Supporting Information

Palladium-Catalyzed C-H Functionalization of Pyridine *N*-Oxides: Highly Selective Alkenylation and Direct Arylation with Unactivated Arenes

Seung Hwan Cho, Seung Jun Hwang, and Sukbok Chang*

Department of Chemistry and School of Molecular Science (BK21), Korea Advanced Institute of

Science and Technology (KAIST), Daejon 305-701 Republic of Korea

General Methods	S2
Optimization Study for the Alkenylation of Pyridine <i>N</i> -Oxides (Table S1)	$S2\sim S4$
Kinetic Isotope Effect Experiments in the Alkenylation of Pyridine N-Oxides (Eq 1)	$S4 \sim S5$
Rate Comparison Experiment of pyridine <i>N</i> -oxide and pyridine- <i>d</i> ₅ <i>N</i> -oxide (Figure S1)	S5
Experimental Procedure for the Alkenylation of Pyridine N-Oxides (Table 2)	$S6 \sim S11$
Experimental Procedure for the Reduction of Alkenylated Pyridine N-Oxide (Eq 2)	S11
Experimental Procedures for Eq 3	S12
Optimization Study for the Direct Arylation of Pyridine N-Oxides using Unactivated	G1 0 G10
Arenes (Table S2)	\$12~\$13
Screening Experiment for Minimizing the Homocoupling Side Products (Table S3)	S13 ~ S14
Experimental Procedure for the Direct Arylation of Pyridine N-Oxides using	G14 G 2 1
Unactivated Arenes (Table 3)	\$14 ~ \$21
Experimental Procedure for the Crystal Structure Determination of "Complex A "	S22
Appendix I	
Copies of ¹ H- and ¹³ C-NMR Spectral Data Obtained in this Study	S23 ~ S59
Appendix II	
X-ray Crystallographic Data	S60~ S68

General Methods. Unless otherwise stated, all commercial reagents and solvents were used without additional purification. Pyridine *N*-oxides or derivatives were purchased from commercial sources but can be synthesized according to following references¹. Analytical thin layer chromatography (TLC) was performed on precoated silica gel 60 F_{254} plates. Visualization on TLC was achieved by use of UV light (254 nm). Flash column chromatography was undertaken on silica gel (400-630 mesh). ¹H NMR was recorded on 400 MHz and 300MHz. Chemical shifts were quoted in parts per million (ppm) referenced to the appropriate solvent peak or 0.0 ppm for tetramethylsilane. The following abbreviations were used to describe peak splitting patterns when appropriate: br = broad, s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, dd = doublet of doublet. Coupling constants, *J*, were reported in hertz unit (Hz). ¹³C NMR was recorded on 100 MHz and was fully decoupled by broad band proton decoupling. Chemical shifts were reported in pm referenced to the center line of a triplet at 77.0 ppm of chloroform-*d*. Infrared (IR) spectra were recorded neat in 0.5 mm path length using a sodium chloride cell. Frequencies are given in reciprocal centimeters (cm⁻¹) and only selected absorbance is reported. Mass spectral data were obtained from the Korea Basic Science Institute (Daegu) by using FAB or EI method.

Optimization Study for the Alkenylation of Pyridine *N*-Oxides (Table S1). A mixture of Pd catalyst (10 mol %), oxidant (1.5~3.0 equiv) and pyridine *N*-oxide (114 mg, 1.2 mmol, 4.0 equiv) was weighed into a 1 mL screw-capped vial equipped with a 10 x 5 mm spinvane triangular-shaped Teflon stirbar. 1,4-Dioxane (0.6 mL) and additive (0.3 mmol, 1 equiv) were added followed by ethyl acrylate (32 μ L, 0.3 mmol). The resulting mixture was sealed with a Teflon-lined cap and stirred at the indicated temperature for 12 h in an oil bath. The reaction was cooled to room temperature, filtered

^{1. (}a) Campeau, L.-C.; Rousseaux, S.; Fagnou, K. J. Am. Chem. Soc. 2005, 127, 18020-18021.

⁽b) Leclerc, J.-P.; Fagnou, K. Angew. Chem., Int. Ed. 2006, 45, 7781-7786.

through a plug of celite washing with EtOAc (30 mL). The filtrate was concentrated, and evaporated to dryness under high vacuum. The ¹H-NMR yield of desired product was determined by integration using an internal standard (1,1,2,2-tetrachloroethane).

		<u></u>	Pd(OAc) ₂ (10 mol %) oxidant / additive	
⊕N	+	CO ₂ Et	solvent, 100 °C	⊕N CO₂Et
^{⊖Ó} 1a		2a		⊖ ^Ó 3a

Table S1. Optimization	Screen for the	Alkenylation of	of Pyridine N-	Oxide (1a)

				•••		
Entry	Pd catalyst	Oxidant (equiv)	Solvent	Additive	Temp (°C)	Yield $(\%)^a$
1	Pd(OAc) ₂	none	1,4-Dioxane/AcOH (3:1)	none	100	<1
2	Pd(OAc) ₂	none	1,4-Dioxane	none	100	<1
3	none	Ag ₂ CO ₃ (1.5)	1,4-Dioxane	none	100	<1
4	Pd(OAc) ₂	AgF (3.0)	1,4-Dioxane/AcOH (3:1)	none	100	15
5	Pd(OAc) ₂	$Cu(OAc)_2(3.0)$	1,4-Dioxane/AcOH (3:1)	none	100	7
6	Pd(OAc) ₂	$PhI(OAc)_2(3.0)$	1,4-Dioxane/AcOH (3:1)	none	100	<1
7	Pd(OAc) ₂	Oxone (3.0)	1,4-Dioxane/AcOH (3:1)	none	100	<1
8	Pd(OAc) ₂	Benzoquinone (3.0)	1,4-Dioxane/AcOH (3:1)	none	100	<1
9	Pd(OAc) ₂	<i>t</i> -BuOO- <i>t</i> Bu (3.0)	1,4-Dioxane/AcOH (3:1)	none	100	<1
10	Pd(OAc) ₂	AgF (3.0)	1,4-Dioxane	none	100	28
11	Pd(OAc) ₂	AgF (3.0)	АсОН	none	100	<1
12	Pd(OAc) ₂	AgF (3.0)	DMF	none	100	5
13	Pd(OAc) ₂	AgF (3.0)	DMSO	none	100	<1
14	Pd(OAc) ₂	AgF (3.0)	Acetonitrile	none	100	13
15	Pd(OAc) ₂	AgF (3.0)	2-Propanol	none	100	16
16	Pd(OAc) ₂	AgF (3.0)	1,4-Dioxane	K ₂ CO ₃	100	54
17	$Pd(OAc)_2$	AgOAc (3.0)	1,4-Dioxane	K ₂ CO ₃	100	37
18	Pd(OAc) ₂	$Ag(O_2CCF_3)(3.0)$	1,4-Dioxane	K ₂ CO ₃	100	55
19	Pd(OAc) ₂	AgOTf (3.0)	1,4-Dioxane	K ₂ CO ₃	100	65
20	Pd(OAc) ₂	Ag ₂ O (1.5)	1,4-Dioxane	K ₂ CO ₃	100	60
21	Pd(OAc) ₂	Ag ₂ CO ₃ (1.5)	1,4-Dioxane	K ₂ CO ₃	100	72
22	$Pd(OAc)_2$	$Cu(OAc)_2(3.0)$	1,4-Dioxane	K ₂ CO ₃	100	52
23	Pd(OAc) ₂	Bezoquinone (3.0)	1,4-Dioxane	K ₂ CO ₃	100	<1
24	Pd(OAc) ₂	Oxone (3.0)	1,4-Dioxane	K ₂ CO ₃	100	<1
25	Pd(OAc) ₂	$Ag_2CO_3(1.5)$	1,4-Dioxane	Cs ₂ CO ₃	100	34
26	Pd(OAc) ₂	Ag ₂ CO ₃ (1.5)	1,4-Dioxane	NaOAc	100	62

