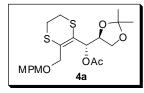
SUPPORTING INFORMATION

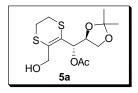
RAPID ACCESS TO 1,6-ANHYDRO-β-L-HEXOPYRANOSE DERIVATIVES VIA DOMINO REACTION: SYNTHESIS OF L-ALLOSE AND L-GLUCOSE

Daniele D'Alonzo, Annalisa Guaragna,* Carmela Napolitano and Giovanni Palumbo

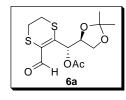

Dipartimento di Chimica Organica e Biochimica, Università di Napoli Federico II via Cinthia, 4 I-80126 Napoli, Italy

guaragna@unina.it

CONTENTS

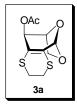

EXPERIMENTAL PROCEDURES	S2
COPIES OF ¹ H NMR SPECTRA	
Compound 4a	S11
Compound 5a	S12
Compound 6a	S13
Compound 3a	S14
Compound 3b	S15
Compound 7b	S16
Compound 9	S17
Compound 10	S18
Compound 11	S19
Compound 12	S20
Compound 13	S21
Compound 14	S22
Compound 15	S23
COPIES OF ¹³ C NMR SPECTRA	
Compound 4a	S24
Compound 5a	S25
Compound 6a	S26
Compound 3a	S27
Compound 3b	S28
Compound 7b	S29
Compound 9	S30
Compound 11	S31
Compound 12	S32
Compound 13	S33
Compound 14	S34
Compound 15	S35

All moisture-sensitive reactions were performed under nitrogen atmosphere using oven-dried glassware. Solvents were dried over standard drying agents and freshly distilled prior to use. Reactions were monitored by TLC (precoated silica gel plate F_{254} , Merck). Column chromatography: Merck Kieselgel 60 (70-230 mesh); flash chromatography: Merck Kieselgel 60 (230-400 mesh). Melting points are uncorrected and were determined with a capillary apparatus. Optical rotations were measured at 25 ± 2 °C in the stated solvent. ¹H and ¹³C NMR spectra were recorded on NMR spectrometers operating at 200, 300, 400 or 500 MHz and 50, 75, 100 or 125 MHz, respectively. Combustion analyses were performed using CHNS analyzer.


Compound 4a. The *anti*-diastereomer afforded by reaction of **1** with **2** (according to ref. 9) was acetylated by treatment with Ac₂O in pyridine overnight at room temperature. Then solvent removal under reduced pressure and chromatography of the crude residue on silica gel (hexane/EtOAc = 7:3) gave the pure **4a** (98% yield): oily, $[\alpha]^{25}_{D}$ +27.0 (*c* 1.1, CHCl₃). ¹H NMR (400 MHz, C₆D₆): δ 1.27 (s, 3H), 1.35 (s, 3H), 1.71 (s, 3H), 2.42-2.49 (m, 3H), 2.55-2.61 (m, 1H), 3.27 (s, 3H), 3.99 (dd, *J* = 6.5 Hz, *J* = 8.5 Hz, 1H), 4.08 (dd, *J* = 6.5 Hz, *J* = 8.5 Hz, 1H), 4.29 (d, *J* = 12.2 Hz, 1H), 4.48 (s, 3H), 4.63 (d, *J* = 12.2 Hz, 1H), 6.26 (d, *J* = 5.9 Hz, 1H), 6.81 (d, *J* = 8.6 Hz, 2H), 7.35 (d, *J* = 8.6 Hz, 2H). ¹³C NMR (100 MHz, C₆D₆): δ 20.3, 25.6, 26.5, 26.9, 29.5, 54.7, 66.6, 70.9, 72.1, 73.2, 76.7, 109.4, 114.0, 125.1, 129.2, 129.9, 130.8, 159.8, 169.0. Anal. calcd for C₂₁H₂₈O₆S₂: C 57.25, H 6.41, S 14.56. Found: C 57.08, H 6.44, S 14.63.

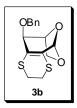
Compound 4b. Synthetic procedure and characterization data have been previously described according to ref. 9.

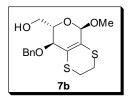
Compound 5a. To a stirred 9:1 CH₂Cl₂/H₂O emulsion (100 mL) containing the MPM ether **4a** (1.08 g, 2.46 mmol), DDQ (0.84 g, 3.68 mmol) was added in one portion at room temperature. After 3h, H₂O was added and the resulting mixture was extracted with CH₂Cl₂; the organic layer was dried (Na₂SO₄) and the solvent evaporated under reduced pressure. Chromatography of the crude residue over silica gel (hexane/acetone = 9:1) gave the pure **5a** (0.57 g; 72% yield): oily, $[\alpha]^{25}{}_{D}$ +31.0 (*c* 1.1, CHCl₃). ¹H NMR (400 MHz, CDCl₃): δ 1.33 (s, 3H), 1.42 (s, 3H), 2.05 (s, 3H), 3.02-3.08 (m, 2H), 3.16-3.22 (m, 2H), 3.76 (dd, *J* = 6.3 Hz, *J* = 8.7 Hz, 1H), 4.10 (dd, *J* = 6.3 Hz, *J* = 8.7 Hz, 1H), 4.10 (bd, *J* = 13.0 Hz, 1H), 4.26 (bd, *J* = 13.0 Hz, 1H), 4.38-4.43 (m, 1H), 5.60 (d, *J* = 8.4 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃): δ 25.1, 26.2, 27.0, 29.7, 29.9, 63.3, 67.3, 73.8, 74.2, 108.7, 124.5, 128.5, 170.1. Anal. calcd for C₁₃H₂₀O₅S₂: C, 48.73; H, 6.29, S 20.01. Found: C, 48.60; H 6.32, S 20.08.


Compound 5b. Synthetic procedure and characterization data have been previously described according to ref. 9.

Compound 6a. A solution of alcohol **5a** (0.56 g, 1.8 mmol) in pyridine (4 mL) was added in one portion to a stirred suspension of PCC (0.54 g, 2.50 mmol) and Celite (0.54 g) in Py (14 mL) at room temperature. The resulting mixture was stirred for 8 h and then diluted with 20 mL of anhydrous Et₂O, kept in an ultrasound bath for 30 min and filtered on a Celite pad. After solvent removal under reduced pressure, chromatography of the crude residue over silica gel (hexane/acetone = 9:1) gave the pure **6a** (0.54 g, 97% yield): oily, $[\alpha]^{25}_{D}$ +68.2 (*c* 0.8, CHCl₃). ¹H

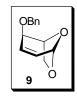
NMR (200 MHz, CDCl₃): δ 1.37 (s, 3H), 1.39 (s, 3H), 2.11 (s, 3H), 3.05-3.18 (m, 2H), 3.20-3.26 (m, 2H), 3.91 (dd, J = 5.4 Hz, J = 9.3 Hz, 1H), 4.14 (dd, J = 6.4 Hz, J = 8.8 Hz, 1H), 4.31-4.43 (m, 1H), 6.11 (d, J = 7.8 Hz, 1H), 10.0 (s, 1H). ¹³C NMR (50 MHz, CDCl₃): δ 20.6, 25.0, 25.9, 26.4, 29.1, 66.8, 72.5, 75.7, 110.6, 130.6, 147.2, 169.2, 182.9. Anal. calcd for C₁₃H₁₈O₅S₂: C 49.04, H 5.70, S 20.14. Found: C 49.19, H 5.67, S 20.20.


Compound 6b. Synthetic procedure and characterization data have been previously described according to ref. 9.


Compound 3a. *Method A*: amberlyst 15 (4.8 g, previously washed with anhydrous MeOH) was added in one portion to a stirred solution of aldehyde **6a** (0.48 g, 1.51 mmol) in methanol (40 mL) at 0 °C. After 10 min, the suspension was warmed to room temperature and stirred for 1h. Then the solid was filtered off and washed with AcOEt; the organic phase, diluted with AcOEt, was washed with brine until neutrality, dried (Na₂SO₄) and concentrated under reduced pressure. The crude residue was dissolved in CHCl₃ (80 mL) and amberlyst 15 (4.8 g, previously washed with anhydrous CHCl₃) was added in one portion at 0 °C. After 10 min, the suspension was warmed to room temperature and further stirred for 1h. Then the solid was filtered off, washed with CHCl₃ and the resulting solution washed with saturated NaHCO₃ solution and brine. The organic layers were dried (Na₂SO₄) and the solvent evaporated under reduced pressure. Chromatography of the crude residue over silica gel (hexane/acetone = 90:1) gave the pure **3a** (0.31 g, 80% o.y.).

