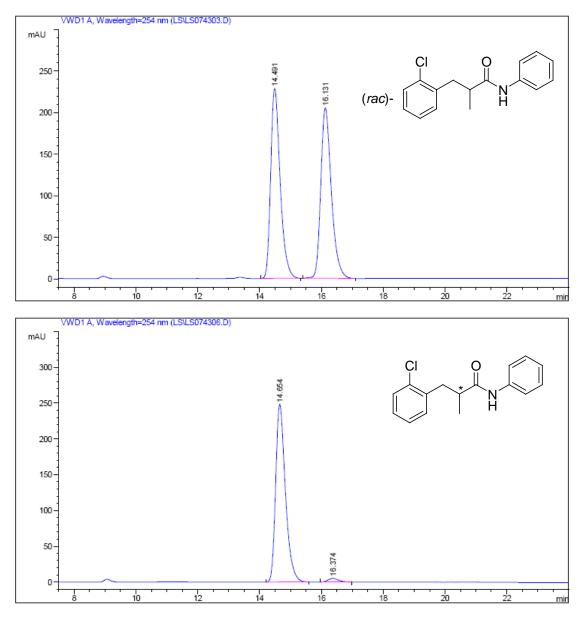

Peak	RetTime	Туре	Width	Area		Height		Area
	[min]		• •			-	-	
1	32.281	BB	1.2736	1.49591	e4	175.0	5823	99.1485
2	37.524	BB	0.9447	128.47	194	1.6	0136	0.8515

Totals :

176.65958

1.50876e4

3-(4-Methoxyphenyl)-2-methyl-N-phenyl-propionamide

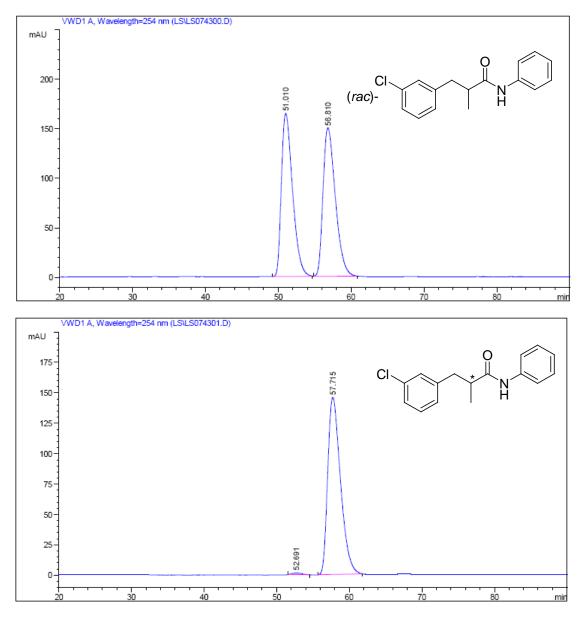

Signal 1: VWD1 A, Wavelength=254 nm

Peak	RetTime	Туре	Width	Area		Height		Area
#	[min]		[min]	mAU	*s	[mAU]	00
1	16.909	BB	0.4739	53.1	.8158	1.7	1478	0.6023
2	20.122	BB	0.6669	8776.0	3027	202.6	4864	99.3977

Totals :

8829.21186 204.36342

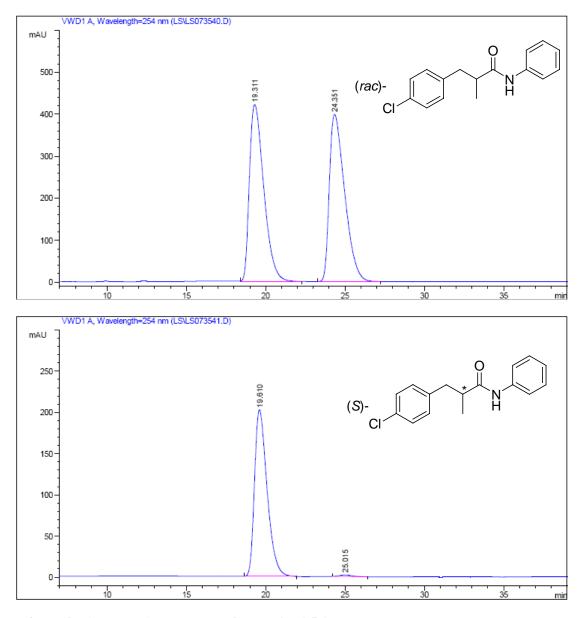
3-(2-Chlorophenyl)-2-methyl-N-phenyl-propionamide


