Supporting Information

A Diastereoselective Ni-Catalyzed Negishi Cross-Coupling Approach to Saturated, Fully Oxygenated CAlkyl and C-Aryl Glycosides
Hegui Gong and Michel R. Gagné*
University of North Carolina at Chapel Hill
Department of Chemistry
Chapel Hill, NC 27599, USA
mgagne@unc.edu

Table of Contents

I. Experimental Section ... $2-S-15$
II. Spectral Data for New Compounds..............................S-16-S-44

Experimental Section

General. All reagents were reagent grade quality and used as received from Aldrich unless otherwise indicated. All reactions were carried out under an atmosphere of argon or nitrogen unless otherwise indicated. Anhydrous THF was distilled from sodium/ benzophenone ketyl prior to use. All other solvents were technical grade unless noted. Anhydrous N, N-dimethylacetamide (DMA), anhydrous N, N dimethylimidazolidinone (DMI; Fluka), anhydrous DMF (Acros), $\mathrm{NiCl}_{2} \cdot$ glyme, $\mathrm{Ni}(\mathrm{COD})_{2}$ (Strem), terpyridine, and 4, 4', 4"-tri-tert-butyl-2,2',6,2"-terpyridine ('Bu-terpy) were used as received. The unsubstituted Py-Box was prepared according to a literature procedure. EtO-Terpy and Pyrrolinde-Terpy were prepared according to literature procedures. Acetobromo- α-D-glucose $\left(1 \% \mathrm{CaCO}_{3}\right)$ and acetobromo-α-D-galactose $\left(1 \% \mathrm{CaCO}_{3}\right)$ were purified by passing through a silica column prior to use. Acetobromo- α -D-mannose, benzylchloro- α-D-glucose, benzylchloro- α-D-mannose were prepared according to reported procedures. 2,3,4,6-tetra-O-benzyl-D-mannopyranose was purchased from TRC Biomedical Research Chemicals. 2,3,5-Tri-O-benzyl- α-D-arabinofuranosyl bromide (Fluka), tri-O-acetyl- β-D-arabinosyl bromide and α-D-glucopyranosyl bromide tetrabenzoate were used as received. 2-Deoxy-triacetyl D-arabino-Hexopyranosyl chloride was prepared according to the literature procedures. 2,3,5-Tri-O-acetyl-Dribofuranosyl chloride was prepared from β-D-ribofuranose 1,2,3,5-tetraacetate (Alfa Aesar). 3,4,6-Tri-O-acetyl-2-deoxy-2-phthalimido-D-glucopyranosyl bromide was prepared from D-(+)-glucosamine hydrochloride (sigma) according to the reported procedures. Aryl iodides and bromides were used as received, or prepared according to the known procedures $((E)$-2-iodovinylbenzene, 2-(5-Iodofuran-2-yl)[1,3]dioxolane, 5-Iodo-2,3-dimethoxybenzoic acid methyl ester). Arylzinc reagents in DMI, DMA and DMF were prepared based on a literature procedure. Column chromatography was performed using Merck silica gel 60 as the solid support. All NMR spectra were recorded on Bruker Avance 400 MHz or 300 MHz spectrometer at STP unless otherwise indicated. Deuterated solvents were used as received from Cambridge

1) (a) Nishiyama, H.; Kondo, M.; Nakamura, T.; Itoh, K. Organometallics 1991, 10, 500-508. (b) Motoyama, Y.; Kurihara, O.; Murata, K.; Aoki, K.; Nishiyama, H. Organometallics 2000, 19, 1025-1034.
2) (a) Johansson, O. Synthesis 2006, 15, 2585-2589. (b) Lowe, G.; Droz, A. S.; Vilaivan, T.; Weaver, G. W.; Tweedale, L.; Pratt, J. M.; Rock, P.; Yardley, V.; Croft, S. L. J. Med. Chem. 1999, 42, 999-1006.
3) Ravindranathan Karcha, K. P.; Jennings, H. J. J. Carbohydr. Chem. 1990, 9, 777-781.
4) (a) Blom, P.; Ruttens, B.; Van Hoof, S.; Hubrecht, I.; Van der Eycken, J.; Sas, B.; Van hemel, J.; Vandenkerckhove, J. J. Org. Chem. 2005, 70, 10109-10112. (b) Takeo, K.; Nakagen, M.; Teramoto, Y.; Nitta, Y. Carbohydr. Res. 1990, 201, 261-275.
5) Beau, J. M.; Sinay, P. Tetrahedron Lett. 1985, 26, 6185
6) Gravier-Pelletier, C.; Ginisty, M.; Le Merrer, Y. Tetrahedron Asymm. 2004, 15, 189.
7) (a) Tomohiko F.; Yoshiyuki M.; Takanori S.; Minoru U. Tetrahedron 2005, 61, 7874. (b) Lemieux, R. U.; Takeda, T.; Chung, B. Y. ACS Symposium Series 1976, 39(Synth. Methods Carbohydr., Symp.), 90-115.
8) Brown, H.C.; Hamaoka, T.; Ravindran, N.; Subrahmanyam, C.; Somayaji, V.; Bhat, N. G. J. Org. Chem. 1989, 54, 6075-6079.
9) Lash, T. D.; Armiger, Y. L. S. T. J. Heterocycl. Chem. 1991, 28, 965-970.
(10) Yue, E. W.; Gerdes, J. M.; Mathis, C.; A. J. Org. Chem. 1991, 56, 5451-5456.
(11) (a) Krasovskiy, A.; Malakhov, V.; Gavryushin, A.; Knochel, P. Angew. Chem. Int. Ed. 2006, 45, 6040-6044. (b) Ho, S. Org. Lett. 2003, 4, 423-425.