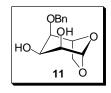
Method B: to a stirred 18:1 CH₂Cl₂/H₂O emulsion (7 mL) containing the ether **4a** (0.44 g, 1.0 mmol), DDQ (0.45 g, 2.00 mmol) was added in one portion at room temperature; then the reaction was warmed until reflux and stirred for 48 h. Hence, H₂O was added and the mixture was extracted

with CH₂Cl₂; the organic layer was dried (Na₂SO₄) and the solvent evaporated. Chromatography of the crude residue (hexane/acetone = 9:1) gave the pure **3a** (0.23 g, 89% yield): oily, $[\alpha]^{25}_{D}$ -32.0 (*c* 0.9, CHCl₃). ¹H NMR (400 MHz, CDCl₃): δ 2.17 (s, 3H), 3.19-3.27 (m, 4H), 3.68 (dd, *J* = 1.9 Hz, *J* = 8.1 Hz, 1H), 3.98 (dd, *J* = 6.6 Hz, *J* = 8.0 Hz, 1H), 4.70-4.72 (m, 1H), 4.85 (d, *J* = 1.3 Hz, 1H), 5.34 (s, 1H). ¹³C NMR (100 MHz, CDCl₃): δ 27.5, 27.9, 29.7, 63.8, 70.5, 75.2, 98.9, 128.8, 130.9, 172.6. Anal. calcd for C₁₀H₁₂O₄S₂: C 46.14, H 4.65, S 24.63. Found: C 46.00, H 4.63, S 24.55.

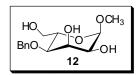


Compound 3b. Following both methods reported with regards to the synthesis of compound **3a**, the pure **3b** was afforded by double cyclization from aldehyde **6b** (94% o.y.) or by domino reaction starting from MPM ether **4b** (92% yield): white solid, mp 132.3-134.4 °C (from MeOH); $[\alpha]^{25}_{D}$ +12.5 (*c* 1.2, CHCl₃). ¹H NMR (400 MHz, CDCl₃): δ 3.16-3.29 (m, 4H), 3.56 (dd, *J* = 2.0 Hz, *J* = 7.7 Hz, 1H), 3.58 (d, *J* = 1.0 Hz, 1H), 3.98 (dd, *J* = 6.8 Hz, *J* = 7.7 Hz, 1H), 4.72 (s, 2H), 4.80-4.82 (m, 1H), 5.24 (s, 1H), 7.29-7.44 (m, 5H). ¹³C NMR (100 MHz, CDCl₃): δ 27.6, 27.7, 64.0, 70.2, 76.6, 77.0, 98.8, 118.9, 126.8, 127.7, 128.0, 128.3, 137.9. Anal. calcd for C₁₅H₁₆O₃S₂: C 58.41, H 5.23, S 20.79. Found: C 58.59, H 5.25, S 20.71.

Compound 7b. Amberlyst 15 (3.5 g, previously washed with anhydrous MeOH) was added in one portion to a stirred solution of **3b** (0.35 g, 1.14 mmol) in methanol (30 mL) at 0 °C. After 10 min, the suspension was warmed to room temperature and stirred for 1h. Then the solid was filtered off and washed with AcOEt; the organic phase, diluted with AcOEt, was washed with brine until


neutrality, dried (Na₂SO₄) and concentrated under reduced pressure. Chromatography over silica gel (CH₂Cl₂) gave the pure **7b** (0.33 g, 85% yield): white solid, mp 78.9-80.2 °C (from MeOH); $[\alpha]^{25}_{D}$ +55.2 (*c* 0.9, CHCl₃). ¹H NMR (500 MHz, C₆D₆): δ 2.30-2.43 (m, 3H), 2.55-2.62 (m, 1H), 3.12 (s, 3H), 3.54-3.63 (m, 1H), 4.12-4.16 (m, 1H), 4.28 (d, *J* = 11.2 Hz, 1H), 4.58 (d, *J* = 11.2 Hz, 1H), 4.67 (d, *J* =11.2 Hz, 1H), 4.74 (s, 1H), 7.03-7.18 (m, 3H), 7.38 (d, *J* = 7.5 Hz, 2H). ¹³C NMR (75 MHz, C₆D₆): δ 26.4, 27.6, 55.1, 61.8, 70.7, 72.8, 74.2, 98.4, 122.3, 125.6, 127.6, 127.8, 128.2, 128.4, 138.3. Anal. calcd for C₁₆H₂₀O₄S₂: C 56.44, H 5.92, S 18.84. Found: C 56.25, H 5.94, S 18.91.

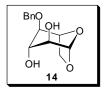
1,6-Anhydro-4-*O***-benzyl-2,3-dideoxy-β-L***erytro***-hex-2-enopyranose (9)**. A solution of **3b** (0.30 g, 0.97 mmol) in acetone (12 mL) was added in one portion to a stirred suspension of Raney-Ni (W2) (3.0 g, washed with acetone) in the same solvent (10 mL) at 0 °C and under nitrogen atmosphere. The suspension was warmed to room temperature and further stirred for 2h, then the solid was filtered off and washed with acetone. The filtrate was evaporated under reduced pressure to afford a crude residue which chromatography over silica gel (CH₂Cl₂) gave the pure **9** (0.16 g, 75% yield): oily; $[\alpha]^{25}_{\text{ D}}$ -154.0 (*c* 1.2, CHCl₃). ¹H NMR (400 MHz, CDCl₃): δ 3.40 (dd, *J* =1.9 Hz, *J* =7.5 Hz, 1H), 3.53 (d, *J* =4.4 Hz, 1H), 3.92 (appt, *J* = 6.6 Hz, *J* = 7.3 Hz, 1H), 4.68 (d, *J* =12.2 Hz, 1H), 4.70 (d, *J* =12.2 Hz, 1H), 4.78-4.82 (m, 1H), 5.57 (d, *J* = 3.1 Hz, 1H), 5.85 (ddd, *J* =1.8 Hz, *J* = 3.6 Hz, *J* =9.6 Hz, 1H), 6.14 (dd, *J* =3.1 Hz, *J* = 9.6 Hz, 1H), 7.25-7.40 (m, 5H). ¹³C NMR (100 MHz, CDCl₃): δ 63.0, 70.6, 73.0, 74.0, 95.4, 124.0, 126.8, 127.7, 128.4, 131.3, 138.1. Anal. calcd for C₁₃H₁₄O₃: C 71.54, H 6.47. Found: C 71.78, H 6.44.



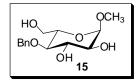
1,6-anhydro-4-*O***-benzyl-2,3-dideoxy-β-L***erytro***-pyranose (10)**. Under similar conditions reported above, treatment of **3b** (0.30 g, 1.37 mmol) in acetone with an excess of Raney-Ni (W2) (6.0 g, wet) afforded, after common work-up and purification procedures, the pure **10** (0.25 g, 82% yield): oily, $[\alpha]^{25}_{D}$ -63.0 (*c* 0.8, CHCl₃). ¹H NMR (500 MHz, CDCl₃): δ 1.80 (bdd, *J* = 5.8 Hz, *J* = 14.2 Hz, 1H), 1.83-1.92 (m, 2H), 1.97 (ddd, *J* = 6.3 Hz, *J* = 13.2 Hz, *J* = 19.0 Hz, 1H), 3.38 (s, 1H), 3.74-3.81 (m, 2H), 4.56-4.60 (m, 1H), 4.62 (d, *J* = 12.2 Hz, 1H), 4.66 (d, *J* = 12.2 Hz, 1H), 5.56 (s, 1H). ¹³C NMR (100 MHz, CDCl₃): δ 28.0, 29.3, 66.1, 70.1, 72.9, 74.9, 101.7, 127.6, 127.8, 128.3, 138.2. Anal. calcd for C₁₃H₁₆O₃: C 70.89, H 7.32. Found: C 70.94, H 7.33.

[†] Černý M., Kalvoda, L., Pacák J. Collect. Czech. Chem. Commun. **1968**, 33, 1143-1156 and Cruzado, M.C.; Martin-Lomas, M. Carbohydr. Res. **1988**, 175, 193-199.

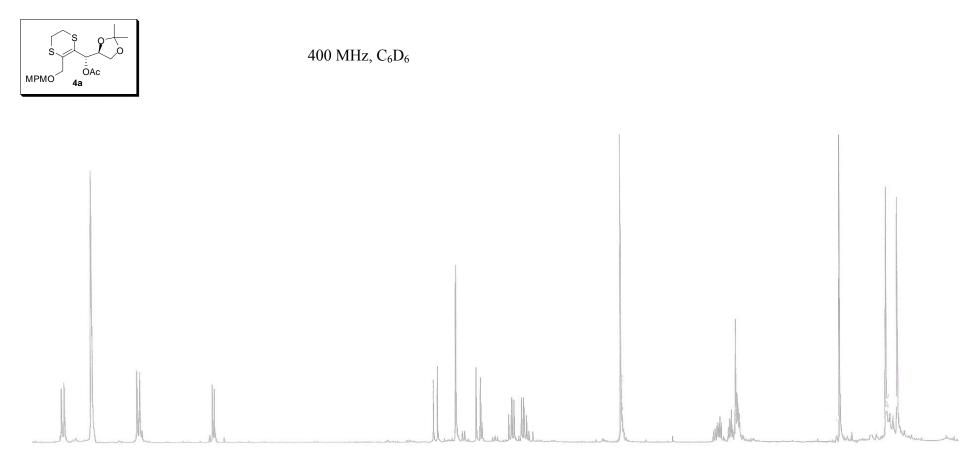
1H), 4.62 (d, J = 12.4 Hz, 1H), 4.64 (d, J = 12.4 Hz, 1H), 5.40 (s, 1H), 7.28-7.42 (m, 5H). ¹³C NMR (75 MHz, CDCl₃): δ 64.8, 66.6, 68.8, 71.5, 74.0, 78.2, 101.4, 127.7, 127.9, 128.5, 137.4. Anal. calcd for C₁₃H₁₆O₅: C 61.90, H 6.39. Found: C 61.71, H 6.41.