Signal 1: VWD1 A, Wavelength=254 nm

Peak RetTime Type Width Area Height	Area
# [min] [min] mAU *s [mAU]	olo
	-
1 14.654 BB 0.3345 5447.28906 248.3208	8 97.8001
2 16.374 BB 0.3580 122.52940 5.2527	6 2.1999

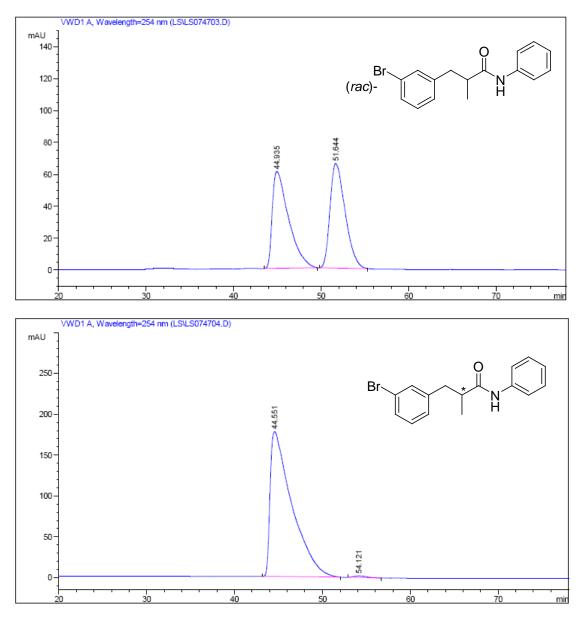
Totals :

5569.81847 253.57363


3-(3-Chlorophenyl)-2-methyl-N-phenyl-propionamide

Signal 1: VWD1 A, Wavelength=254 nm

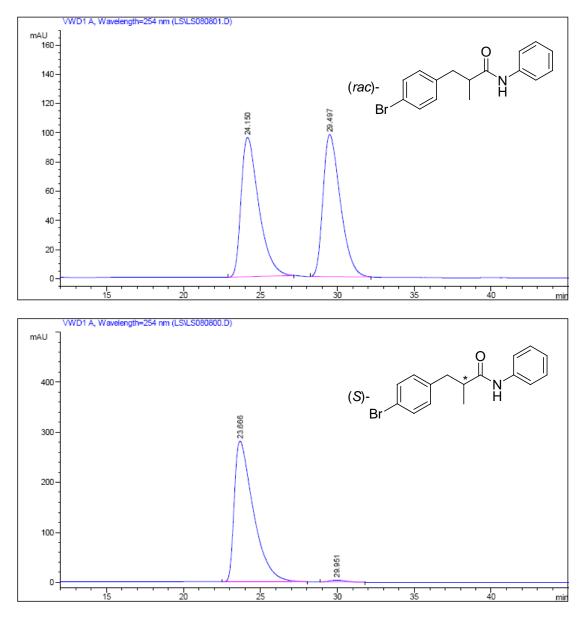
Peak RetTime # [min]							
1 52.691 2 57.715	BB	1.0528	125.5	6611	1.4	40112	0.7016
Totals :			1.7898	4e4	147.2	20178	


3-(4-Chlorophenyl)-2-methyl-N-phenyl-propionamide

Signal 1: VWD1 A, Wavelength=254 nm

Peak	RetTime	Туре	Width	Area		Height		Area
#	[min]		[min]	mAU	*s	[mAU]	do
		•						
1	19.610	BB	0.8462	1.115	64e4	202.	17201	99.1202
2	25.015	BP	0.6772	99.	02988	1.	79879	0.8798
Total	s:			1.125	55e4	203.	97081	