Isotope Laboratories, Inc. ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR chemical shifts are reported in δ units, parts per million (ppm) relative to the chemical shift of residual solvent. Reference peaks for chloroform in ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra were set at 7.24 ppm and 77.0 ppm , respectively; For methanol the reference peaks in ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra were set at 3.30 ppm and 49.0 ppm , respectively; For dichloromethane, the reference peaks in ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra were set at 5.33 ppm and 53.5 ppm , respectively. Highresolution mass spectra (HRMS) were obtained using a Brucker Biotof-II instrument. Melting point was recorded on Uni-melt (Thoms Hoover) capillary melting point apparatus.

Preparation of aryl zinc reagents: To a flame-dried Schlenk flask equipped with a magnetic stir bar was added $\mathrm{Zn}(0.98 \mathrm{~g}, 150 \mathrm{~mol} \%, 15.0 \mathrm{mmol})$ and $\mathrm{LiCl}(0.42 \mathrm{~g}, 100 \mathrm{~mol} \%, 10 \mathrm{mmol})$ in a glove box. After the flask was moved out of the glove box, it was heated at $70^{\circ} \mathrm{C}$ for 30 min in vacuo. A solution of I_{2} $(0.13 \mathrm{~g}, 5 \mathrm{~mol} \%, 0.5 \mathrm{mmol})$ in DMF was then added to the flask via syringe, followed by the addition of aryl halides (for the liquid aryl halides, addition was carried out through a syringe; for the solid aryl halides, addition was performed under argon atmosphere). The resultant mixture was allowed to stir for 12 h at $70{ }^{\circ} \mathrm{C}$. For 4-methoxphenylzinc iodide, 1,2-dibromoethane and $\mathrm{Me}_{3} \mathrm{SiCl}$ were used to activate the Zn powder. ${ }^{11 \mathrm{a}}$ The concentration of organozinc reagents were determined to be $\sim 0.5 \mathrm{M}$ by titration with I_{2}.

General Procedure for Negishi Coupling. To a flame-dried Schlenk tube equipped with a stir bar was loaded ${ }^{t}$ Bu-Terpy $(0.015 \mathrm{~g}, 0.037 \mathrm{mmol}, 15 \mathrm{~mol} \%)$. The tube was moved to a dry glove box, at which point $\mathrm{Ni}(\mathrm{COD})_{2}(0.007 \mathrm{~g}, 0.024 \mathrm{mmol}, 10 \mathrm{~mol} \%)$ was added. After the tube was moved out of the glove box, DMF (0.5 mL) was then added through a syringe. The mixture was allowed to stir for 15 min , and a typical dark blue solution formed along with trace of ${ }^{t} \mathrm{Bu}$-Terpy suspension. Under argon atmosphere, acetobromo- α-D-glucose ($100.0 \mathrm{mg}, 0.243 \mathrm{mmol}, 100 \mathrm{~mol} \%$) was added in one portion followed by the addition of corresponding organozinc reagent ($\sim 0.5 \mathrm{M}$ in DMF, $0.75 \mathrm{~mL}, 150 \mathrm{~mol} \%$) via syringe. After the resulting mixture was stirred for 12 h at $25^{\circ} \mathrm{C}$, it was directly loaded onto a silica column without work-up (the residue was rinsed with small amount of DCM). Flash column chromatography provided the product as white solids or colorless oil after removal of solvents. Recrystallization in diethyl ether was performed to obtain the pure β-anomer for NMR spectroscopy studies.

Proton labeling: For the purpose of spectral assignment, the proton labeling outlined in the following box was used throughout the text (including mannosides).

[^0]

(2S, 3S, 4R, 5R, 6R)-Acetic acid 4,5-diacetoxy-2-acetoxymethyl-6-(4-methoxy-phenyl)-
tetrahydro-pyran-3-yl ester. This compound was prepared according to the General Procedure using acetobromo- α-D-glucose ($100 \mathrm{mg}, 0.24 \mathrm{mmol}, 100 \mathrm{~mol} \%$) and 4-methoxyphenylzinc iodide/ $\mathrm{LiCl}(0.75$ $\mathrm{mL}, \sim 0.5 \mathrm{M}, 0.73 \mathrm{mmol}, 150 \mathrm{~mol} \%)$. Flash column chromatography $\left(\mathrm{SiO}_{2}: 20 \%\right.$ ethyl acetate in hexanes) gave a mixture of diastereomers ($10: 1 \beta$ to α anomers based on NMR) as a white solid ($60 \mathrm{mg}, 0.14 \mathrm{mmol}$, 58% yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.24(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.84(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 5.30(\mathrm{t}, J=$ $9.6 \mathrm{~Hz}, 1 \mathrm{H} ; H 3), 5.20(\mathrm{t}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H} ; H 4), 5.12(\mathrm{t}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H} ; H 2), 4.33(\mathrm{~d}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H} ; H 1)$, $4.25(\mathrm{dd}, J=12.4$ and $4.8 \mathrm{~Hz}, 1 \mathrm{H} ; H 6), 4.12(\mathrm{dd}, J=12.4$ and $2.0 \mathrm{~Hz}, 1 \mathrm{H} ; H 7), 3.80(\mathrm{ddd}, J=10.0,4.8$ and $2.0 \mathrm{~Hz}, 1 \mathrm{H} ; H 5), 3.77(\mathrm{~s}, 3 \mathrm{H}), 2.06(\mathrm{~s}, 3 \mathrm{H}), 2.03(\mathrm{~s}, 3 \mathrm{H}), 1.98(\mathrm{~s}, 3 \mathrm{H}), 1.78(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 $\mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$): $\delta 170.7,170.4,169.5,168.9,160.0,128.5,128.3,80.0,76.1,74.4,72.6,68.7,62.4,55.2$, 20.7, 20.6, 20.4. HRMS (ESI): $m / z[\mathrm{M}+\mathrm{Na}]^{+}$found 461.141 , calcd 461.142 for $\mathrm{C}_{21} \mathrm{H}_{26} \mathrm{O}_{10} \mathrm{Na} . \mathrm{MP}=103-105$ ${ }^{\circ} \mathrm{C}$.