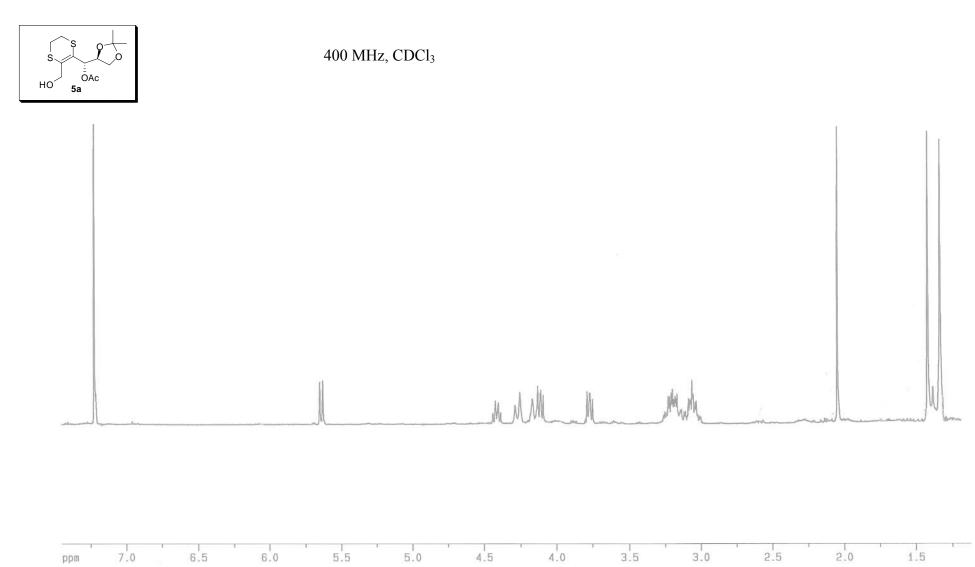
Methyl 4-*O*-benzyl-α-L-*allo*pyranoside (12). To a solution of 11 (0.15 g, 0.60 mmol) in MeOH (8 mL) a catalytic amount of trimethylsilyl trifluoromethansulfonate (TfOTMS, 0.06 mmol) was added and the resulting reaction mixture was stirred at 50 °C for 48 h. Then the reaction was quenched with solid NaHCO₃ and the solvent evaporated under reduced pressure. Chromatography of the crude residue over silica gel (CH₂Cl₂/MeOH = 9/1) gave the pure 12 (0.16 g, 92% yield) as single anomer: amorphus, $[\alpha]^{25}_{D}$ -70.2 (*c* 1.0, CHCl₃). ¹H NMR (400 MHz, CD₃OD): δ 3.36 (s, 3H), 3.47-3.54 (m, 1H), 3.58 (t, *J* = 9.7 Hz, 1H), 3.62 (dd, *J* = 5.4 Hz, *J* = 12.2 Hz, 1H), 3.68-3.74 (m, 2H), 3.77 (dd, *J* = 3.4 Hz, *J* = 9.2 Hz, 1H), 4.55 (d, *J* = 10.7 Hz, 1H), 4.58 (s, 1H), 4.84 (d, *J* = 10.7 Hz, 1H), 7.19 (t, *J* = 6.8 Hz, 1H), 7.25 (t, *J* = 7.5 Hz, 2H), 7.30 (d, *J* = 7.5 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃): δ 55.2, 62.7, 72.6, 73.0, 73.5, 75.9, 76.8, 102.7, 128.6, 129.1, 129.3, 140.1. Anal. calcd for C₁₄H₂₀O₆: C 59.14, H 7.09. Found: C 59.00, H 7.06.

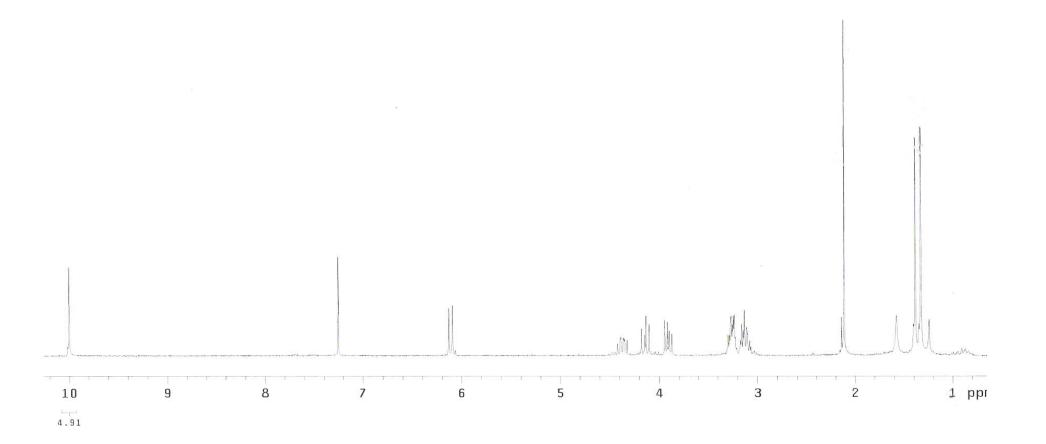

1,6:2,3-Dianhydro-4-*O***-benzyl-** β **-L***-allo***pyranose (13).** Na₂EDTA (4.0 x 10⁻⁴ M, 3.45 mL) and CF₃COCH₃ (0.61 mL) were added to a solution of **9** (0.15 g, 0.69 mmol) in CH₃CN (6.9 mL) at 0 °C. After a few minutes a mixture of NaHCO₃ (0.43 g) and Oxone[®] (1.72 g) was added over 1 h and the whole resulting mixture was stirred for 30 min at the same temperature. Then the reaction was diluted with H₂O and extracted with CH₂Cl₂. The extracts were washed with brine, dried (Na₂SO₄),

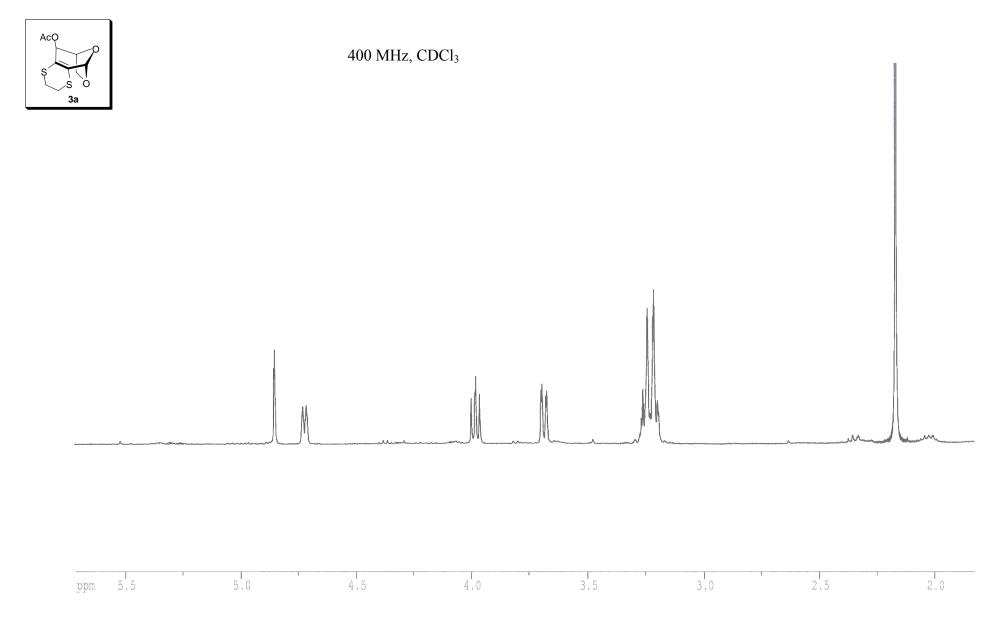
and evaporated under reduced pressure. Chromatography of the crude residue over silica gel (hexane/acetone = 8:2) afforded the pure **13** (0.15 g, 92% yield) as single diastereoisomer: white solid, mp 74.2-76.0 °C (from MeOH); $[\alpha]^{25}_{D}$ -117.3 (c 1.8, CHCl₃), [lit. data for *ent*-13: mp 74.0-76.0 °C, $[\alpha]^{25}_{D}$ +127.0 and mp 75.0-79.0 °C, $[\alpha]^{25}_{D}$ +119.0][‡]. ¹H NMR (300 MHz, CDCl₃): δ 3.09 (dd, J = 0.9 Hz, J = 4.4 Hz, 1H), 3.29-3.34 (m, 1H), 3.45 (d, J = 4.4 Hz, 1H), 3.62 (dd, J = 1.9 Hz, J = 7.8 Hz, 1H), 3.88 (appt, J = 7.1 Hz, J = 7.8 Hz, 1H), 4.51 (dt, J = 1.9 Hz, J = 7.1 Hz, 1H), 4.74 (d, J = 12.4 Hz, 1H), 4.87 (d, J = 12.4 Hz, 1H), 5.65 (d, J = 0.9 Hz, 1H), 7.28-7.47 (m, 5H). ¹³C NMR (125 MHz, CDCl₃): δ 47.5, 47.8, 65.4, 70.7, 72.3, 75.4, 97.1, 127.8, 127.9, 128.4, 137.6. Anal. calcd for C₁₃H₁₄O₄: C 66.66, H 6.02. Found C 66.87, H 6.04.