(3-Bromophenyl)-2-methyl-N-phenyl-propionamide

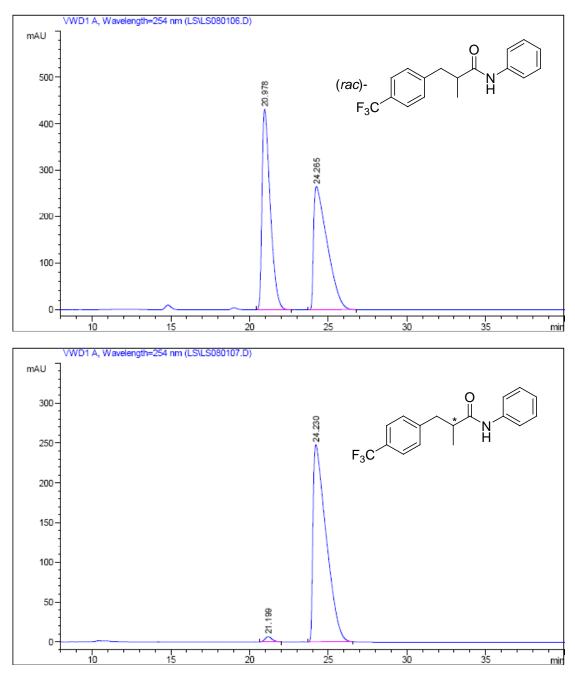

Signal 1: VWD1 A, Wavelength=254 nm

Peak	RetTime	Туре	Width	Area		Height	Area
#	[min]		[min]	mAU *s	s [n	NAU]	%
1	44.551	BB	2.2850	3.041036	24 1	77.4243	38 99.3633
2	54.121	BP	1.2071	194.851	L97	1.9038	0.6367

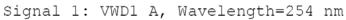
Totals :

3.06051e4 179.32826

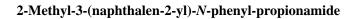
3-(4-Bromophenyl)-2-methyl-N-phenyl-propionamide

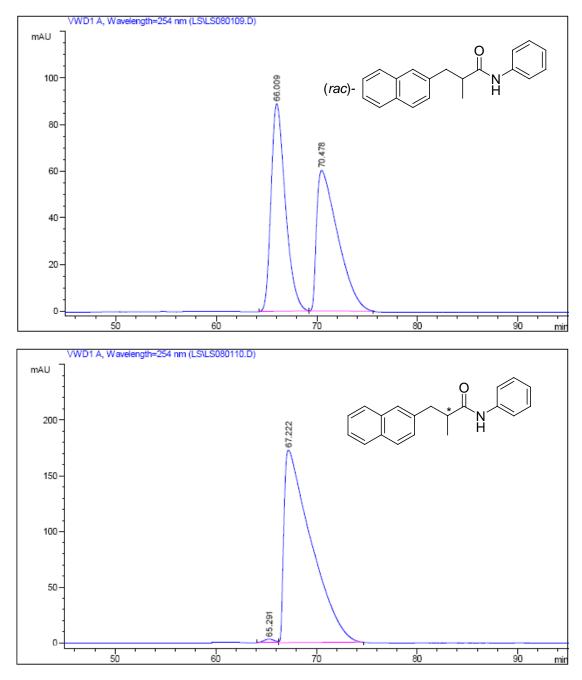


Signal 1: VWD1 A, Wavelength=254 nm


Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	mAU *s	[mAU]	00
1	23.666	VB	1.2517	2.42859e4	281.34882	98.8706
2	29.951	BP	0.8547	277.42755	3.84576	1.1294

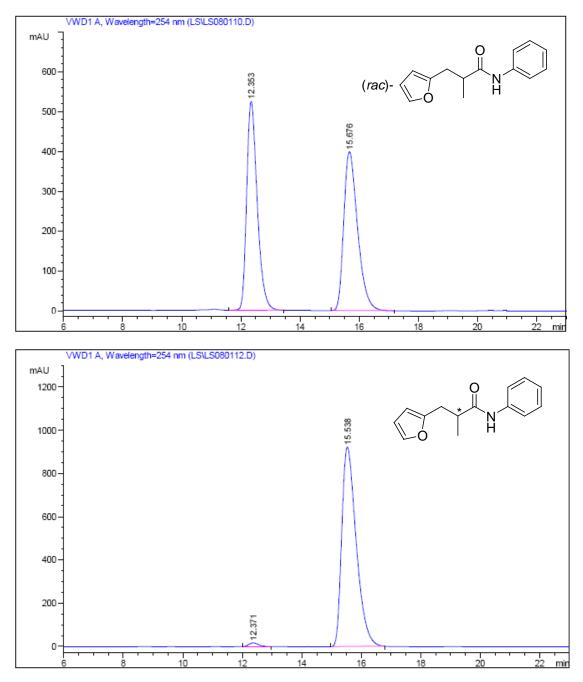
Totals :