($2 S, 3 S, 4 R, 5 R, 6 R$)-Acetic acid 4,5-diacetoxy-6-acetoxymethyl-2-thiophen-3-yl-tetrahydro-
pyran-3-yl ester. This compound was prepared according to the General Procedure using acetobromo- α-Dglucose ($100 \mathrm{mg}, 0.24 \mathrm{mmol}, 100 \mathrm{~mol} \%$) and 3-thiophenylzinc iodide/ $\mathrm{LiCl}(0.75 \mathrm{~mL}, \sim 0.5 \mathrm{M}, 0.73 \mathrm{mmol}$, $150 \mathrm{~mol} \%)$. Flash column chromatography $\left(\mathrm{SiO}_{2}: 20 \%\right.$ ethyl acetate in hexanes) gave a mixture of diastereomers (16:1 β to α anomers based on NMR) as a white solid ($83.6 \mathrm{mg}, 0.202 \mathrm{mmol}, 83 \%$ yield). ${ }^{1} \mathrm{H}$

NMR (400 MHz, CDCl_{3}): $\delta 7.27(\mathrm{~m}, 2 \mathrm{H}), 7.06(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.28(\mathrm{t}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H} ; H 3), 5.19(\mathrm{t}, J$ $=9.2 \mathrm{~Hz}, 1 \mathrm{H} ; H 4), 5.14(\mathrm{t}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H} ; H 2), 4.52(\mathrm{~d}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H} ; H 1), 4.25(\mathrm{dd}, J=12.4$ and 4.8 $\mathrm{Hz}, 1 \mathrm{H} ; H 6), 4.13(\mathrm{dd}, J=12.4$ and $1.6 \mathrm{~Hz} ; H 7), 3.80(\mathrm{ddd}, J=9.2,4.4$ and $2.0 \mathrm{~Hz}, 1 \mathrm{H} ; H 5), 2.06(\mathrm{~s}, 3 \mathrm{H})$, $2.03(\mathrm{~s}, 3 \mathrm{H}), 1.98(\mathrm{~s}, 3 \mathrm{H}), 1.84(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta 170.8,170.4,169.5,169.0,137.2$, $126.4,126.0,123.7,76.2,76.1,74.2,72.2,68.5,62.3,20.8,20.7,20.67,20.5$. HRMS (ESI): $m / z[\mathrm{M}+\mathrm{Na}]^{+}$ found 437.086 , calcd 437.088 for $\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{O}_{9} \mathrm{SNa}$. $\mathrm{MP}=147-149{ }^{\circ} \mathrm{C}$.

(2S, 3S, 4R, 5R, 6R)-Acetic acid 3,4,5-triacetoxy-6-(5-[1,3]dioxolan-2-yl-furan-2-yl)-tetrahydro-pyran-2-ylmethyl ester. This compound was prepared according to the General Procedure using acetobromo- α-D-glucose ($100 \mathrm{mg}, 0.24 \mathrm{mmol}, 100 \mathrm{~mol} \%$) and [1,3]Dioxolan-2-furanylzinc iodide/ $\mathrm{LiCl}(0.75 \mathrm{~mL}, \sim 0.5 \mathrm{M}, 0.73 \mathrm{mmol}, 150 \mathrm{~mol} \%)$. Flash column chromatography ($\mathrm{SiO}_{2}: 20 \%$ ethyl acetate in hexanes) gave a mixture of diastereomers ($>10: 1 \beta$ to α anomers based on NMR) as syrup ($91.4 \mathrm{mg}, 0.19$ $\mathrm{mmol}, 80 \%$ yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$): $\delta 6.42(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 2 \mathrm{H}), 5.88(\mathrm{~s}, 1 \mathrm{H}), 5.39(\mathrm{t}, J=9.6$ $\mathrm{Hz}, 1 \mathrm{H} ; H 3), 5.32(\mathrm{t}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H} ; H 4), 5.18(\mathrm{t}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H} ; H 2), 4.58(\mathrm{~d}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H} ; H 1), 4.27$ (dd, $J=12.4$ and $4.8 \mathrm{~Hz}, 1 \mathrm{H} ; H 6$), 4.07-4.20 (m, 3H), 4.07-4.00 (m, 2H), $3.88(\mathrm{ddd}, J=10.0,4.8$ and 2.0 $\mathrm{Hz}, 1 \mathrm{H} ; H 5), 2.09(\mathrm{~s}, 3 \mathrm{H}), 2.06(\mathrm{~s}, 3 \mathrm{H}), 2.02(\mathrm{~s}, 3 \mathrm{H}), 1.90(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right): \delta 170.5$, $170.0,169.4,169.0,152.2,149.7,110.0,109.3,97.38,75.9,74.0,73.2,69.7,68.2,65.2,65.1,62.2,20.5$, 20.4, 20.2. HRMS (ESI): $m / z[\mathrm{M}+\mathrm{Na}]^{+}$found 493.131, calcd 493.132 for $\mathrm{C}_{21} \mathrm{H}_{26} \mathrm{O}_{12} \mathrm{Na}$. MP $=82-84{ }^{\circ} \mathrm{C}$.