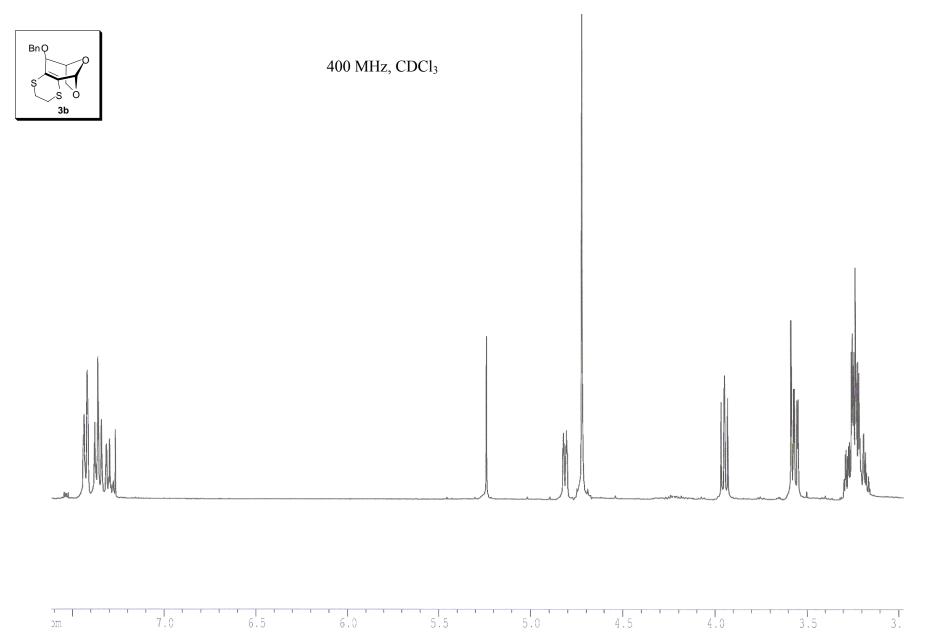

1,6-Anhydro-4-*O***-benzyl-β-L***-gluco***pyranose** (**14**). The epoxide **13** (0.14 g, 0.60 mmol) was refluxed for 48 h in a 1M aqueous solution of KOH (8 ml). Then 1N HCl was carefully added at 0 °C until neutrality. The white solid was filtered off and washed with AcOEt, the solvent removed under reduced pressure to afford crude **14**, which was directly used in the next reaction. A sample of crude **14** was purified by SiO₂ chromatography (CH₂Cl₂/MeOH = 95/5) and characterized. White crystals, m.p. 51-53, $[\alpha]^{25}_{D}$ +40.2 (c 1.5, EtOH), [lit. data for *ent*-**14**: mp 53.0.-54.0 °C, $[\alpha]^{25}_{D}$ -43.0 and mp 50.0.-52.0 °C, $[\alpha]^{25}_{D}$ -41.0][§]. ¹H NMR (500 MHz, CDCl₃): δ 2.52 (bs, 1H), 2.75 (bs, 1H), 3.45 (s, 1H), 3.55 (bs, 1H), 3.78 (dd, *J* = 5.4 Hz, *J* = 7.8 Hz, 1H), 3.94 (bs, 1H), 4.15 (d, *J* = 7.8 Hz, 1H), 4.63 (bd, *J* = 7.3 Hz, 1H), 4.66 (d, *J* = 11.7 Hz, 1H), 4.70 (d, *J* = 11.7 Hz, 1H), 5.52 (s, 1H), 7.30-7.40 (m, 5H). ¹³C NMR (75 MHz, CDCl₃): δ 65.3, 69.8, 70.4, 71.3, 74.3, 76.6, 102.0, 127.6, 127.8, 128.4, 137.0. Anal. calcd for C₁₃H₁₆O₅: C 61.90, H 6.39. Found: C 62.12, H 6.52.

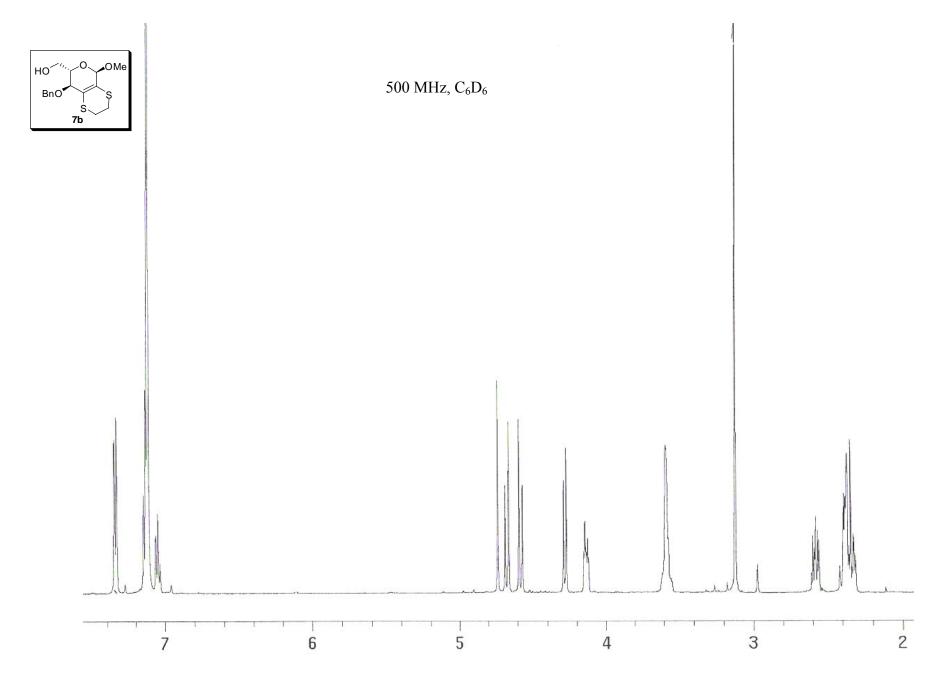
^{(&}lt;sup>*</sup>) (a) Černý, M.; Trnka, T.; Beran, P.; Pacák, J. Collect. Czech. Chem. Commun. **1969**, *34*, 3377-3382. (b) Grindley, T. B.; Reimer, G. J.; Kralovek, J. Can. J. Chem. **1987**, *65*, 1065-1071. [§] (a) Seib, P. A. Carbohydr. Res. **1968**, *8*, 101-109. (b) Cruzado, M.C.; Martin-Lomas, M. Carbohydr. Res. **1988**, *175*, 193-199.