2.45633e4 285.19458



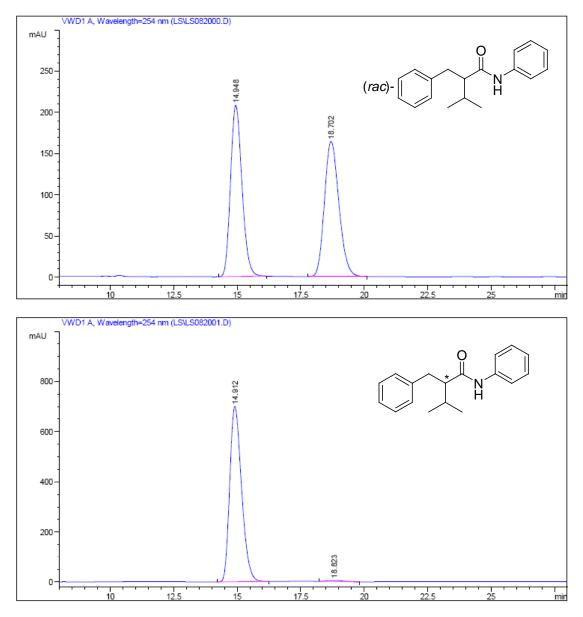
2-Methyl-3-(4-(trifluoromethyl)phenyl)-N-phenyl-propionamide

Peak RetTime	Туре	Width	Area		Height		Area
# [min]		[min]	mAU	* s	[mAU]	00
1 21.199	BB	0.4661	205.	98788	б.	70626	1.4097
2 24.230	BB	0.8519	1.440	60e4	248.	19722	98.5903
Totals :			1.461	20e4	254.	90348	



Signal 1: VWD1 A, Wavelength=254 nm

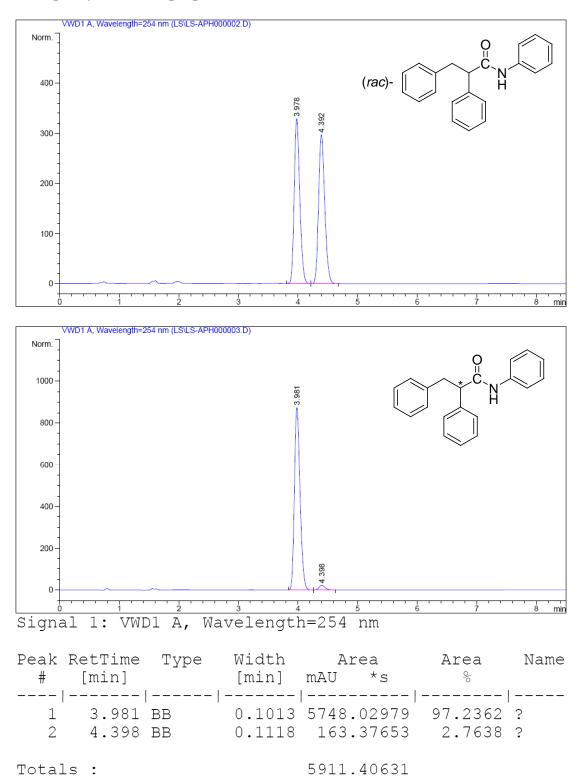
	RetTime [min]				-		Area %
							0.7202 99.2798
Total	ls :		3.261	65e4	175.7	79862	