$(2 S, 3 S, 4 R, 5 R, 6 R)$-Acetic acid 3,5-diacetoxy-2-acetoxymethyl-6-E-styryl-tetrahydro-pyran-4-yl ester. This compound was prepared according to the General Procedure using acetobromo- α-Dglucose ($100 \mathrm{mg}, 0.24 \mathrm{mmol}, 100 \mathrm{~mol} \%$) and E-phenyl-2-vinylzinc iodide/ $\mathrm{LiCl}(0.75 \mathrm{~mL}, \sim 0.5 \mathrm{M}, 150$ mmol, $300 \mathrm{~mol} \%$). Flash column chromatography ($\mathrm{SiO}_{2}: 20 \%$ ethyl acetate in hexanes) gave a mixture of diastereomers ($\sim 1: 1 \beta$ to α anomers based on NMR) as a white solid ($63.3 \mathrm{mg}, 0.146 \mathrm{mmol}, 60 \%$ yield).

Charaterization data for the α-anomer: ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $\delta 7.20-7.40(\mathrm{~m}, 5 \mathrm{H}), 6.76$ $(\mathrm{d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.36(\mathrm{dd}, J=16.0$ and $6.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.38(\mathrm{t}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H} ; H 3), 5.13(\mathrm{dd}, J=10.0$
and $6.0 \mathrm{~Hz}, 1 \mathrm{H} ; H 2), 5.07(\mathrm{t}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H} ; H 4), 4.90(\mathrm{t}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H} ; H 1), 4.23(\mathrm{dd}, J=12.0$ and 4.4 $\mathrm{Hz}, 1 \mathrm{H} ; H 6$), $4.10(\mathrm{dd}, J=12.0$ and $1.6 \mathrm{~Hz}, 1 \mathrm{H} ; H 7$), $4.03(\mathrm{ddd}, J=10.0,4.8$ and $2.0 \mathrm{~Hz}, 1 \mathrm{H} ; H 5), 2.09(\mathrm{~s}$, $3 \mathrm{H}), 2.03(\mathrm{~s}, 3 \mathrm{H}), 2.02(\mathrm{~s}, 3 \mathrm{H}), 2.01(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta 170.7,170.2,169.8,169.6$, 137.1, 135.8, 128.7, 128.6, 126.7, 120.6, 73.13, 70.8, 70.5, 69.3, 69.0, 62.3, 20.8, 20.7, 20.6. HRMS (ESI): $m / z[\mathrm{M}+\mathrm{Na}]^{+}$found 457.147 , calcd 457.147 for $\mathrm{C}_{22} \mathrm{H}_{26} \mathrm{O} 9 \mathrm{Na}$. $\mathrm{MP}=132-135{ }^{\circ} \mathrm{C}$.

Charaterization data for the β-anomer: Residual α-anomer is present in this partially purified product. Additional purification was not possible. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.15-7.45(\mathrm{~m}, 5 \mathrm{H}), 6.63$ $(\mathrm{d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.36(\mathrm{dd}, J=16.0$ and $8.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.26(\mathrm{t}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H} ; H 3), 5.11(\mathrm{t}, J=9.6 \mathrm{~Hz}$, $1 \mathrm{H} ; H 4), 5.01(\mathrm{t}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H} ; H 2), 4.26(\mathrm{dd}, J=12.4$ and $4.4 \mathrm{~Hz}, 1 \mathrm{H} ; H 6), 4.12(\mathrm{dd}, J=12.4$ and 2.0 $\mathrm{Hz}, 1 \mathrm{H} ; H 7$), $4.01(\mathrm{dd}, J=9.2$ and $8.0 \mathrm{~Hz}, 1 \mathrm{H} ; H 1), 3.74(\mathrm{ddd}, J=10.0,4.8$ and $2.0 \mathrm{~Hz}, 1 \mathrm{H} ; H 5), 2.09(\mathrm{~s}$, $3 \mathrm{H}), 2.03(\mathrm{~s}, 3 \mathrm{H}), 2.02(\mathrm{~s}, 3 \mathrm{H}), 2.01(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta 170.8,170.4,169.5,135.6$, $135.3,128.6,128.4,126.8,124.0,79.8,74.1,75.7,73.8,73.1,71.4,70.8,69.4,69.0,68.5,62.3,20.8,20.7$, 20.6. HRMS (ESI): $m / z[\mathrm{M}+\mathrm{Na}]^{+}$found 457.147 , calcd 457.147 for $\mathrm{C}_{22} \mathrm{H}_{26} \mathrm{O}_{9} \mathrm{Na}$.