27	Pd(OAc) ₂	$Ag_2CO_3(1.5)$	1,4-Dioxane	MgO	100	68
28	Pd(OAc) ₂	$Ag_2CO_3(1.5)$	1,4-Dioxane	NaHCO ₃	100	49
29	$Pd(OAc)_2$	$Ag_2CO_3(1.5)$	1,4-Dioxane	K ₂ HPO ₄	100	45
30	$Pd(OAc)_2$	$Ag_2CO_3(1.5)$	1,4-Dioxane	Et ₃ N	100	35
31	Pd(OAc) ₂	$Ag_2CO_3(1.5)$	1,4-Dioxane	2,6-Lutidine	100	49
32b	Pd(OAc) ₂	$Ag_2CO_3(1.5)$	1,4-Dioxane	Pyridine	100	96(91)
33	PdCl ₂	$Ag_2CO_3(1.5)$	1,4-Dioxane	Pyridine	100	82
34	Pd(OCOCF ₃) ₂	$Ag_2CO_3(1.5)$	1,4-Dioxane	Pyridine	100	90
35	$Pd_2(dba)_3$	$Ag_2CO_3(1.5)$	1,4-Dioxane	Pyridine	100	74
36	PdCl ₂ (PPh ₃) ₂	$Ag_2CO_3(1.5)$	1,4-Dioxane	Pyridine	100	66
37	Pd(OAc) ₂	$Ag_2CO_3(1.5)$	1,4-Dioxane	Pyridine	80	71
38 ^c	Pd(OAc) ₂	$Ag_2CO_3(1.5)$	1,4-Dioxane	Pyridine	100	70
39 ^d	$Pd(OAc)_2$	$Ag_2CO_3(1.0)$	1,4-Dioxane	Pyridine	100	66
40^e	$Pd(OAc)_2$	$Ag_2CO_3(1.5)$	1,4-Dioxane	Pyridine	100	71

^{*a*} NMR yield (1,1,2,2-tetrachloroethane). ^{*b*} Isolated yield in parenthesis. ^{*c*} 5 Mol % of Pd(OAc)₂ was used. ^{*d*} One equivalent of Ag₂CO₃ was used. ^{*e*} Two equivalents of pyridine *N*-oxide was used.

Pd(OAc)₂ (6.7 mg, 0.03 mmol, 10 mol %), Ag₂CO₃ (123 mg, 0.45 mmol, 1.5 equiv), pyridine *N*-oxide (85 mg, 0.9 mmol) and pyridine- d_5 *N*-oxide (90 mg, 0.9 mmol) were weighed into a 1 mL screw-capped vial equipped with a 10 x 5 mm spinvane triangular-shaped Teflon stirbar. 1,4-Dioxane (0.6 mL) and pyridine (24 µL, 0.3 mmol, 1 equiv) were added followed by ethyl acrylate (32 µL, 0.3 mmol). The resulting mixture was sealed with a Teflon-lined cap and stirred at 100 °C for 2 h in an oil bath with vigorous stirring (about 20 % conversion). The reaction was cooled to room temperature, filtered through a plug of celite washing with EtOAc (30 mL). The filtrate was concentrated and evaporated to dryness under high vacuum. The desired product was was purified by flash column

chromatography with $CH_2Cl_2/Acetone$ (3:1). The integration value of the proton H_a is used for comparison with H_b . The NMR spectrum (300 MHz) is reported on page S59.

Pd(OAc)₂ (6.7 mg, 0.03 mmol, 10 mol %), Ag₂CO₃ (123 mg, 0.45 mmol, 1.5 equiv), pyridine *N*-oxide (114 mg, 1.2 mmol, 4 equiv) or pyridine- d_5 *N*-oxide(120 mg, 1.2 mmol, 4 equiv) were weighed into a 1 mL screw-capped vial equipped with a 10 x 5 mm spinvane triangular-shaped Teflon stirbar. 1,4-Dioxane (0.6 mL) and pyridine (24 µL, 0.3 mmol, 1 equiv) were added followed by ethyl acrylate (32 µL, 0.3 mmol). The resulting mixture was sealed with a Teflon-lined cap and stirred at 100 °C for the indicated interval in an oil bath with vigorous stirring. The reaction was cooled to room temperature, filtered through a plug of celite washing with EtOAc (30 mL). The filtrate was concentrated and evaporated to dryness under high vacuum. The ¹H-NMR yield of desired product was determined by integration using an internal standard (1,1,2,2-tetrachloroethane).

Figure S1. Reaction yields over time between pyridine N-oxide and pyridine-d₅ N-oxide.

Experimental Procedure for the Alkenylation of Pyridine *N*-Oxides (Table 2). $Pd(OAc)_2$ (6.7 mg, 0.03 mmol, 10 mol %), Ag_2CO_3 (123 mg, 0.45 mmol, 1.5 equiv), and *N*-oxide (1.2 mmol, 4.0 equiv) were weighed into a 1 mL screw-capped vial equipped with a 10 x 5 mm spinvane triangular-shaped Teflon stirbar. 1,4-Dioxane (0.6 mL) and pyridine (24 μ L, 0.3 mmol, 1 equiv) were added followed by alkene (0.3 mmol). The resulting mixture was sealed with a Teflon-lined cap and stirred at 100 °C for 12 h in oil bath. The reaction was cooled to room temperature, filtered through a plug of celite washing with EtOAc (30 mL). The filtrate was concentrated to dryness under high vacuum. The desired product was purified by flash column chromatography using indicated eluents.

(*E*)-2-(3-Ethoxy-3-oxoprop-1-enyl)pyridine *N*-oxide (Table 1, 3a): CH₂Cl₂/Acetone = 3:1, light yellow solid; m.p. 68-69 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.24 (m, 1H), 8.03 (d, *J* = 16.3 Hz, 1H), 7.51 (m, 1H), 7.24-7.21 (m, 2H), 6.95 (d, *J* = 16.2 Hz, 1H), 4.26 (q, *J* = 7.1 Hz, 2H), 1.31 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 166.2, 145.3, 140.5, 133.8, 125.8, 125.73, 125.3, 125.1, 61.0, 14.2; IR (Film) 3103, 2976, 1708, 1638, 1458, 1406, 1368, 1308, 1150 cm⁻¹; HRMS (FAB) m/z calcd. for C₁₀H₁₂NO₃ [*M*+*H*]⁺: 194.0817, found: 194.0817.

(*E*)-2-(3-*tert*-Butoxy-3-oxoprop-1-enyl)pyridine *N*-oxide (Table 2, entry 1): CH₂Cl₂/Acetone = 3:1, light yellow solid; m.p. 65-66 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.21 (m, 1H), 7.93 (d, *J* = 16.2 Hz, 1H), 7.49-7.46 (m, 1H), 7.21-7.18 (m, 2H), 6.82 (d, *J* = 16.7 Hz, 1H), 1.49 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 165.3, 145.5, 140.3, 132.9, 126.9, 125.6, 125.5, 124.9, 81.2, 28.0; IR (Film) 3072, 2980, 1712, 1634, 1486, 1314, 1266, 1241, 1187, 1033, 983, 770 cm⁻¹; HRMS (FAB) m/z calcd. for C₁₂H₁₆NO₃ [*M*+*H*]⁺: 222.1130, found: 222.1128.

(*E*)-2-[3-(*N*,*N*-Dimethyl)amino)-3-oxoprop-1-enyl]pyridine *N*-oxide (Table 2, entry 2): MeOH/Acetone = 1:10, light yellow solid; m.p. 126-127 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.21-8.15 (m, 2H), 7.58 (d, *J* = 15.3 Hz, 1H), 7.40 (dd, *J* = 5.8, 2.1 Hz, 1H), 7.21-7.14 (m, 2H), 3.15 (s, 3H), 3.02 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 166.6, 144.9, 140.8, 131.8, 128.2, 125.3, 125.1, 124.5, 37.5, 35.9; IR (Film) 3074, 2933, 1649, 1607, 1490, 1432, 1398, 1233, 1145, 978, 851, 772 cm⁻¹; HRMS (FAB) m/z calcd. for C₁₀H₁₃N₂O₂ [*M*+*H*]⁺: 193.0977, found: 193.0979.

(*E*)-2-(3-Oxobut-1-enyl)pyridine *N*-oxide (Table 2, entry 3): CH₂Cl₂/Acetone = 3:1, light yellow solid; m.p. 148-149 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.24 (m, 1H), 7.98 (d, *J* = 16.7 Hz, 1H), 7.57-7.54 (m, 1H), 7.25-7.23 (m, 2H), 7.01 (d, *J* = 16.7 Hz, 1H), 2.42 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 198.7, 145.5, 140.3, 132.6, 132.5, 126.0, 125.3, 125.2, 27.3; IR (Film) 3068, 3051, 1651, 1363, 1183, 994, 861 cm⁻¹; HRMS (FAB) m/z calcd. for C₉H₁₀NO₂ [*M*+*H*]⁺: 164.0712, found: 164.0709.