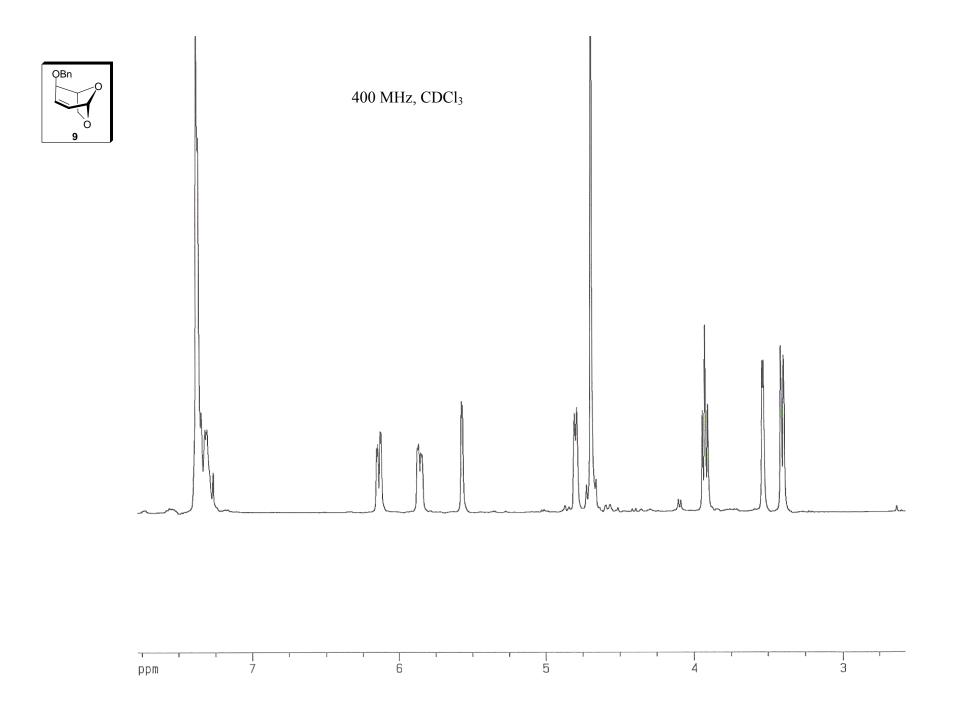


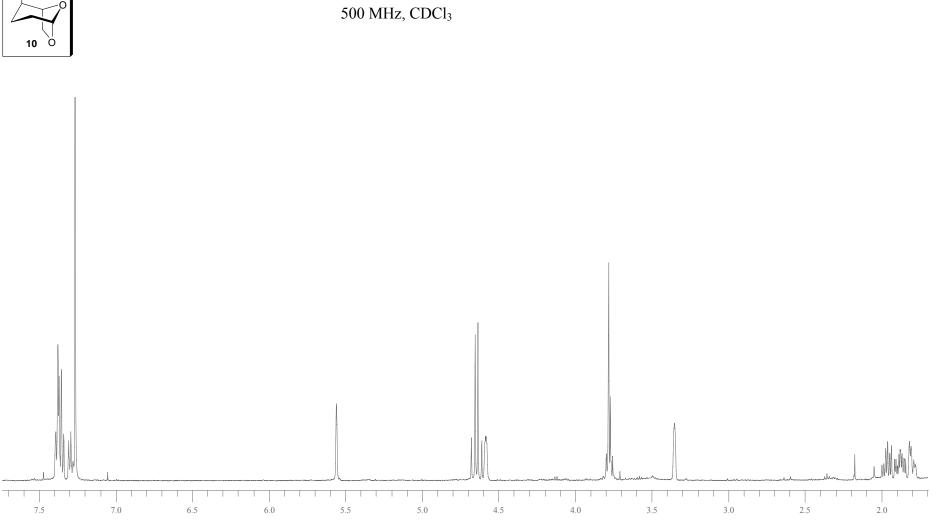

Methyl 4-*O*-benzyl-α-L-*glucopyranoside* (15). The crude 14, coevaporated three times with toluene, was dissolved in MeOH (10 mL) and a catalytic amount of TfOTMS (10.9 µL, 0.06 mmol) was added. The resulting reaction mixture was stirred at 50 °C for 48 h; then the reaction was quenched with solid NaHCO₃ and the solvent evaporated under reduced pressure. Chromatography of the crude residue over silica gel (CH₂Cl₂/MeOH = 9/1) gave the pure 15 (0.16 g, 93% from 13 yield): white crystals, mp 125-127 °C, $[\alpha]^{25}_{D}$ -144.2 (c 1.2, MeOH), [lit. data for *ent*-15: mp 126.0-127.0 °C, $[\alpha]^{25}_{D}$ +154.0]^{**}. ¹H NMR (500 MHz, CDCl₃): δ 3.41 (s, 3H), 3.46 (t, *J* = 9.5 Hz, 1H), 3.51 (dd, *J* = 3.1 Hz, *J* = 9.5 Hz, 1H), 3.65 (dt, *J* = 3.2 Hz, *J* = 9.5 Hz, 1H), 3.67-3.73 (m, 1H), 3.76 (dd, *J* = 3.2 Hz, *J* = 11.7 Hz, 1H), 3.84 (dd, *J* = 3.2 Hz, *J* = 11.7 Hz, 1H), 3.86 (t, *J* = 9.5 Hz, 1H), 4.73 (d, *J* = 11.2 Hz, 1H), 4.77 (d, *J* = 3.1 Hz, 1H), 4.87 (d, *J* = 11.2 Hz, 1H), 7.25-7.38 (m, 5H). ¹³C NMR (100 MHz, CD₃OD): δ 54.0, 60.8, 61.3, 72.3, 74.0, 74.3, 78.0, 99.7, 127.1, 127.5, 127.7, 138.5. Anal. calcd for C₁₄H₂₀O₆: C 59.14, H 7.09. Found: C 58.95, H 7.06.

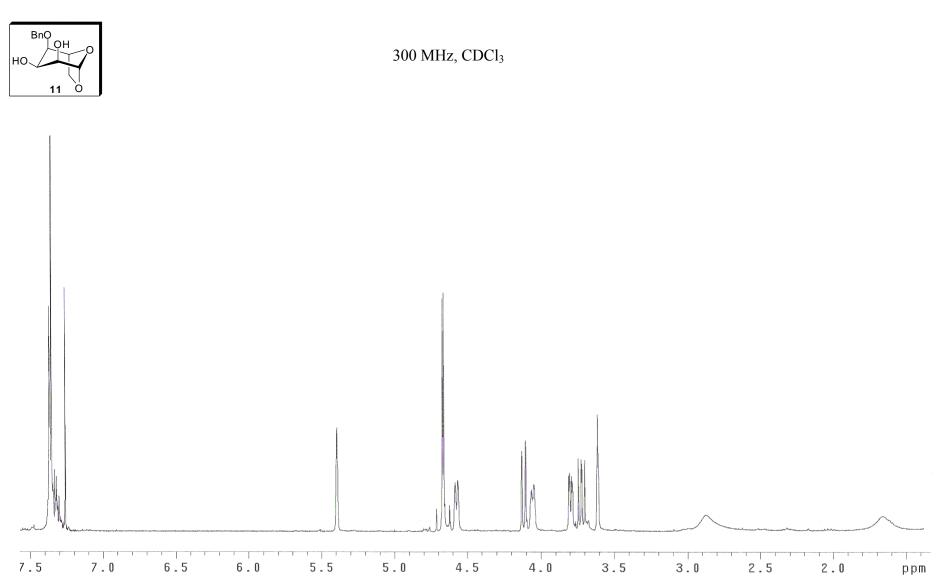

^(**) Satomura, S.; Iwata, T.; Sakata, Y.; Omichi, K.; Ikenaka, T. Carbohydr. Res. 1988, 176, 107-116.