(2S, 3S, 4R, 5R, $6 R$)-Acetic acid 4,5-diacetoxy-2-acetoxymethyl-6-(4-iodo-phenyl)-tetrahydro-
pyran-3-yl ester. This compound was prepared according to the General Procedure using acetobromo- α-Dglucose ($100 \mathrm{mg}, 0.24 \mathrm{mmol}, 100 \mathrm{~mol} \%$) and 4-iodophenylzinc iodide/ $\mathrm{LiCl}(0.75 \mathrm{~mL}, \sim 0.5 \mathrm{M}, 0.73 \mathrm{mmol}$, $150 \mathrm{~mol} \%)$. Flash column chromatography ($\mathrm{SiO}_{2}: 20 \%$ ethyl acetate in hexanes) gave a mixture of diastereomers ($14: 1 \beta$ to α anomers based on NMR) as a white solid ($39.0 \mathrm{mg}, 0.073 \mathrm{mmol}, 30 \%$ yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.65(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.06(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.29(\mathrm{t}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H}$; $H 3), 5.19(\mathrm{t}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H} ; H 4), 5.06(\mathrm{t}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H} ; H 2), 4.32(\mathrm{~d}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H} ; H 1), 4.25(\mathrm{dd}, J=$ 12.4 and $4.4 \mathrm{~Hz}, 1 \mathrm{H} ; H 6), 4.12(\mathrm{dd}, J=12.4$ and $1.6 \mathrm{~Hz}, 1 \mathrm{H} ; H 7), 3.80(\mathrm{ddd}, J=9.6,4.4$ and $2.0 \mathrm{~Hz}, 1 \mathrm{H}$; H5), $2.06(\mathrm{~s}, 3 \mathrm{H}), 2.03(\mathrm{~s}, 3 \mathrm{H}), 1.97(\mathrm{~s}, 3 \mathrm{H}), 1.81(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 170.7,170.4$, 169.5, 168.8, 137.6, 135.9, 128.0, 94.8, 79.6, 74.1, 72.4, 68.4, 62.2, 20.8, 20.64, 20.63, 20.4. HRMS (ESI): $m / z[\mathrm{M}+\mathrm{Na}]^{+}$found 557.031 , calcd 557.028 for $\mathrm{C}_{20} \mathrm{H}_{23} \mathrm{IO} 9 \mathrm{Na} . \mathrm{MP}=135-138^{\circ} \mathrm{C}$.

(2R, 3R, 4S, 5R, 6R)- Acetic acid 3,4,5-triacetoxy-6-thiophen-2-yl-tetrahydro-pyran-2-
ylmethyl ester. This compound was prepared according to the General Procedure using acetobromo- α-Dglucose ($100 \mathrm{mg}, 0.24 \mathrm{mmol}, 100 \mathrm{~mol} \%$) and 2-thiophenylzinc iodide/ $\mathrm{LiCl}(0.75 \mathrm{~mL}, \sim 0.5 \mathrm{M}, 0.73 \mathrm{mmol}$, $150 \mathrm{~mol} \%)$. Flash column chromatography $\left(\mathrm{SiO}_{2}: 20 \%\right.$ ethyl acetate in hexanes) gave a mixture of diastereomers (16:1 β to α anomers based on NMR) as a white solid ($78.6 \mathrm{mg}, 0.190 \mathrm{mmol}, 78 \%$ yield). ${ }^{1} \mathrm{H}$

NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.28(\mathrm{dd}, J=5.1,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.03(\mathrm{~d}, J=3.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.94(\mathrm{dd}, J=5.1$ and $3.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.29(\mathrm{t}, J=9.3 \mathrm{~Hz}, 1 \mathrm{H} ; H 3), 5.20(\mathrm{t}, J=9.3 \mathrm{~Hz}, 1 \mathrm{H} ; H 4), 5.16(\mathrm{t}, J=9.3 \mathrm{~Hz}, 1 \mathrm{H} ; H 2), 4.90$ $(\mathrm{d}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H} ; H 1), 4.25(\mathrm{dd}, J=12.3$ and $4.5 \mathrm{~Hz}, 1 \mathrm{H} ; H 6), 4.15(\mathrm{dd}, J=12.3$ and $2.4 \mathrm{~Hz} ; H 7), 3.82$ $(\mathrm{ddd}, J=9.6,4.8$ and $2.4 \mathrm{~Hz}, 1 \mathrm{H} ; H 5), 2.07(\mathrm{~s}, 3 \mathrm{H}), 2.03(\mathrm{~s}, 3 \mathrm{H}), 1.99(\mathrm{~s}, 3 \mathrm{H}), 1.87(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 170.8,170.4,169.5,169.0,138.6,126.6,126.3,126.2,76.2,76.0,74.2,72.8,68.4,62.2$, 20.8, 20.69, 20.66, 20.5. HRMS (ESI): $m / z[\mathrm{M}+\mathrm{Na}]^{+}$found 437.089 , calcd 437.088 for $\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{O}_{9} \mathrm{SNa} . \mathrm{MP}=$ $122-124^{\circ} \mathrm{C}$.