Diethyl [(*E*)-2-(*N*-oxypyridyl)]phosphonate (Table 2, entry 4): $CH_2Cl_2/Acetone = 3:1$, light yellow

oil; ¹H NMR (400 MHz, CDCl₃) δ 8.20 (dd, J = 4.5, 1.2 Hz, 1H), 7.80-7.70 (dd, J = 17.7, 5.8 Hz, 1H), 7.47-7.45 (m, 1H), 7.22-7.19 (m, 2H), 7.03 (t, J = 18.3 Hz, 1H), 4.15-4.08 (m, 4H), 1.33-1.30 (t, J =7.1 Hz, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 145.1, 144.8, 140.5, 137.4, 137.3, 126.0, 125.6, 125.0, 123.2, 121.3, 62.3, 62.2, 16.4, 16.3; IR (Film) 3060, 2983, 1611, 1484, 1432, 1243, 1023, 966, 860 cm⁻¹; HRMS (FAB) m/z calcd. for C₁₁H₁₇NO₄P [*M*+*H*]⁺: 258.0895, found: 258.0899.

(*E*)-2-(3,3-Dimethylbut-1-enyl)pyridine *N*-oxide (Table 2, entry 5): CH₂Cl₂/Acetone = 1:1, light yellow solid; m.p. 84-85 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.16 (d, *J* = 6.5 Hz, 1H), 7.45 (dd, *J* = 6.2, 1.9 Hz, 1H), 7.14 (t, *J* = 7.5 Hz, 1H), 7.05-7.02 (m, 2H), 6.53 (d, *J* = 16.5 Hz, 1H), 1.12 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 149.5, 148.5, 139.7, 125.2, 123.1, 122.6, 116.3, 34.3, 29.1; IR (Film) 3053, 1490, 1423, 1238, 994, 860 cm⁻¹; HRMS (FAB) m/z calcd. for C₁₁H₁₅NO [*M*+*H*]⁺: 178.1232, found: 178.1231.

(*E*)-2-Styrylpyridine *N*-oxide (Table 2, entry 6): The reaction was carried out under the above general conditions except temperature (120 °C) and running time (16 h); $CH_2Cl_2/Acetone = 3:1$, greenish solid; m.p. 146-147 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.24 (d, *J* = 6.1 Hz, 1H), 7.80 (d, *J* = 16.7 Hz, 1H), 7.62-7.57 (m, 3H), 7.43-7.30 (m, 4H), 7.24 (m, 1H), 7.22 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 147.9, 139.9, 136.1, 135.5, 129.1, 128.8, 127.4, 125.5, 123.5, 122.8, 118.7; IR (Film) 3059, 3020, 1491, 1427, 1239, 975, 853 cm⁻¹; HRMS (FAB) m/z calcd. for C₁₃H₁₂NO [*M*+*H*]⁺: 198.0919, found: 198.0920.

(*E*)-2-(3-*tert*-Butoxy-3-oxoprop-1-enyl)-4-phenylpyridine *N*-oxide (Table 2, entry 7): CH₂Cl₂/Acetone = 3:1, light yellow foam; ¹H NMR (400 MHz, CDCl₃) δ 8.26 (d, *J* = 6.9 Hz, 1H), 7.99 (d, *J* = 16.2 Hz, 1H), 7.69 (d, *J* = 2.5 Hz, 1H), 7.56 (dd, *J* = 7.7, 1.5 Hz, 2H), 7.48-7.40 (m, 4H), 6.90 (d, *J* = 16.2 Hz, 1H), 1.51 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 165.3, 145.3, 140.3, 138.0, 136.1, 133.1, 129.3, 129.2, 127.1, 126.3, 123.3, 123.0, 81.3, 28.1; IR (Film) 3071, 2976, 1707, 1631, 1447, 1382, 1149, 980, 841 cm⁻¹; HRMS (FAB) m/z calcd. for C₁₈H₂₀NO₃ [*M*+*H*]⁺: 298.1443, found: 298.1438.

(*E*)-2-(3-*tert*-Butoxy-3-oxoprop-1-enyl)-6-phenylpyridine *N*-oxide (Table 2, entry 8): CH₂Cl₂/Acetone = 30:1, light yellow solid; m.p. 146-147 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.01 (d, *J* = 16.2 Hz, 1H), 7.71 (dd, *J* = 5.8, 2.1 Hz, 2H), 7.49-7.43 (m, 4H), 7.33 (dd, *J* = 5.7, 2.0 Hz, 1H), 7.24 (t, *J* = 7.7 Hz, 1H), 6.84 (d, *J* = 16.3 Hz, 1H), 1.48 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 165.5, 150.2, 146.1, 133.8, 132.7, 129.5, 129.2, 128.2, 127.0, 126.8, 124.50, 124.48, 81.1, 28.0; IR (Film) 3069, 2973, 1708, 1633, 1442, 13872, 1144, 981, 841 cm⁻¹; HRMS (EI) m/z calcd. for C₁₈H₁₉NO₃ [*M*]⁺: 297.1365, found: 297.1365.

(E)-2-(3-tert-Butoxy-3-oxoprop-1-enyl)-5-phenylpyridine N-oxide (Table 2, entry 9):

CH₂Cl₂/Acetone = 10:1, light yellow solid; m.p. 183-184 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.47 (d, *J* = 1.6 Hz, 1H), 7.97 (d, *J* = 16.2 Hz, 1H), 7.54-7.50 (m, 3H), 7.45-7.39 (m, 4H), 6.87 (d, *J* = 16.2 Hz, 1H), 1.50 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 165.4, 143.6, 139.5, 138.2, 134.7, 132.6, 129.5, 129.3, 126.7, 126.5, 125.4, 123.6, 81.2, 28.0; IR (Film) 3070, 2973, 1706, 1635, 1447, 1383, 1150, 980, 841 cm⁻¹; HRMS (EI) m/z calcd. for C₁₈H₁₉NO₃ [*M*]⁺: 297.1365, found: 297.1365.

(*E*)-2-(3-*tert*-Butoxy-3-oxoprop-1-enyl)pyrazine *N*-oxide (Table 2, entry 10): CH₂Cl₂/Acetone = 3:1, light yellow solid; m.p. 97-98 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.64 (s, 1H), 8.30 (d, *J* = 4.1 Hz, 1H), 8.10 (d, *J* = 4.1 Hz, 1H), 7.68 (d, *J* = 16.2 Hz, 1H), 7.13 (d, *J* = 16.1 Hz, 1H), 1.50 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 165.2, 148.3, 145.9, 140.9, 134.5, 129.6, 128.1, 81.6, 27.8; IR (Film) 3072, 2980, 1708, 1634, 1486, 1314, 1266, 1241, 1187, 1033, 983, 770 cm⁻¹; HRMS (EI) m/z calcd. for C₁₁H₁₄N₂O₃[*M*]⁺: 222.1004, found: 222.1007.

(*E*)-2-(3-*tert*-Butoxy-3-oxoprop-1-enyl)quinoxaline *N*-oxide (Table 2, entry 11): CH₂Cl₂/Acetone = 3:1, light yellow solid; m.p. 88-89 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.83 (s, 1H), 8.57 (dd, *J* = 6.9, 1.5Hz, 1H), 8.08 (dd, *J* = 7.2, 1.3 Hz, 1H), 7.89 (d, *J* = 16.2 Hz, 1H), 7.79-7.73 (m, 2H), 7.35 (d, *J* = 16.1 Hz, 1H), 1.53 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 165.6, 146.8, 144.2, 137.4, 136.0, 131.7, 130.6, 130.5, 130.1, 128.0, 119.2, 81.5, 28.1; IR (Film) 3071, 2977, 1707, 1627, 1490, 1368, 1332, 1217, 1150, 981, 850, 767 cm⁻¹; HRMS (EI) m/z calcd. for C₁₅H₁₆N₂O₃ [*M*]⁺: 272.1161, found: 272.1164.