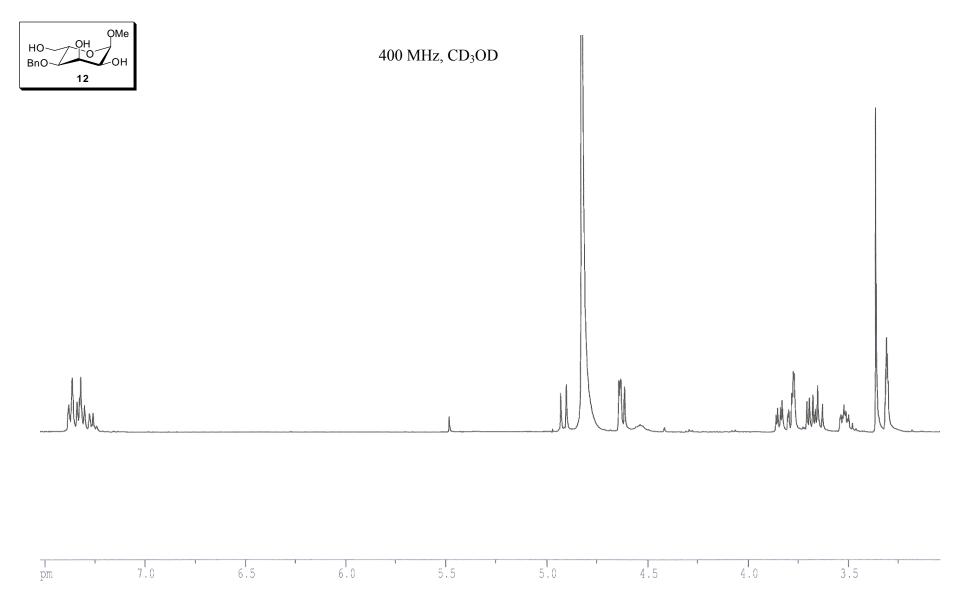


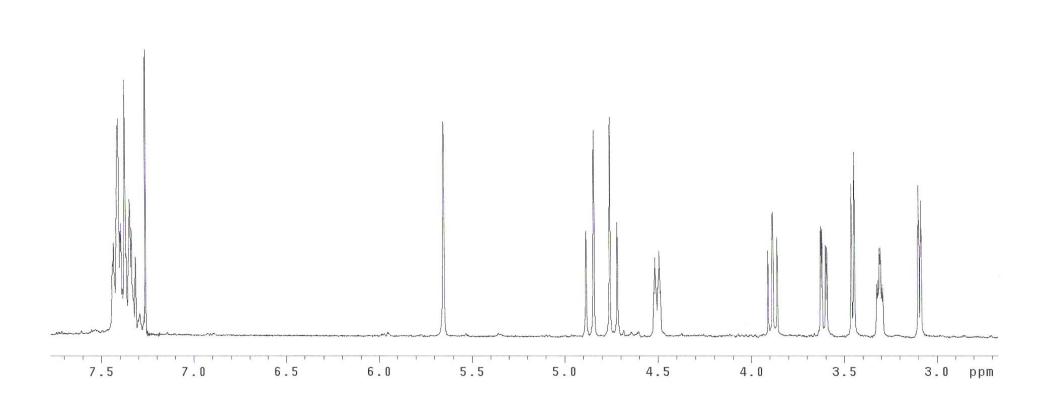


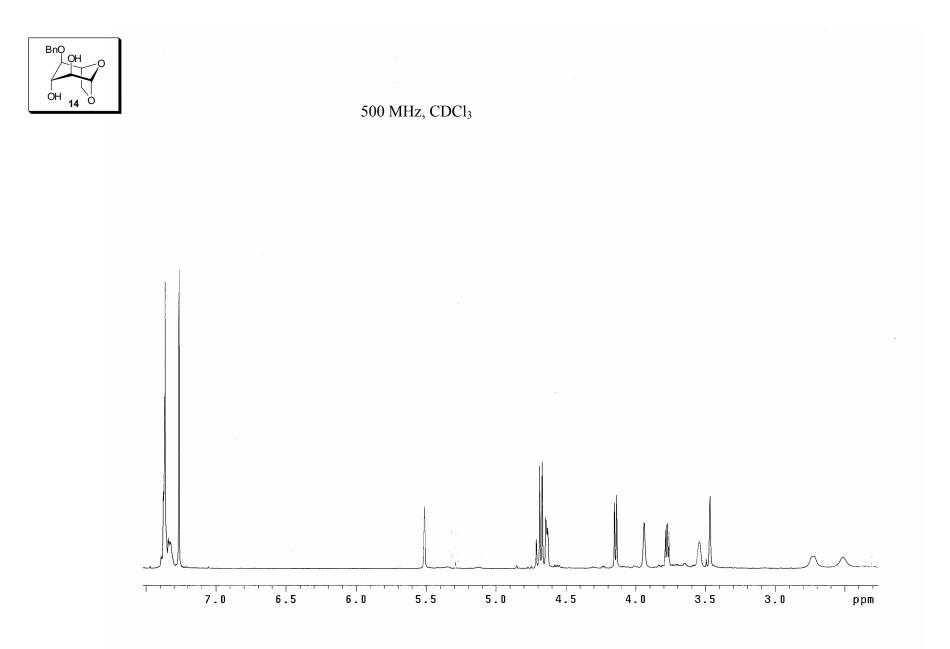


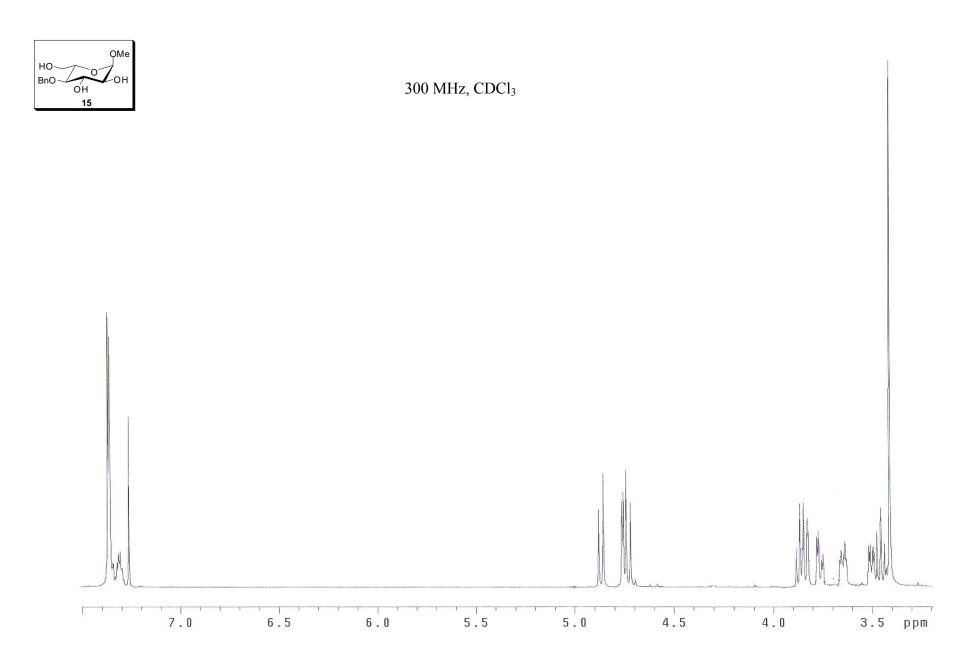


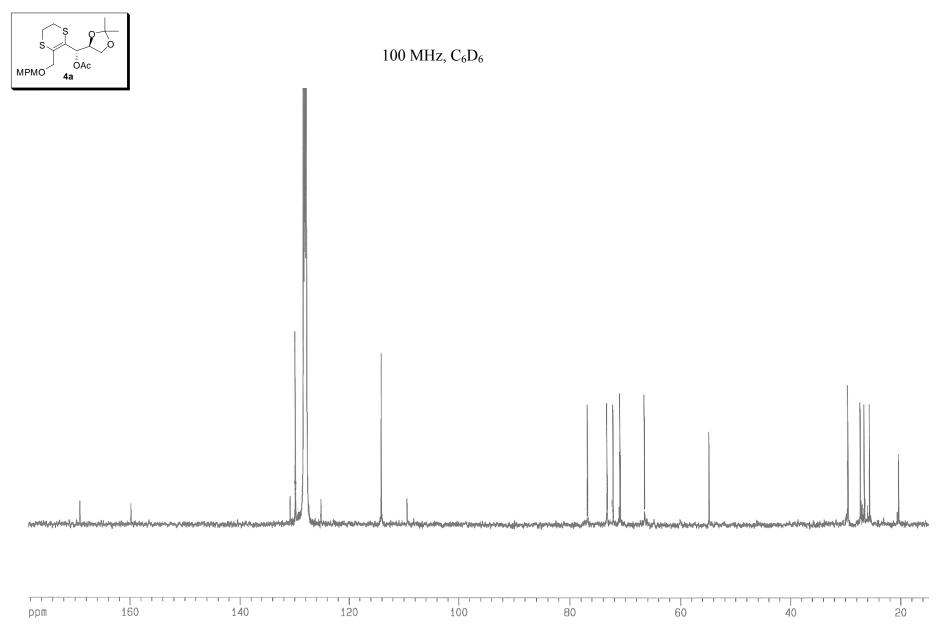


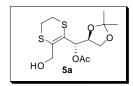


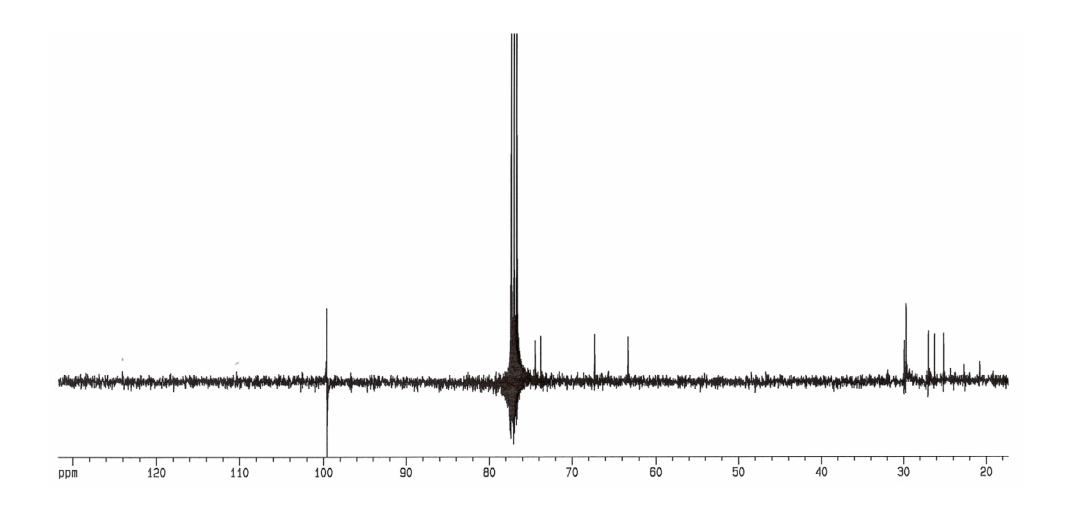