($2 S, 3 S, 4 R, 5 R, 6 R$)-Acetic acid 3,4,5-triacetoxy-6-(3-bromo-phenyl)-tetrahydro-pyran-2ylmethyl ester. This compound was prepared according to the General Procedure using acetobromo- α-Dglucose ($100 \mathrm{mg}, 0.24 \mathrm{mmol}, 100 \mathrm{~mol} \%$) and 3-bromophenylzinc iodide/ $\mathrm{LiCl}(0.75 \mathrm{~mL}, \sim 0.5 \mathrm{M}, 0.73$ $\mathrm{mmol}, 150 \mathrm{~mol} \%)$. Flash column chromatography ($\mathrm{SiO}_{2}: 20 \%$ ethyl acetate in hexanes) gave a mixture of diastereomers (14:1 β to α anomers based on NMR) as a white solid ($91.2 \mathrm{mg}, 0.187 \mathrm{mmol}, 77 \%$ yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.46(\mathrm{~s}, 1 \mathrm{H}), 7.42(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.26(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.19(\mathrm{t}, J=7.6$ $\mathrm{Hz}, 1 \mathrm{H}), 5.30(\mathrm{t}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H} ; H 3), 5.19(\mathrm{t}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H} ; H 4), 5.04(\mathrm{t}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H} ; H 2), 4.33(\mathrm{~d}, J$ $=9.6 \mathrm{~Hz}, 1 \mathrm{H} ; H 1), 4.25(\mathrm{dd}, J=12.4$ and $4.4 \mathrm{~Hz}, 1 \mathrm{H} ; H 6), 4.13(\mathrm{~d}, J=12.4$ and $2.0 \mathrm{~Hz}, 1 \mathrm{H} ; H 7), 3.80$ (ddd, $J=10.0,4.8$ and $2.0 \mathrm{~Hz}, 1 \mathrm{H} ; H 5), 2.06(\mathrm{~s}, 3 \mathrm{H}), 2.02(\mathrm{~s}, 3 \mathrm{H}), 1.96(\mathrm{~s}, 3 \mathrm{H}), 1.82(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 170.6,170.2,169.4,168.7,138.6,131.9,130.2,130.0,125.4,122.3,79.3,77.0,74.0$, 72.6, 68.5, 62.2, 20.7, 20.6, 20.3. HRMS (ESI): $m / z[\mathrm{M}+\mathrm{Na}]^{+}$found 509.047, calcd 509.042 for $\mathrm{C}_{20} \mathrm{H}_{23} \mathrm{BrO}_{9} \mathrm{SNa} . \mathrm{MP}=132-133{ }^{\circ} \mathrm{C}$.

(2R, 3R, 4S, 5R, 6R)-5-(3,4,5-Triacetoxy-6-acetoxymethyl-tetrahydro-pyran-2-yl)-furan-2carboxylic acid methyl ester. This compound was prepared according to the General Procedure using acetobromo- α-D-glucose ($100 \mathrm{mg}, 0.24 \mathrm{mmol}, 100 \mathrm{~mol} \%$) and 5-methoxycarbonylfuranylzinc iodide/ LiCl $(0.75 \mathrm{~mL}, \sim 0.5 \mathrm{M}, 0.73 \mathrm{mmol}, 150 \mathrm{~mol} \%)$. Flash column chromatography $\left(\mathrm{SiO}_{2}: 20 \%\right.$ ethyl acetate in hexanes) gave a mixture of diastereomers ($14: 1 \beta$ to α anomers based on NMR) as a white solid (72 mg , $0.16 \mathrm{mmol}, 65 \%$ yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.08(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.49(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H})$, $5.34(\mathrm{t}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H} ; H 3), 5.27(J=9.6 \mathrm{~Hz}, 1 \mathrm{H} ; H 4), 5.14(\mathrm{t}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H} ; H 2), 4.56(\mathrm{~d}, J=9.6 \mathrm{~Hz}$, $1 \mathrm{H} ; H 1), 4.23(\mathrm{dd}, J=12.4$ and $4.8 \mathrm{~Hz}, 1 \mathrm{H} ; H 0), 4.10(\mathrm{dd}, J=12.4$ and $2.0 \mathrm{~Hz}, 1 \mathrm{H} ; H 7), 3.85(\mathrm{~s}, 3 \mathrm{H}), 3.79$ (ddd, $J=10.0,4.8$ and $2.0 \mathrm{~Hz}, 1 \mathrm{H} ; H 5), 2.05(\mathrm{~s}, 3 \mathrm{H}), 2.01(\mathrm{~s}, 3 \mathrm{H}), 1.99(\mathrm{~s}, 3 \mathrm{H}), 1.91(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 170.6,170.2,169.3,169.2,158.7,153.5,144.8,118.5,110.6,76.2,74.0,73.2,70.0$,
68.2, 62.0, 51.9, 20.7, 20.6, 20.4. HRMS (ESI): $m / z[\mathrm{M}+\mathrm{Na}]^{+}$found 479.113 , calcd 479.117 for $\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{O}_{12} \mathrm{Na} . \mathrm{MP}=136-140^{\circ} \mathrm{C}$.