(*E*)-6-(3-*tert*-Butoxy-3-oxoprop-1-enyl)pyridazine *N*-oxide (Table 2, entry 12): CH₂Cl₂/Acetone = 3:1, light yellow solid; m.p. 64-65 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.39 (dd, *J* = 2.8, 2.3 Hz, 1H), 7.76 (dd, *J* = 5.6, 2.4 Hz, 1H), 7.69 (d, *J* = 16.1 Hz, 1H), 7.05 (d, *J* = 5.2, 2.8Hz, 1H), 6.96 (d, *J* = 16.1 Hz, 1H), 1.49 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 165.1, 149.8, 140.4, 133.7, 132.0, 128.2, 115.7, 81.6, 28.0; IR (Film) 3075, 2978, 1709, 1634, 1536, 1457, 1391, 1308, 1154, 980, 851, 727 cm⁻¹; HRMS (EI) m/z calcd. for C₁₁H₁₄N₂O₃[*M*]⁺: 222.1004, found: 222.1004.

Experimental Procedure for the Reduction of Alkenylated Pyridine N-Oxide (Eq 2).

To a stirred mixture of **3a** (39 mg, 0.2 mmol) in toluene (1.0 mL) was added PCl₃ (21 μ L, 0.24 mmol) dropwise. The reaction mixture was stirred for 15 min at room temperature. Saturated solution of NaHCO₃ (5 mL) was added and then stirred for additional 5 min. The aqueous layer was then washed with CH₂Cl₂ (20 mL x 3). The combined organic layers were dried over MgSO₄, filtered, and concentrated in *vacuo*. The crude was purified by flash column chromatography with EtOAc/hexane (1:4) to afford the corresponding deoxygenated (*E*)-ethyl 3-(pyridin-2-yl)acrylate as a pale oil (33 mg, 92 %); ¹H NMR (400 MHz, CDCl₃) δ 8.60 (d, *J* = 4.4 Hz, 1H), 7.69-7.63 (m, 2H), 7.39 (d, *J* = 7.7 Hz, 1H), 7.23 (m, 1H), 6.88 (d, *J* = 15.7 Hz, 1H), 4.26-4.21 (q, *J* = 7.1 Hz, 2H), 1.30 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 166.7, 153.0, 150.1, 143.2, 136.7, 124.1, 124.0, 122.4, 60.6, 14.2.

Experimetal Procedures for Eq 3.

Pd(OAc)₂ (6.7 mg, 0.03 mmol, 10 mol %), Ag₂CO₃, (123 mg, 0.45 mmol, 1.5 equiv), and pyridine *N*-oxide (114 mg, 1.2 mmol, 4 equiv) were weighed into a 1 mL screw-capped vial equipped with a 10 x 5 mm spinvane triangular-shaped Teflon stirbar. Benzene (0.6 mL) and pyridine (24 μ L, 0.3 mmol, 1.0 equiv) were added followed by ethyl acrylate (32 μ L, 0.3 mmol). The resulting mixture was sealed with a Teflon-lined cap and stirred at 130 °C for 12 h in an oil bath. The reaction was cooled to room temperature, filtered through a plug of celite washing with EtOAc (30 mL). The filtrate was concentrated to dryness under high vacuum, and then was purified by flash column chromatography using the indicated eluent. The yield of **3a** (CH₂Cl₂/Acetone = 3:1) and **6a** (EtOAc/Hexane = 1:15) was determined based on the amount of *ethyl acrylate* employed. The yield of **4a** (MeOH/Acetone = 1:6) was determined based on the amount of *pyridine N-oxide* employed.

Optimization Study for the *ortho*-Arylation Pyridine *N*-Oxides using Unactivated Arenes (Table S2). A mixture of Pd catalyst (10 mol %), oxidant (2.2~4.4 equiv), and 3-phenylpyridine *N*-oxide (102 mg, 0.6 mmol, 1 equiv) were weighed into a 5 mL screw-capped vial equipped with a 15 x 10 mm spinvane triangular-shaped Teflon stirbar. Benzene (2.1 mL, 40 equiv) was added and the resulting mixture was sealed with a Teflon-lined cap. The mixture was stirred at 130 °C for 16 h in an oil bath with vigorous stirring. The reaction was cooled to room temperature, filtered through a plug of celite washing with EtOAc (40 mL). The filtrate was concentrated to dryness under high vacuum. The desired product was obtained by flash column chromatography with CH₂Cl₂/Acetone (20:1, for bis-arylated products), or MeOH/Acetone (1:6, for mono-arylated products).

Although PdCl₂(dppe) was the best catalyst for this reaction of 3-phenylpyridine *N*-oxide with benzene, Pd(OAc)₂ was generally more effective for reactions using other *N*-oxides and arenes.

Ph (f)	H + H	Ph. 10 mol % Pd oxidant additive 2000	⊕N ⊕0 +	Ph		
			4b		5b	
Entry	Pd Cat.	Oxidant (equiv)	Additives (equiv)	T (°C)	Yield (%, $4b + 5b$) ^{<i>a</i>}	Ratio $(4b:5b)^t$
1	$Pd(OAc)_2$	AgF (4.4)	none	130	17	>25:1
2	$Pd(OAc)_2$	AgOAc (4.4)	none	130	27	>25:1
3	$Pd(OAc)_2$	Ag ₂ O (2.2)	none	130	36	17:1
4	Pd(OAc) ₂	Ag ₂ CO ₃ (2.2)	none	130	55	20:1
5	Pd(OAc) ₂	$Cu(OAc)_2(4.4)$	none	130	11	>25:1
6	Pd(OAc) ₂	1,4-Bezoquinone (4.4)	none	130	<1	-
7	Pd(OAc) ₂	Oxone (4.4)	none	130	<1	-
8	$Pd(OAc)_2$	$PhI(OAc)_2(4.4)$	none	130	<1	-
9	Pd(OAc) ₂	tBuOOtBu (4.4)	none	130	<1	-
10	$Pd(OAc)_2$	$Ag_2CO_3(2.2)$	DMSO (0.5)	130	36	4:1
11	$Pd(OAc)_2$	$Ag_2CO_3(2.2)$	Pivalic acid (0.5)	130	35	>20:1
12	$Pd(OAc)_2$	$Ag_2CO_3(2.2)$	Pyridine (0.5)	130	56	>20:1
13	Pd(TFA) ₂	$Ag_2CO_3(2.2)$	none	130	49	15 : 1
14	PdCl ₂	$Ag_2CO_3(2.2)$	none	130	45	11:1
15	$Pd_2(dba)_3$	$Ag_2CO_3(2.2)$	none	130	46	15 : 1
16	PdCl ₂ (PPh ₃) ₂	$Ag_2CO_3(2.2)$	none	130	61	>25:1
17	PdCl ₂ (dppe)	$Ag_2CO_3(2.2)$	none	130	65	20:1

Table S2. Optimization Screen for the Direct Arylation of 3-Phenylpyridine N-Oxide.

Ph.

^aIsolated mixture yield.^b Ratio of isolated product

Screening Experiment for Minimizing the Homocoupling Side Products (Table S3).

Pd(OAc)₂ (13.4 mg, 0.06 mmol, 10 mol %), Ag₂CO₃, (330 mg, 1.2 mmol, 2.0 equiv), and pyridine Noxide (57 mg, 0.6 mmol, 1 equiv) were weighed into a 5 mL screw-capped vial equipped with a 15 x 10 mm spinvane triangular-shaped Teflon stirbar. Benzene (2.1 mL, 40 equiv) and the indicated amounts of additives were added, and the resulting mixture was sealed with a Teflon-lined cap. The

mixture was stirred at 130 °C for 16 h in an oil bath with vigorous stirring. The reaction was cooled to room temperature, filtered through a plug of celite washing with EtOAc (40 mL). The filtrate was concentrated to dryness under high vacuum, and then the arene homocoupling product (biphenyl) was purified by flash column chromatography (EtOAc/Hexane, 1:30) and the yield of biphenyl was determined based on the amount of *pyridine N-oxide* employed. The arylated N-oxide products were obtained also by flash column chromatography with $CH_2Cl_2/Acetone$ (20:1, for bis-arylated products), or MeOH/Acetone (1:6, for mono-arylated products).