3-(Furan-2-yl)-2-methyl-N-phenyl-propionamide

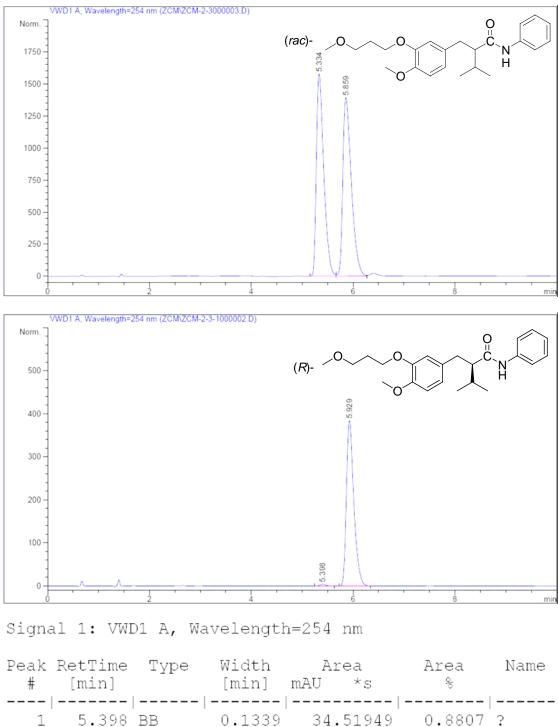
Peak RetTime T	Type Width	Area	Height	Area
# [min]				
-				
1 12.371 E	BB 0.3634	399.16293	16.95899	1.2666
2 15.538 E	3B 0.5200	3.11144e4	922.87964	98.7334
Totals :		3.15136e4	939.83863	

2-Benzyl-3-methyl-N-phenyl-butyramide

Signal 1: VWD1 A, Wavelength=254 nm

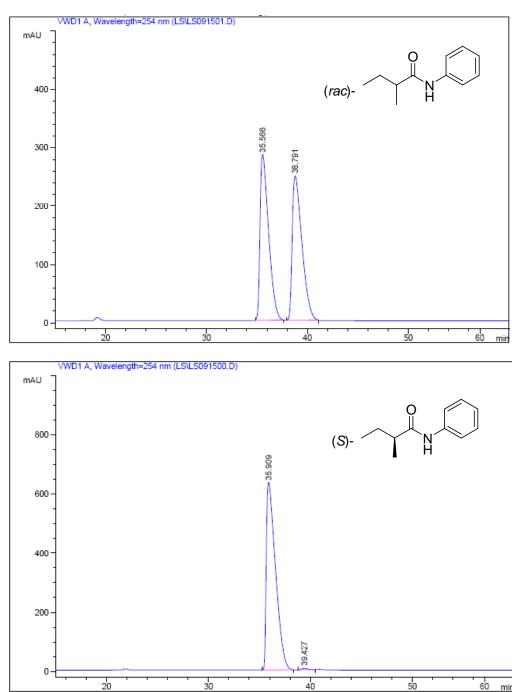

Peak	RetTime Type		Width	Area	Height	Area
					[mAU]	
					-	
1	14.912	PB	0.5009	2.26457e4	700.53143	99.2689
2	18.823	BP	0.5790	166.78842	4.48952	0.7311

2.28125e4


705.02096

Totals :

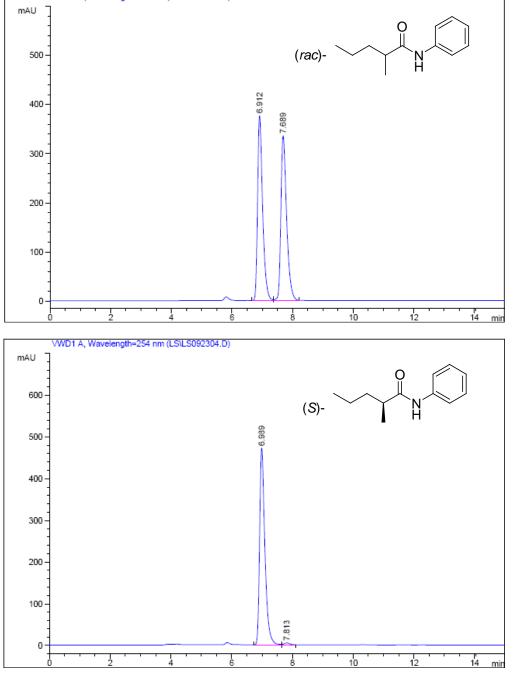
2,3-diphenyl-*N*-phenyl-propionamide


S51

$\label{eq:2-(3-(3-Methoxy propoxy)-4-methoxy benzyl)-3-methyl-$N-phenyl-butyramide}$