($2 S, 3 S, 4 R, 5 R, 6 R$)-Acetic acid 4,5-diacetoxy-2-acetoxymethyl-6-(4-cyano-phenyl)-tetrahydro-pyran-3-yl ester. This compound was prepared according to the General Procedure using acetobromo- α-D-glucose ($100 \mathrm{mg}, 0.24 \mathrm{mmol}, 100 \mathrm{~mol} \%$) and 4-cyanophenylzinc iodide/ $\mathrm{LiCl}(0.75 \mathrm{~mL}$, $\sim 0.5 \mathrm{M}, 0.73 \mathrm{mmol}, 150 \mathrm{~mol} \%)$. Flash column chromatography ($\mathrm{SiO}_{2}: 20 \%$ ethyl acetate in hexanes) gave a mixture of diastereomers ($>12: 1 \beta$ to α anomers based on NMR) as a white solid ($83.2 \mathrm{mg}, 0.192 \mathrm{mmol}$, 79% yield). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.61(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.40(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.31(\mathrm{t}, J=$ $9.6 \mathrm{~Hz}, 1 \mathrm{H} ; H 3), 5.19(J=9.6 \mathrm{~Hz}, 1 \mathrm{H} ; H 4), 5.02(\mathrm{t}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H} ; H 2), 4.43(\mathrm{~d}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H} ; H 1)$, $4.27(\mathrm{dd}, J=12.3$ and $4.8 \mathrm{~Hz}, 1 \mathrm{H} ; H 6), 4.13(\mathrm{dd}, J=12.3$ and $2.1 \mathrm{~Hz}, 1 \mathrm{H} ; H 7), 3.82(\mathrm{ddd}, J=9.9,4.8$ and $2.1 \mathrm{~Hz}, 1 \mathrm{H} ; H 5), 2.06(\mathrm{~s}, 3 \mathrm{H}), 2.03(\mathrm{~s}, 3 \mathrm{H}), 1.97(\mathrm{~s}, 3 \mathrm{H}), 1.81(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ $170.7,170.3,169.5,168.7,141.5,132.3,127.8,118.4,112.8,79.2,76.3,73.9,72.4,68.3,62.2,20.8,20.6$, 20.4. HRMS (ESI): $m / z[\mathrm{M}+\mathrm{Na}]^{+}$found 456.124 , calcd 456.127 for $\mathrm{C}_{21} \mathrm{H}_{23} \mathrm{NO} 9 \mathrm{Na}$. $\mathrm{MP}=144-146{ }^{\circ} \mathrm{C}$.

(2S, 3S, 4R, 5R, 6R)- 2-Methoxy-4-(3,4,5-triacetoxy-6-acetoxymethyl-tetrahydro-pyran-2-yl)-
benzoic acid methyl ester. This compound was prepared according to the General Procedure using acetobromo- α-D-glucose ($100 \mathrm{mg}, 0.24 \mathrm{mmol}, 100 \mathrm{~mol} \%$) and 3-methoxy-4-methoxycarbonylphenylzinc iodide/ $\mathrm{LiCl}\left(0.75 \mathrm{~mL}, \sim 0.5 \mathrm{M}, 0.73 \mathrm{mmol}, 150 \mathrm{~mol} \%\right.$) . Flash column chromatography $\left(\mathrm{SiO}_{2}: 20 \%\right.$ ethyl acetate in hexanes) gave a mixture of diastereomers (13:1 β to α anomers based on NMR) as a white solid $\left(98.9 \mathrm{mg}, 0.199 \mathrm{mmol}, 82 \%\right.$ yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.74(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.95(\mathrm{~s}, 1 \mathrm{H})$, $6.91(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.30(\mathrm{t}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H} ; H 3), 5.21(J=9.6 \mathrm{~Hz}, 1 \mathrm{H} ; H 4), 5.11(\mathrm{t}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H}$; $H 2), 4.40(\mathrm{~d}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H} ; H 1), 4.27(\mathrm{dd}, J=12.4$ and $4.8 \mathrm{~Hz}, 1 \mathrm{H} ; H 6), 4.15(\mathrm{dd}, J=12.4$ and 1.6 Hz , $1 \mathrm{H} ; H 7$), $3.89(\mathrm{~s}, 3 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H}), 3.82(\mathrm{ddd}, J=10.0,4.8$ and $2.0 \mathrm{~Hz}, 1 \mathrm{H} ; H 5), 2.06(\mathrm{~s}, 3 \mathrm{H}), 2.04(\mathrm{~s}, 3 \mathrm{H})$, $1.98(\mathrm{~s}, 3 \mathrm{H}), 1.81(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 170.5,170.2,169.4,168.6,166.1,159.1,141.9$, 131.6, 120.4, 119.0, 79.6, 76.2, 74.1, 72.3, 68.5, 62.2, 56.0, 51.9, 20.6, 20.5, 20.3. HRMS (ESI): m / z [M $+\mathrm{Na}]^{+}$found 519.148 , calcd 519.148 for $\mathrm{C}_{23} \mathrm{H}_{28} \mathrm{O}_{12} \mathrm{Na} . \mathrm{MP}=135-138^{\circ} \mathrm{C}$.