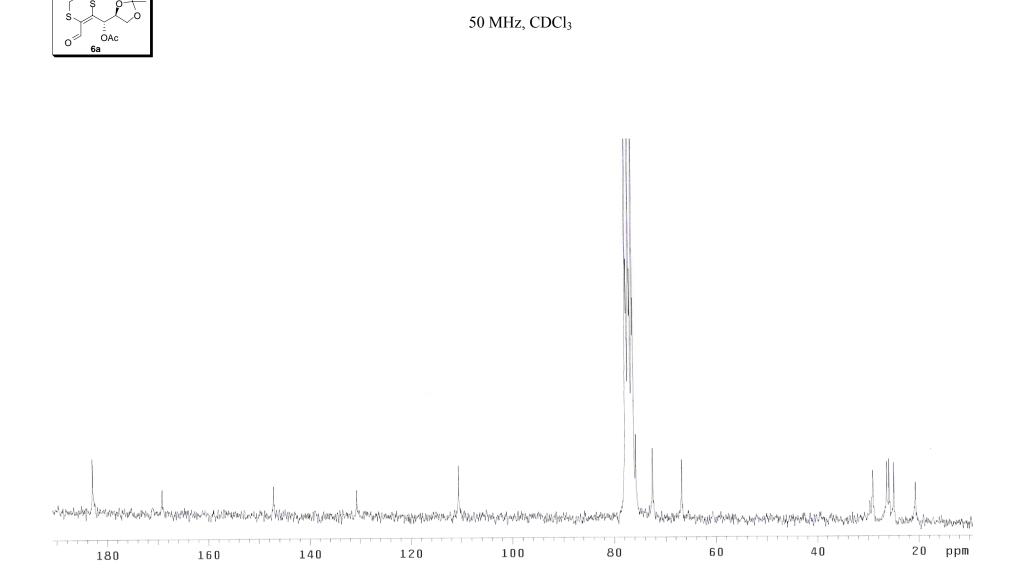


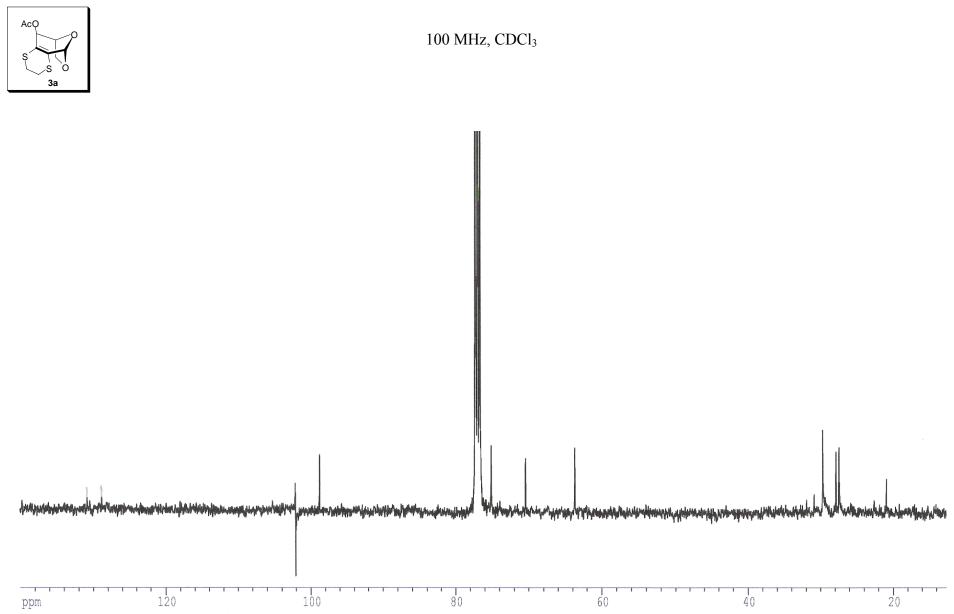


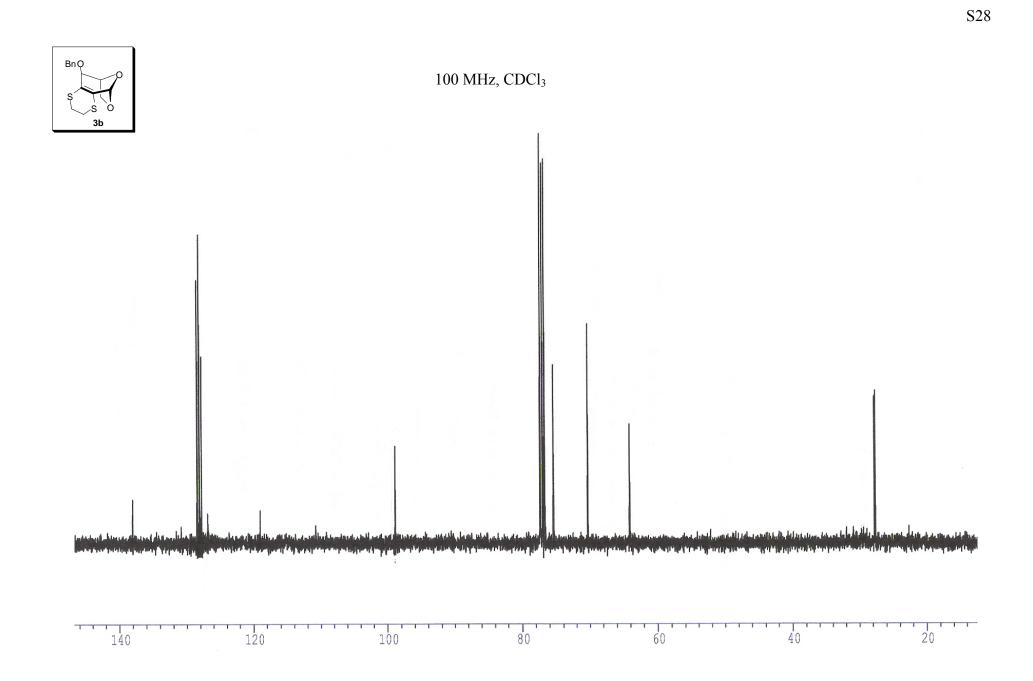


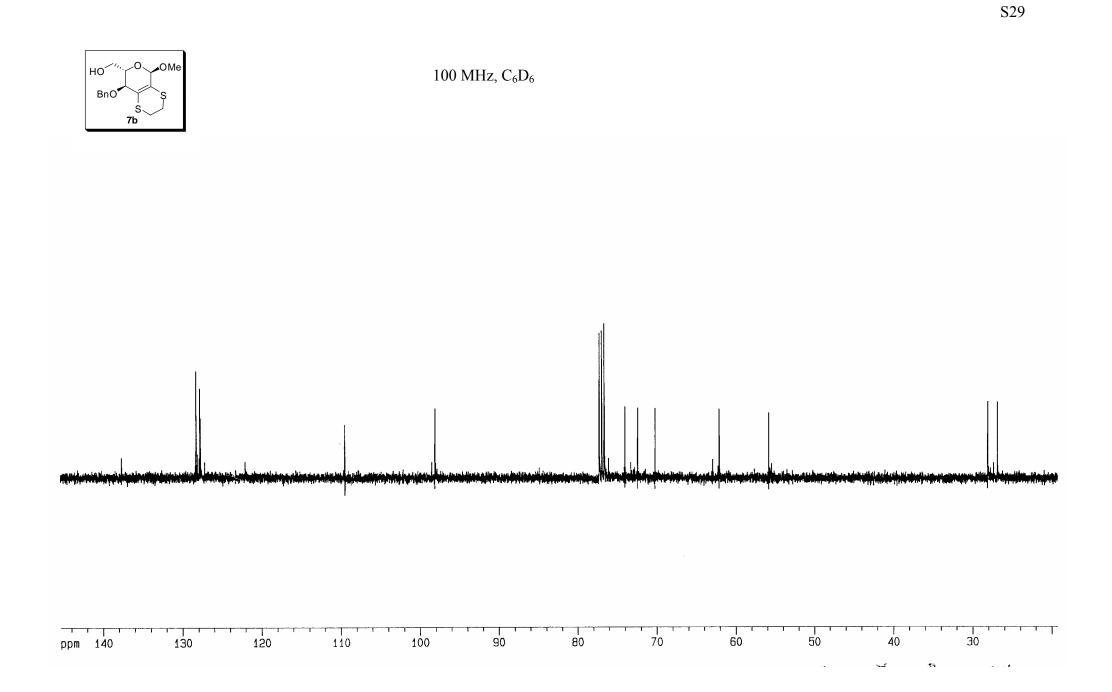


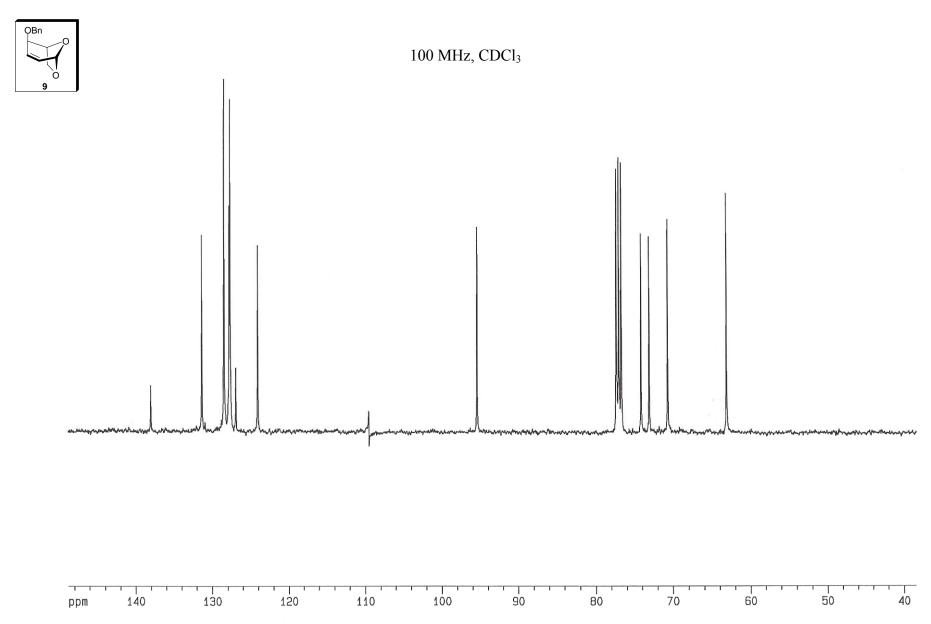


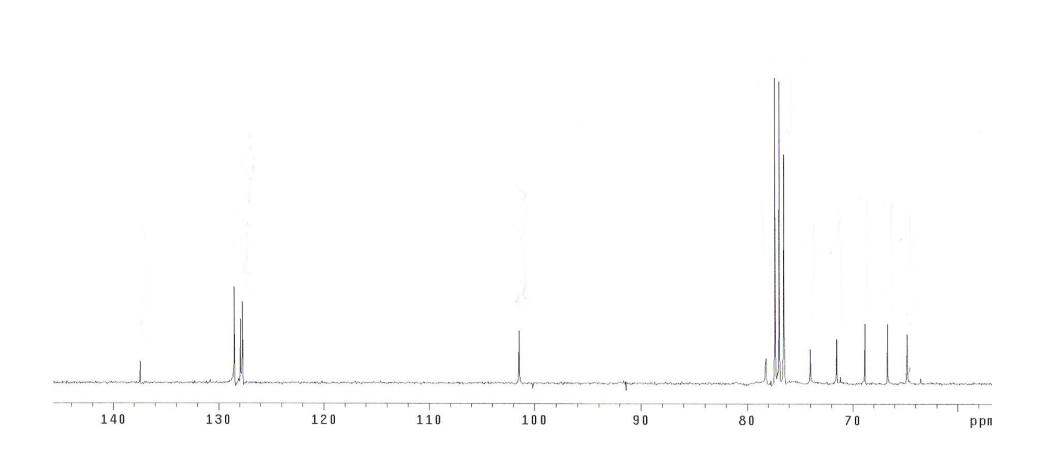

S22

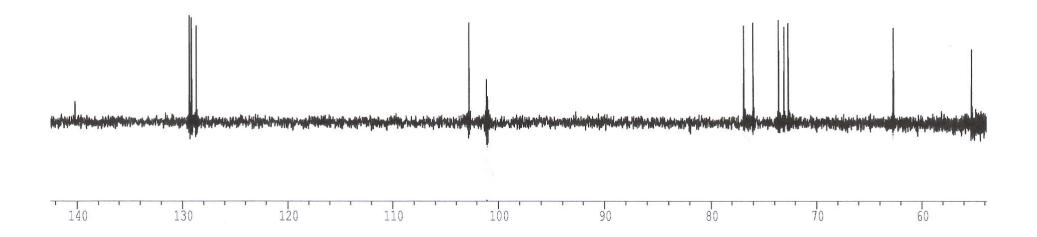