#	[min]	11	[min]	mAU *s	8	
1	5.398 5.929	BB	0.1339	34.51949 3885.20801	0.8807	?
Totals	:			3919.72750		

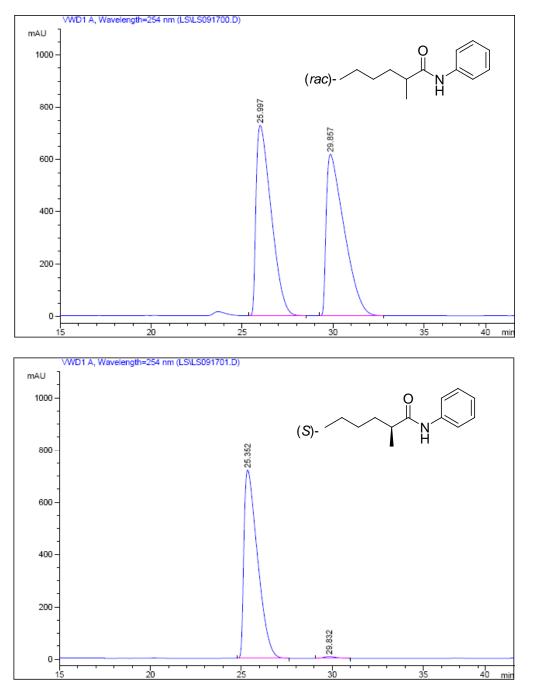
2-Methyl-N-phenyl-butyramide



Signal 1: VWD1 A, Wavelength=254 nm

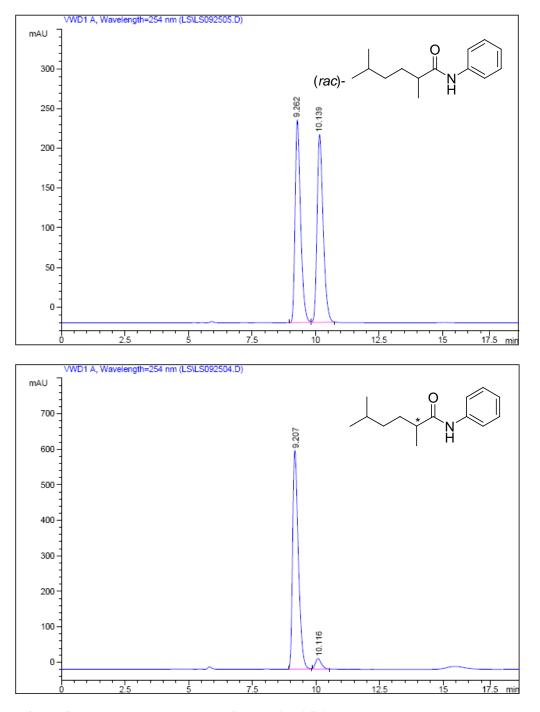
Peak RetTime Type Width Height Area Area [min] [min] mAU *s 8 # [mAU] ----| 35.909 BB 0.9391 3.98649e4 635.04413 99.5385 1 2 39.427 BP 0.6066 184.81322 4.36041 0.4615 Totals : 4.00497e4 639.40454