⊕ O	H + 10 mol 2.0 equ		h ⁺ Ph ⊕N	Ph
00	(40 equiv)	⊝O 4b	⊖0 ;	5b
Entry	Additives (equiv)	Yield (%, 4b + 5b)	Ratio (4b : 5b)	Homocoupling yield (%)
1	none	79	3:1	24
2	Pivalic acid (0.5)	54	1.5 :1	20
3	Pivalic acid (1.0)	61	2:1	22
4	1,4-Benzoquinone (0.5)	45	20:1	none
5	1,4-Benzoquinone (0.2)	46	20:1	none
6	1,4-Benzoquinone (0.1)	50	5:1	none
7	DMSO (4.0)	60	10:1	23
8	2,6-Lutidine (2.0)	52	3:1	18
9	Pyridine (0.5)	56	>20:1	20
10	Pyridine (1.0)	65	3:1	16
11	Pyridine (2.0)	73	3:1	5
12	Pyridine (3.0)	71	3:1	6
13	3-Phenyl pyridine (2.0)	69	3:1	5

Table S3. Reaction Screening Experiment for minimizing the homocoupling product.

Experimental Procedure for the Direct Arylation of Pyridine *N***-Oxides with Unactivated Arenes (Table 3)**. A mixture of Pd(OAc)₂ (13 mg, 0.06 mmol, 10 mol %), Ag₂CO₃ (367 mg, 1.32 mmol, 2.2 equiv), and *N*-oxide derivatives (0.6 mmol, 1 equiv) were weighed into a 5 mL screw-capped

vial equipped with a 15 x 10 mm spinvane triangular-shaped Teflon stirbar. Arene (40 equiv) was added and the resulting mixture was sealed with a Teflon-lined cap. The mixture was stirred at 130 °C for 16 h in oil bath with vigorous stirring. The reaction was cooled to room temperature, filtered through a plug of celite washing with EtOAc (40 mL). The filtrate was concentrated to dryness under high vacuum. The crude residue was purified by flash column chromatography using the indicated eluent to obtain the desired product.

2-Phenylpyridine *N***-oxide** (Table 3, entry 1, major product): MeOH/Acetone = 1:6, light yellow solid; m.p. 141-142 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.31 (d, *J* = 6.3 Hz, 1H), 7.78 (d, *J* = 6.6 Hz, 2H), 7.48-7.39 (m, 4H), 7.29-7.20 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 140.1, 132.2, 129.1, 128.8, 127.8, 126.9, 125.1, 124.0 (one carbon was missed even with prolonged scan); IR (Film) 3063, 3045, 2924, 1609, 1476, 1450, 1418, 1242, 996, 842, 760 cm⁻¹; HRMS (EI) m/z calcd. for C₁₁H₉NO [*M*]⁺: 171.0684, found: 171.0683.

2,6-Diphenylpyridine *N***-oxide** (Table 3, entry 1, minor product): $CH_2Cl_2/Acetone = 20:1$, light yellow solid; m.p. 116-117 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.82 (d, J = 6.7 Hz, 4H), 7.46-7.37 (m, 8H), 7.24 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 149.9, 133.1, 129.4, 129.2, 127.9, 125.9, 124.9; IR (Film) 3056, 2924, 2854, 1555, 1470, 1374, 1246, 1014, 843, 760 cm⁻¹; HRMS (EI) m/z calcd. for $C_{17}H_{13}NO[M]^+$: 247.0997, found: 247.0994.

2,4-Diphenylpyridine *N***-oxide** (Table 3, entry 2, major product): MeOH/Acetone = 1:6, red foam; ¹H NMR (400 MHz, CDCl₃) δ 8.34 (d, *J* = 6.8 Hz, 1H), 7.84 (dd, *J* = 6.4, 1.7 Hz, 2H), 7.61-7.57 (m, 3H), 7.47-7.24 (m, 7H); ¹³C NMR (100 MHz, CDCl₃) δ 149.0, 140.4, 138.4, 136.3, 132.6, 129.5, 129.2, 129.2, 128.9, 128.2, 126.3, 124.8, 122.0; IR (Film) 3058, 1686, 1468, 1441, 1404, 1342, 1249, 830, 762 cm⁻¹; HRMS (EI) m/z calcd. for C₁₇H₁₃NO [*M*]⁺: 247.0997, found: 247.0995.

2,4,6-Triphenylpyridine *N***-oxide** (Table 3, entry 2, minor product): $CH_2Cl_2/Acetone = 20:1$, organge solid; m.p. 175-176 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.89 (dd, *J* = 6.5, 1.6 Hz, 4H), 7.65 (d, *J* = 7.4 Hz, 4H), 7.50-7.41 (m, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 149.7, 137.4, 136.6, 133.3, 129.5, 129.3, 129.1, 128.8, 128.0, 126.3, 123.7; IR (Film) 3059, 2923, 1685, 1458, 1403, 1341, 1247, 760 cm⁻¹; HRMS (EI) m/z calcd. for $C_{23}H_{17}NO[M]^+$: 323.1310, found: 323.1307.

2,5-Diphenylpyridine *N***-oxide** (Table 3, entry 3, major product): CH₂Cl₂/Acetone = 10:1, light yellow solid; m.p. 146-147 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.59 (s, 1H), 7.85 (dd, *J* = 6.7, 1.5Hz, 2H), 7.57 (d, *J* = 6.9 Hz, 2H), 7.50-7.42 (m, 8H); ¹³C NMR (100 MHz, CDCl₃) δ 147.5, 138.6, 138.5, 135.1,

132.4, 129.6, 129.30, 129.3, 129.1, 128.3, 127.1, 126.8, 124.4; IR (Film) 3055, 2923, 1686, 1450, 1374, 1183, 843, 721 cm⁻¹; HRMS (EI) m/z calcd. for C₁₇H₁₃NO [*M*]⁺: 247.0997, found: 247.0995.

1-Phenylisoquinoline *N***-oxide** (Table 3, entry 4, major product): $CH_2Cl_2/Acetone = 30:1$, light yellow solid; m.p. 178-179 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.24 (d, *J* = 7.2 Hz, 1H), 7.78 (d, *J* = 8.0 Hz, 1H), 7.65 (d, *J* = 7.2 Hz, 1H), 7.57-7.43 (m, 8H); ¹³C NMR (100 MHz, CDCl₃) δ 146.1, 137.3, 130.8, 130.1, 129.5, 129.7, 129.4, 129.1, 129.0, 128.7, 128.2, 126.8, 125.6, 123.3; IR (Film) 3058, 1553, 1490, 1390, 1322, 1221, 960, 759 cm⁻¹; HRMS (EI) m/z calcd. for C₁₅H₁₁NO [*M*]⁺: 221.0841, found: 221.0838.

1,3-Diphenylisoquinoline *N***-oxide** (Table 3, entry 4, minor product): $CH_2Cl_2/Acetone = 30:1$, light yellow solid; m.p. 175-176 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.86-7.83 (m, 3H), 7.80 (d, *J* = 8.0 Hz, 1H), 7.56-7.24 (m, 11H); ¹³C NMR (100 MHz, CDCl₃) δ 147.1, 146.5, 133.3, 131.5, 130.2, 130.0, 129.1, 129.0, 128.9, 128.51, 128.49, 128.0, 127.8, 126.8, 125.4, 123.9 (one carbon was missed even with prolonged scan); IR (Film) 3056, 2924, 1487, 1444, 1352, 1297, 1200, 964, 753 cm⁻¹; HRMS (EI) m/z calcd. for $C_{21}H_{15}NO[M]^+$: 297.1154, found: 297.1157.

2-Phenylquinoline N-oxide (Table 3, entry 5): CH₂Cl₂/Acetone = 20:1, organge solid; m.p. 119-120

^oC; ¹H NMR (400 MHz, CDCl₃) δ 8.32 (d, *J* = 8.8 Hz, 1H), 7.94 (d, *J* = 7.1 Hz, 2H), 7.80 (d, *J* = 8.1 Hz, 1H), 7.73-7.67 (m, 2H), 7.59 (t, *J* = 7.8 Hz, 1H), 7.49-7.42 (m, 4H); ¹³C NMR (100 MHz, CDCl₃) δ 144.8, 142.1, 133.4, 130.4, 129.45, 129.43, 129.38, 128.3, 128.1, 127.8, 125.1, 123.2, 120.1; IR (Film) 3058, 2924, 1560, 1492, 1449, 1350, 1305, 1246, 1216, 859, 763 cm⁻¹; HRMS (EI) m/z calcd. for C₁₅H₁₁NO [*M*]⁺: 221.0841, found: 221.0836.