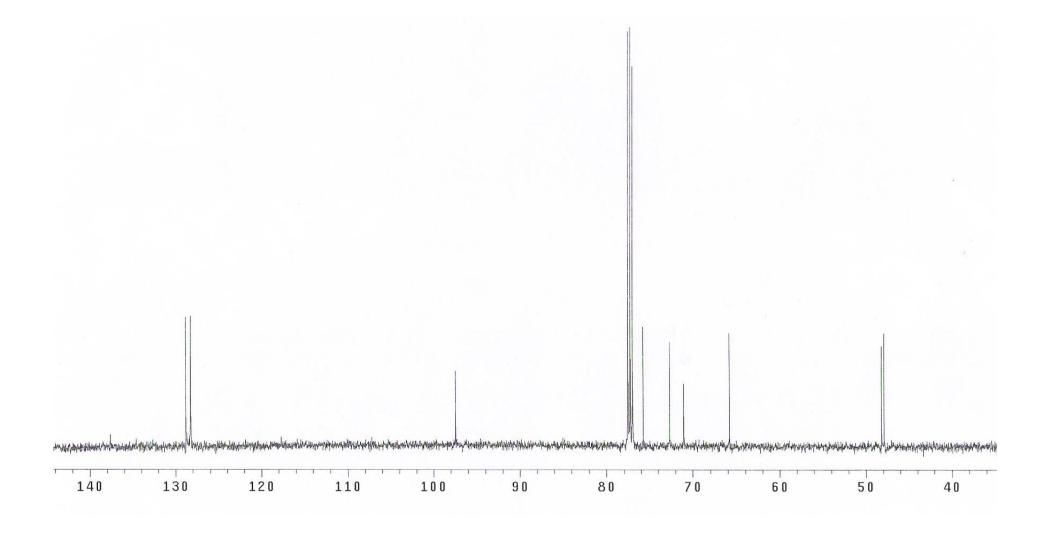


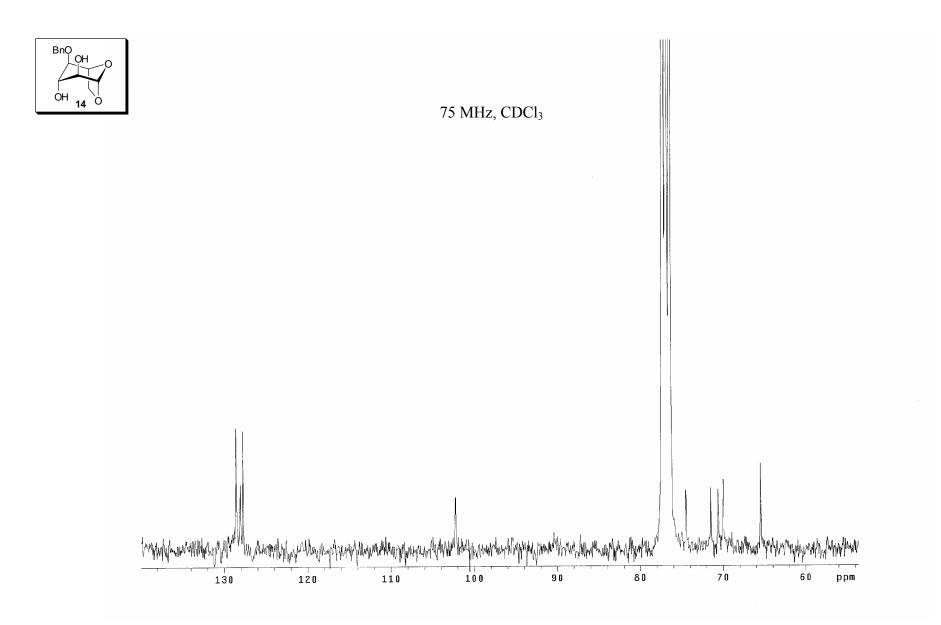


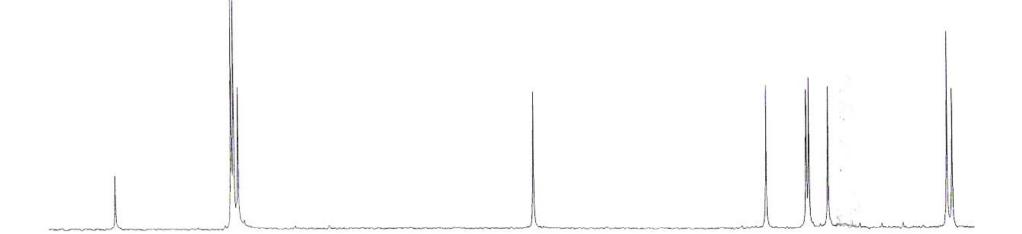


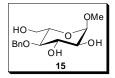












S35

	1 1 1 1 1 1 1 1 1 1 1 1	the second	For a low low how have have a low of	1 1 1
DDW	120	100	80	60