2-Methyl-N-phenyl-pentanamide



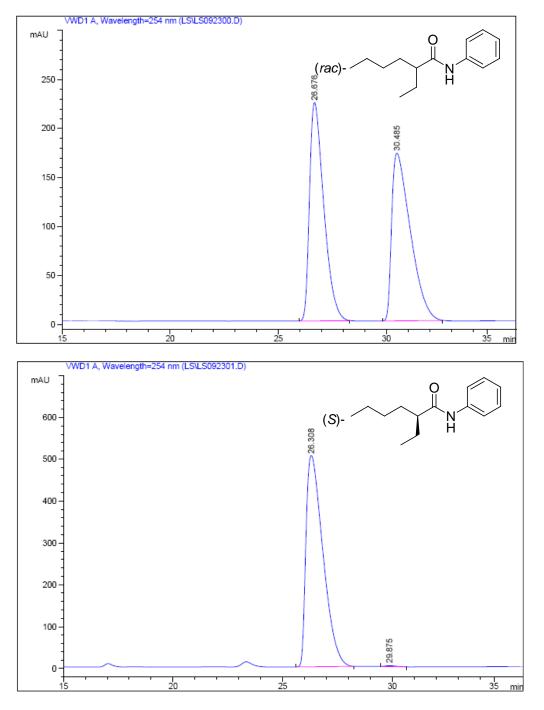
Signal 1: VWD1 A, Wavelength=254 nm

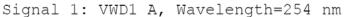
Peak RetTime Type Width Height Area Area [min] [min] mAU *s [mAU] % # _____ 0.1801 5692.83594 471.90387 6.989 BB 98.9427 1 7.813 BB 0.2006 60.83417 4.48093 2 1.0573 Totals : 5753.67010 476.38480


2-Methyl-*N*-phenyl-hexanamide

Signal 1: VWD1 A, Wavelength=254 nm

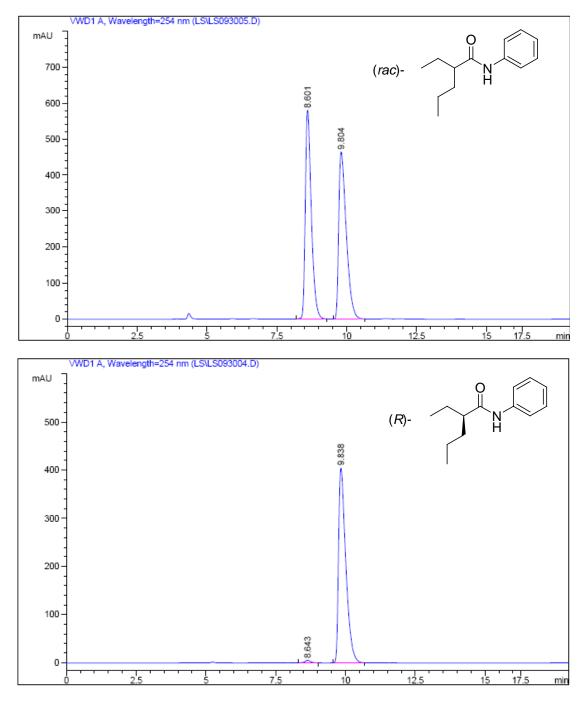
Peak RetTime Type Width Height Area Area [mAU] # [min] [min] mAU *s 8 ----|-----|----|-----| 1 25.352 BB 0.7856 3.72986e4 2 29.832 BB 0.6289 289.11151 719.19763 99.2308 6.52679 0.7692 725.72442 Totals : 3.75877e4


2,5-Dimethyl-N-phenyl-hexanamide



Signal 1: VWD1 A, Wavelength=254 nm

Peak RetTime Type Width Area Height Area # [min] [min] mAU *s [mAU 8] ----| 9.207 BB 0.2399 9687.69922 617.10199 95.1844 1 2 10.116 BB 0.2510 490.11908 29.65799 4.8156 Totals : 1.01778e4 646.75998


2-Ethyl-N-phenyl-hexanamide

Peak RetTime Type Width Area Height Area mAU *s % # [min] [min] [mAU] ----| 1 26.308 PB 0.8318 2.71436e4 504.27313 99.7281 2 29.875 BB 0.4940 73.99520 2.12312 0.2719 Totals : 2.72176e4 506.39625

2-Ethyl-N-phenyl-pentanamide

Signal 1: VWD1 A, Wavelength=254 nm

Peak Re	eak RetTime Type		Width Ar		ea He:		ght	Area
#	[min]		[min]	mAU	*s	[mAU]	010
		-						
1	8.643	BB	0.2203	78.	31574	5.	21740	1.0577
2	9.838	BB	0.2725	7325.	79150	404.	33823	98.9423
Totals	:			7404.	10725	409.	55563	