2-Phenylbenzo[*h*]**quinoline** *N***-oxide** (Table 3, entry 6): CH₂Cl₂/Acetone = 30:1, brown solid; m.p. 99-100 °C; ¹H NMR (400 MHz, CDCl₃) δ 10.89 (dd, d, *J* = 3.7, 2.5 Hz, 1H), 7.87-7.85 (m, 3H), 7.78 (m 1H), 7.73-7.69 (m, 3H), 7.60-7.57 (m, 1H), 7.57-7.46 (m, 4H); ¹³C NMR (100 MHz, CDCl₃) δ 148.4, 138.8, 134.4, 134.3, 130.4, 130.2, 129.5, 129.1, 128.7, 128.5, 128.2, 128.0, 127.4, 126.4, 124.9, 124.9, 123.4; IR (Film) 3057, 2924, 1491, 1442, 1353, 1292, 839, 757 cm⁻¹; HRMS (EI) m/z calcd. for C₁₉H₁₃NO [*M*]⁺: 271.0997, found: 271.0997.

2-Phenylpyrazine N^{I} -oxide (Table 3, entry 7, major product): CH₂Cl₂/Acetone = 10:1, light yellow solid; m.p. 122-123 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.60 (s, 1H), 8.35 (d, J = 4.1 Hz, 1H), 8.17 (d, J = 4.1 Hz, 1H), 7.79-7.76 (m, 2H), 7.50-7.48 (m, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 148.4, 145.6, 144.6, 134.4, 130.4, 129.1, 128.9, 128.6; IR (Film) 3056, 2921, 1591, 1459, 1394, 1300, 1253, 1010, 868, 824, 733 cm⁻¹; HRMS (EI) m/z calcd. for C₁₀H₈N₂O [M]⁺: 172.0637, found: 172.0636.

2,6-Diphenylpyrazine N^{I} -oxide (Table 3, entry 7, minor product): CH₂Cl₂/Acetone = 30:1, light yellow solid; m.p. 71-72 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.55 (s, 2H), 7.82-7.80 (m, 4H), 7.51-7.48 (m, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 146.4, 144.7, 130.2, 129.48, 129.45, 128.5; IR (Film) 3059, 2924, 1587, 1490, 1410, 1384, 1298, 1013, 864, 781 cm⁻¹; HRMS (EI) m/z calcd. for C₁₆H₁₂N₂O [M]⁺: 248.0950, found: 248.0950.

2-Phenylquinoxaline *N^I***-oxide** (Table 3, entry 8): CH₂Cl₂/Acetone = 30:1, light yellow solid; m.p. 150-151 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.86 (s, 1H), 8.65 (d, *J* = 8.2 Hz, 1H), 8.09 (d, *J* = 7.2 Hz, 1H), 7.95 (d, *J* = 6.7 Hz, 2H), 7.77 (m, 2H), 7.53-7.48 (m, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 147.3, 144.4, 139.2, 137.4, 131.1, 130.3, 130.2, 129.9, 129.9, 129.3, 128.6, 119.3; The spectral data are matched well to the known reference (Leclerc, J.-P.; Fagnou, K. *Angew. Chem., Int. Ed.* **2006**, *45*, 7781-7786).

2-(3,4-Dimethylphenyl)pyridine *N***-oxide** (Table 3, entry 9, major product): MeOH/Acetone = 1:6, yellow solid; m.p. 112-113 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.28 (d, *J* = 6.6 Hz, 1H), 7.58 (s, 1H), 7.48 (dd, *J* = 6.3, 1.5 Hz, 1H), 7.37 (dd, *J* = 5.8, 2.0 Hz, 1H), 7.26-7.20 (m, 2H), 7.15 (m, 1H), 2.29 (s, 3H), 2.28 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 149.5, 140.4, 138.4, 136.4, 130.16, 130.13, 129.5, 127.2, 126.6, 125.4, 124.1, 19.8. 19.7; IR (Film) 3061, 2918, 1478, 1375, 1267, 870, 778 cm⁻¹; HRMS (EI) m/z calcd. for C₁₃H₁₃NO [*M*]⁺: 199.0997, found: 199.1000.

2,6-Bis(3,4-dimethylphenyl)pyridine *N***-oxide** (Table 3, entry 9, minor product): CH₂Cl₂/Acetone = 20:1, yellow foam; ¹H NMR (400 MHz, CDCl₃) δ 7.67 (s, 2H), 7.49 (dd, *J* = 6.4, 1.6 Hz, 2H), 7.34 (d, *J* = 6.8 Hz, 2H), 7.27-7.19 (m, 3H), 2.29 (s, 6H), 2.28 (s, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 150.0, 138.0, 136.1, 130.8, 130.5, 129.3, 126.9, 125.5, 124.7, 19.7, 19.7; IR (Film) 3071, 2919, 1474, 1355, 1247, 820, 758 cm⁻¹; HRMS (EI) m/z calcd. for C₂₁H₂₁NO [*M*]⁺: 303.1623, found: 303.1623.

2-(3,4-Dichlorophenyl)pyridine *N***-oxide** (Table 3, entry 10, major product): MeOH/Acetone = 1:6, light yellow solid; m.p. 146-147 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.28 (d, *J* = 6.2 Hz, 1H), 7.93 (d, *J* = 2.0 Hz, 1H), 7.65 (dd, *J* = 6.2 Hz, 1H), 7.50 (d, *J* = 8.3 Hz, 1H), 7.28 (dd, *J* = 7.7, 2.1 Hz, 1H), 7.26-7.23 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 146.8. 140.5, 133.7, 132.4, 132.2, 131.1, 130.2, 128.5, 127.0, 125.6, 125.1; IR (Film) 3058, 2956, 1492, 1461, 1268, 1029, 731 cm⁻¹; HRMS (EI) m/z calcd. for C₁₁H₇Cl₂NO [*M*]⁺: 238.9905, found: 238.9903.

2,6-Bis(3,4-dichlorophenyl)pyridine *N***-oxide** (Table 3, entry 10, minor product): CH₂Cl₂/Acetone = 40:1, yellow solid; m.p. 224-225 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.56 (d, *J* = 1.9 Hz, 2H), 7.66 (dd, *J* = 6.4, 1.9 Hz, 2H), 7.53 (d, *J* = 8.4 Hz, 2H), 7.42 (d, *J* = 7.0 Hz, 2H), 7.35 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 147.9, 133.9, 132.6, 132.51, 131.4, 130.2, 128.8, 126.5, 125.3; IR (Film) 3070, 2922, 1491, 1377, 1241, 1030, 780, 734 cm⁻¹; HRMS (EI) m/z calcd. for C₁₇H₉Cl₄NO [*M*]⁺: 382.9438, found:

382.9440.

2-(3,4-Difluorophenyl)pyridine *N***-oxide** (Table 3, entry 11, major product): MeOH/Acetone = 1:6, light yellow solid; m.p. 160-161 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.30 (dd, *J* = 5.8, 0.6 Hz, 1H), 7.82-7.77 (m, 1H), 7.52-7.49 (m, 1H). 7.39 (dd, *J* = 5.7, 2.1 Hz, 1H), 7.32-7.20 (m, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 152.3-151.2 (dd, *J* = 100.5, 12.6 Hz), 149.8-148.6 (dd, *J* = 96.4, 12.5 Hz), 147.1, 140.6, 129.2-129.1 (dd, *J* = 4.3, 2.5 Hz), 127.1, 125.9-125.8 (dd, *J* = 3.8, 2.8 Hz), 125.78, 125.0, 118.9-118.7 (d, *J* = 19.0 Hz), 117.3-117.1 (d, *J* = 17.5 Hz); IR (Film) 3076, 3048, 1609, 1525, 1484, 1401, 1272, 1253, 1108, 834, 738 cm⁻¹; HRMS (EI) m/z calcd. for C₁₁H₇F₂NO [*M*]⁺: 207.0496, found: 207.0493.

2-(3,5-Dimethylphenyl)pyridine *N***-oxide** (Table 3, entry 12, major product): CH_2Cl_2 , yellow foam; ¹H NMR (400 MHz, CDCl₃) δ 8.29 (d, *J* = 6.5 Hz, 1H), 7.35 (m, 3H), 7.24 (dd, *J* = 6.9, 7.1 Hz, 1H), 7.18 (dd, *J* = 7.5, 1.2 Hz, 1H), 7.05 (s, 1H), 2.33 (s, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 149.7, 140.4, 137.7, 132.5, 131.2, 127.4, 126.8, 125.6, 124.2, 21.2; The obtained spectral data are matched well to the known reference (Campeau, L.-C.; Rousseaux, S.; Fagnou, K. *J. Am. Chem. Soc.* **2005**, *127*, 18020-18021).

Experimental Procedures for the Crystal Structure Determination (Scheme 1). (PPh₃)₂PdCl₂ (70.2 mg, 0.1 mmol) and pyridine *N*-oxide (**1a**, 9.5 mg, 0.1 mmol) were weighed into a 5 mL screw-capped vial equipped with a 15 x 10 mm spinvane triangular-shaped Teflon stirbar. 1,4-Dioxane (3.0 mL) was added and the resulting mixture was sealed with a Teflon-lined cap. The mixture was stirred at 100 °C for 1 h in oil bath with vigorous stirring. The reaction mixture was cooled to room temperature, and then organic solvent was removed under the reduced pressure. The resulting mixture was dissolved in CH₂Cl₂ (1.0 mL), and a mono-crystalline solid (complex **A**) was obtained by a slow diffusion of hexane into the CH₂Cl₂ solution by standing for 1 day at room temperature. The structure was determined by an X-ray crystallographic analysis (*Appendix II*).

Appendix I

Spectral Copies of ¹H and ¹³C NMR of New Compounds Obtained in this Study

(*E*)-2-(3-Ethoxy-3-oxoprop-1-enyl)pyridine *N*-oxide (Table 1 and Equation 3)

(*E*)-2-(3-tert-Butoxy-3-oxoprop-1-enyl)pyridine *N*-oxide (Table 2, entry 1)

(*E*)-2-[3-(*N*,*N*-Dimethyl)amino)-3-oxoprop-1-enyl]pyridine *N*-oxide (Table 2, entry 2)

(*E*)-2-(3-Oxobut-1-enyl)pyridine *N*-oxide (Table 2, entry 3)

Diethyl [(E)-2-(N-oxypyridyl)]phosphonate (Table 2, entry 4)

(*E*)-2-(3,3-Dimethylbut-1-enyl)pyridine *N*-oxide (Table 2, entry 5)

(*E*)-2-Styrylpyridine *N*-oxide (Table 2, entry 6)

S30

(*E*)-2-(3-tert-Butoxy-3-oxoprop-1-enyl)-4-phenylpyridine *N*-oxide (Table 2, entry 7)

(*E*)-2-(3-tert-Butoxy-3-oxoprop-1-enyl)-6-phenylpyridine *N*-oxide (Table 2, entry 8)

(*E*)-2-(3-tert-Butoxy-3-oxoprop-1-enyl)-5-phenylpyridine *N*-oxide (Table 2, entry 9)

(E)-2-(3-tert-Butoxy-3-oxoprop-1-enyl)pyrazine N-oxide (Table 2, entry 10)

(*E*)-2-(3-tert-Butoxy-3-oxoprop-1-enyl)quinoxaline *N*-oxide (Table 2, entry 11)

(*E*)-6-(3-tert-Butoxy-3-oxoprop-1-enyl)pyridazine *N*-oxide (Table 2, entry 12)

(E)-Ethyl 3-(pyridin-2-yl)acrylate (Equation 2)

2-Phenylpyridine N-oxide (Table 3, entry 1, major product)

2,6-Diphenylpyridine N-oxide (Table 3, entry 1, minor product)

2,4-Diphenylpyridine N-oxide (Table 3, entry 2, major product)

2,4,6-Triphenylpyridine N-oxide (Table 3, entry 3, minor product)

2,5-Diphenylpyridine *N*-oxide (Table 3, entry 3, major product)

1-Phenylisoquinoline N-oxide (Table 3, entry 4, major product)

1,3-Diphenylisoquinoline N-oxide (Table 3, entry 4, minor product)

S45

2-Phenylquinoline *N***-oxide** (Table 3, entry 5)

•

2-Phenylbenzo[*h*]quinoline *N*-oxide (Table 3, entry 6)

2-Phenylpyrazine N^{1} **-oxide** (Table 3, entry 7, major product)

2,6-Diphenylpyrazine N^{1} **-oxide** (Table 3, entry 7, minor product)

2-Phenylquinoxaline *N*¹**-oxide** (Table 3, entry 8)

2-(3,4-Dimethylphenyl)pyridine N-oxide (Table 3, entry 9, major product)

2,6-Bis(3,4-dimethylphenyl)pyridine N-oxide (Table 3, entry 9, minor product)

2-(3,4-Dichlorophenyl)pyridine N-oxide (Table 3, entry 10, major product)

2,6-Bis(3,4-dichlorophenyl)pyridine N-oxide (Table 3, entry 10, minor product)

2-(3,4-Difluorophenyl)pyridine N-oxide (Table 3, entry 11, major product)

2-(3,5-Dimethylphenyl)pyridine N-oxide (Table 3, entry 12, major product)

Kinetic Isotope Effect Experiment of the Alkenylation of Pyridine *N*-oxide (Eq 1)

Appendix **I**

X-Ray Crystallographic Data of "Complex A"

Table S3. Crystal data and structure refinement for "Complex A".

Identification code	"Complex A"
Empirical formula	C23 H20 Cl2 N O P Pd
Formula weight	534.67
Temperature	296(2) K
Wavelength	0.71073 A
Unit cell dimensions	a = 10.2146(4) A alpha = 90 deg.
	b = 14.2563(7) A beta = 90.814(3) deg.
	c = 15.4161(8) A gamma = 90 deg.
Volume	2244.70(18) A^3
Z, Calculated density	4, 1.582 Mg/m^3
Absorption coefficient	1.150 mm^-1
F(000)	1072
Theta range for data collection	4.91 to 31.53 deg.
Limiting indices	-15<=h<=15, -20<=k<=16, -19<=l<=22
Reflections collected / unique	17852 / 7305 [R(int) = 0.0600]
Completeness to theta = 31.53	97.7 %
Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	7305 / 0 / 262
Goodness-of-fit on F^2	0.981
Final R indices [I>2sigma(I)]	R1 = 0.0455, wR2 = 0.0774
R indices (all data)	R1 = 0.0948, wR2 = 0.0903
Largest diff. peak and hole	0.690 and -0.510 e.A^-3

	x y	Z	U(eq)		
Pd(1)	6631(1)	896(1)	8244(1)	26(1)	
P(1)	8193(1)	654(1)	7276(1)	28(1)	
Cl(1)	4980(1)	806(1)	7233(1)	40(1)	
Cl(2)	8202(1)	1092(1)	9313(1)	37(1)	
O(1)	5326(2)	1071(2)	9268(2)	46(1)	
N(1)	4068(2)	1329(2)	9163(2)	34(1)	
C(1)	9480(2)	-113(2)	7685(2)	30(1)	
C(2)	10786(3)	19(2)	7468(2)	39(1)	
C(3)	11730(3)	-606(3)	7758(2)	44(1)	
C(4)	11385(3)	-1362(3)	8255(3)	50(1)	
C(5)	10088(3)	-1504(3)	8478(2)	46(1)	
C(6)	9150(3)	-869(2)	8204(2)	39(1)	
C(7)	7705(2)	101(2)	6257(2)	32(1)	
C(8)	7079(3)	609(3)	5607(2)	45(1)	
C(9)	6681(3)	177(3)	4840(3)	56(1)	
C(10)	6888(4)	-775(3)	4732(3)	60(1)	
C(11)	7485(4)	-1291(3)	5372(3)	53(1)	
C(12)	7901(3)	-861(3)	6125(2)	42(1)	
C(13)	8946(3)	1752(2)	6959(2)	33(1)	
C(14)	8840(3)	2526(2)	7503(2)	35(1)	
C(15)	9409(3)	3378(2)	7287(3)	43(1)	
C(16)	10065(3)	3461(3)	6510(3)	45(1)	
C(17)	10191(3)	2699(3)	5972(2)	46(1)	
C(18)	9632(3)	1839(3)	6181(2)	42(1)	
C(19)	3159(3)	783(2)	9537(2)	39(1)	
C(20)	1861(3)	1058(3)	9490(2)	45(1)	
C(21)	1503(3)	1855(3)	9076(3)	47(1)	
C(22)	2466(3)	2404(3)	8691(3)	51(1)	
C(23)	3749(3)	2116(2)	8742(2)	45(1)	

Table S4. Atomic coordinates ($x \ 10^4$) and equivalent isotropic displacement parameters ($A^2 \ x \ 10^3$)for "Complex A". U(eq) is defined as one third of the trace of the orthogonalizedUij tensor.

Pd(1)-O(1)	2.0963(19)
Pd(1)-P(1)	2.2267(7)
Pd(1)-Cl(1)	2.2842(8)
Pd(1)-Cl(2)	2.3001(9)
P(1)-C(13)	1.814(3)
P(1)-C(1)	1.816(3)
P(1)-C(7)	1.820(3)
O(1)-N(1)	1.344(3)
N(1)-C(23)	1.334(4)
N(1)-C(19)	1.348(4)
C(1)-C(6)	1.388(4)
C(1)-C(2)	1.392(4)
C(2)-C(3)	1.383(5)
C(3)-C(4)	1.371(5)
C(4)-C(5)	1.388(4)
C(5)-C(6)	1.380(5)
C(7)-C(8)	1.385(5)
C(7)-C(12)	1.401(5)
C(8)-C(9)	1.389(5)
C(9)-C(10)	1.385(6)
C(10)-C(11)	1.367(6)
C(11)-C(12)	1.375(5)
C(13)-C(14)	1.391(4)
C(13)-C(18)	1.403(4)
C(14)-C(15)	1.389(4)
C(15)-C(16)	1.386(5)
C(16)-C(17)	1.373(5)
C(17)-C(18)	1.392(5)
C(19)-C(20)	1.384(4)
C(20)-C(21)	1.351(5)
C(21)-C(22)	1.396(5)
C(22)-C(23)	1.374(4)

Table S5. Bond lengths [Å] and angles [deg] for "Complex A".

_

O(1)-Pd(1)-P(1)	173.12(7)
O(1)-Pd(1)-Cl(1)	92.82(7)
P(1)-Pd(1)-Cl(1)	93.61(3)
O(1)-Pd(1)-Cl(2)	83.73(7)
P(1)-Pd(1)-Cl(2)	89.99(3)
Cl(1)-Pd(1)-Cl(2)	175.18(3)
C(13)-P(1)-C(1)	107.75(13)
C(13)-P(1)-C(7)	104.69(15)
C(1)-P(1)-C(7)	103.10(14)
C(13)-P(1)-Pd(1)	110.95(10)
C(1)-P(1)-Pd(1)	112.50(10)
C(7)-P(1)-Pd(1)	117.08(8)
N(1)-O(1)-Pd(1)	123.95(19)
C(23)-N(1)-O(1)	121.0(2)
C(23)-N(1)-C(19)	121.9(3)
O(1)-N(1)-C(19)	117.0(3)
C(6)-C(1)-C(2)	119.0(3)
C(6)-C(1)-P(1)	119.2(2)
C(2)-C(1)-P(1)	121.8(2)
C(3)-C(2)-C(1)	120.1(3)
C(4)-C(3)-C(2)	120.3(3)
C(3)-C(4)-C(5)	120.4(3)
C(6)-C(5)-C(4)	119.3(3)
C(5)-C(6)-C(1)	120.9(3)
C(8)-C(7)-C(12)	118.1(3)
C(8)-C(7)-P(1)	121.0(3)
C(12)-C(7)-P(1)	120.8(3)
C(7)-C(8)-C(9)	120.7(4)
C(10)-C(9)-C(8)	119.6(4)
C(11)-C(10)-C(9)	120.6(4)
C(10)-C(11)-C(12)	119.9(4)
C(11)-C(12)-C(7)	121.1(4)
C(14)-C(13)-C(18)	119.3(3)
C(14)-C(13)-P(1)	119.0(2)
C(18)-C(13)-P(1)	121.7(3)

C(15)-C(14)-C(13)	120.8(3)
C(16)-C(15)-C(14)	119.4(3)
C(17)-C(16)-C(15)	120.3(3)
C(16)-C(17)-C(18)	121.0(3)
C(17)-C(18)-C(13)	119.1(3)
N(1)-C(19)-C(20)	118.7(3)
C(21)-C(20)-C(19)	121.0(3)
C(20)-C(21)-C(22)	119.0(3)
C(23)-C(22)-C(21)	119.1(3)
N(1)-C(23)-C(22)	120.3(3)

Symmetry transformations used to generate equivalent atoms:

	U1	1 U	22 U3	33 U	23	U13	U12
I	Pd(1)	23(1)	30(1)	27(1)	1(1)	3(1)	0(1)
]	P(1)	24(1)	31(1)	28(1)	1(1)	4(1)	-1(1)
(Cl(1)	29(1)	51(1)	39(1)	-1(1)	-4(1)	5(1)
(Cl(2)	34(1)	44(1)	34(1)	2(1)	-3(1)	-4(1)
(D(1)	28(1)	78(2)	32(1)	2(1)	5(1)	14(1)
1	N(1)	26(1)	46(2)	31(2)	-2(1)	6(1)	8(1)
(C(1)	27(1)	35(2)	29(2)	-5(1)	0(1)	2(1)
(C(2)	31(1)	45(2)	43(2)	-3(2)	6(1)	3(1)
(C(3)	28(1)	50(2)	52(2)	-6(2)	-2(1)	6(1)
C	C(4)	41(2)	56(2)	53(3)	-7(2)	-6(2)	18(2)
(C(5)	50(2)	44(2)	44(2)	9(2)	0(2)	11(2)
(C(6)	33(1)	41(2)	41(2)	4(2)	4(1)	2(1)
(C(7)	26(1)	41(2)	28(2)	0(1)	3(1)	-1(1)
(C(8)	39(2)	56(2)	40(2)	3(2)	-1(2)	2(1)
(C(9)	51(2)	83(3)	33(2)	1(2)	-8(2)	1(2)
С	(10)	63(2)	79(3)	37(2)	-17(2)	2(2)	-14(2)
C	C(11)	63(2)	51(2)	46(3)	-14(2)) 5(2)) -4(2)
(C(12)	41(2)	46(2)	40(2)	-6(2)) 7(1)	0(1)
C	C(13)	26(1)	35(2)	37(2)	10(1)) 3(1)	-1(1)
(C(14)	34(1)	32(2)	40(2)	5(1)	6(1)	1(1)
(C(15)	36(2)	35(2)	59(3)	6(2)	2(2)	-3(1)
C	C(16)	31(2)	43(2)	61(3)	21(2)	-2(2)	-8(1)
C	C(17)	37(2)	61(2)	40(2)	19(2)) 5(1)	-8(2)
(C(18)	40(2)	48(2)	37(2)	4(2)	7(1)	-4(1)
(C(19)	42(2)	43(2)	31(2)	1(2)	2(1)	-1(1)
(C(20)	33(2)	55(2)	47(2)	4(2)	5(1)	-7(1)
(C(21)	30(2)	60(2)	50(2)	6(2)	1(1)	7(1)

Table S6. Anisotropic displacement parameters (A² x 10³) for **"Complex A"**. The anisotropic displacement factor exponent takes the form:

-2 pi^2 [h^2 a*^2 U11 + ... + 2 h k a* b* U12]

C(22)	43(2)	49(2)	60(3)	17(2)	11(2)	14(2)
C(23)	39(2)	46(2)	50(2)	8(2)	13(2)	-1(1)

 2	x y	Z	U(eq)	
H(2)	11023	528	7127	47
H(3)	12602	-513	7616	52
H(4)	12024	-1783	8443	60
H(5)	9854	-2021	8809	55
H(6)	8285	-950	8369	46
H(8)	6923	1246	5686	54
H(9)	6279	526	4401	67
H(10)	6618	-1067	4220	72
H(11)	7610	-1932	5298	64
H(12)	8320	-1214	6553	51
H(14)	8383	2473	8018	42
H(15)	9350	3888	7660	52
H(16)	10422	4035	6352	54
H(17)	10656	2759	5461	55
H(18)	9713	1329	5810	50
H(19)	3399	233	9821	47
H(20)	1224	689	9748	54
H(21)	629	2036	9048	56
H(22)	2243	2956	8404	61
H(23)	4398	2472	8483	53

Table S7. Hydrogen coordinates ($x \ 10^{4}$) and isotropic displacement parameters (A² $x \ 10^{3}$) for "**Complex A**".