(2S, 3S, 4R, 5R, 6R)- 2,3-Dimethoxy-5-(3,4,5-triacetoxy-6-acetoxymethyl-tetrahydro-pyran-2-
yl)-benzoic acid methyl ester. This compound was prepared according to the General Procedure using acetobromo- $\alpha-D-g l u c o s e ~(100 \mathrm{mg}, ~ 0.24 \mathrm{mmol}, 100 \mathrm{~mol} \%$) and $4,5-$ dimethoxy-3methoxycarbonylphenylzinc iodide/ $\mathrm{LiCl}(0.75 \mathrm{~mL}, \sim 0.5 \mathrm{M}, 0.73 \mathrm{mmol}, 150 \mathrm{~mol} \%)$. Flash column chromatography ($\mathrm{SiO}_{2}: 25 \%$ ethyl acetate in hexanes) gave a mixture of diastereomers ($13: 1 \beta$ to α anomers based on NMR) as a colorless oil ($88.3 \mathrm{mg}, 0.168 \mathrm{mmol}, 69 \%$ yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.24$ $(\mathrm{s}, 1 \mathrm{H}), 7.05(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.29(\mathrm{t}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H} ; H 3), 5.20(J=9.6 \mathrm{~Hz}, 1 \mathrm{H} ; H 4), 5.12(\mathrm{t}, J=9.6$ $\mathrm{Hz}, 1 \mathrm{H} ; H 5), 4.35(\mathrm{~d}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H} ; H 1), 4.25(\mathrm{dd}, J=12.4$ and $4.8 \mathrm{~Hz}, 1 \mathrm{H} ; H 0), 4.14(\mathrm{dd}, J=12.4$ and $1.6 \mathrm{~Hz}, 1 \mathrm{H} ; H 7), 3.87(\mathrm{~s}, 3 \mathrm{H}), 3.86(\mathrm{~s}, 3 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H}), 3.81(\mathrm{ddd}, J=9.6,4.8$ and $2.0 \mathrm{~Hz}, 1 \mathrm{H} ; H 5), 2.05$ $(\mathrm{s}, 3 \mathrm{H}), 2.03(\mathrm{~s}, 3 \mathrm{H}), 1.97(\mathrm{~s}, 3 \mathrm{H}), 1.82(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta 170.6,170.2,169.5,168.9$, $166.2,153.8,149.7,131.8,125.5,121.7,114.0,79.6,77.2,76.3,74.2,72.3,68.7,62.4,61.5,56.2,52.2$, 20.7, 20.6, 20.4. HRMS (ESI): $m / z[\mathrm{M}+\mathrm{Na}]^{+}$found 549.154, calcd 549.158 for $\mathrm{C}_{24} \mathrm{H}_{30} \mathrm{O}_{13} \mathrm{Na}$.

(2S, 3S, 4R, 5R, 6R)- Acetic acid 4,5-diacetoxy-2-acetoxymethyl-6-(3-chloro-phenyl)-
tetrahydro-pyran-3-yl ester. This compound was prepared according to the General Procedure using acetobromo- α-D-glucose ($100 \mathrm{mg}, 0.24 \mathrm{mmol}, 100 \mathrm{~mol} \%$) and 3-chlorophenylzinc iodide/ $\mathrm{LiCl}(0.75 \mathrm{~mL}$, $\sim 0.5 \mathrm{M}, 0.73 \mathrm{mmol}, 150 \mathrm{~mol} \%)$. Flash column chromatography ($\mathrm{SiO}_{2}: 20 \%$ ethyl acetate in hexanes) gave a mixture of diastereomers ($13: 1 \beta$ to α anomers based on NMR) as a white solid ($80.7 \mathrm{mg}, 0.182 \mathrm{mmol}$, 75% yield). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.33(\mathrm{~s}, 1 \mathrm{H}), 7.20-7.30(\mathrm{~m}, 3 \mathrm{H}), 5.33(\mathrm{t}, J=9.3 \mathrm{~Hz}, 1 \mathrm{H} ; H 3)$, $5.22(\mathrm{t}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H} ; H 4), 5.07(\mathrm{t}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H} ; H 2), 4.38(\mathrm{~d}, J=9.9 \mathrm{~Hz}, 1 \mathrm{H} ; H 1), 4.29(\mathrm{dd}, J=12.3$ and $4.8 \mathrm{~Hz}, 1 \mathrm{H} ; H 6), 4.16(\mathrm{dd}, J=12.3$ and $2.1 \mathrm{~Hz} ; H 7), 3.83(\mathrm{ddd}, J=9.9,4.8$ and $2.1 \mathrm{~Hz}, 1 \mathrm{H} ; H 5), 2.10$ $(\mathrm{s}, 3 \mathrm{H}), 2.06(\mathrm{~s}, 3 \mathrm{H}), 2.03(\mathrm{~s}, 3 \mathrm{H}), 1.85(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 170.8,170.4,169.5,168.9$, 138.3, 134.3, 129.8, 129.1, 127.4, 125.1, 79.4, 76.2, 74.1, 72.6, 68.4, 62.3, 20.8, 20.7, 20.4. HRMS (ESI): $m / z[\mathrm{M}+\mathrm{Na}]^{+}$found 465.091 , calcd 465.093 for $\mathrm{C}_{20} \mathrm{H}_{23} \mathrm{ClO}_{9} \mathrm{Na} . \mathrm{MP}=142-145{ }^{\circ} \mathrm{C}$.

(2S, 3S, 4R, 5R, 6R)- 3-(3,4,5-Triacetoxy-6-acetoxymethyl-tetrahydro-pyran-2-yl)-benzoic
acid methyl ester. This compound was prepared according to the General Procedure using acetobromo- $\alpha-$

D-glucose ($100 \mathrm{mg}, 0.24 \mathrm{mmol}, 100 \mathrm{~mol} \%$) and 3-methoxycarbonylphenylzinc iodide/ $\mathrm{LiCl}(0.75 \mathrm{~mL}, \sim 0.5$ M, $0.73 \mathrm{mmol}, 150 \mathrm{~mol} \%$). Flash column chromatography ($\mathrm{SiO}_{2}: 20 \%$ ethyl acetate in hexanes) gave a mixture of diastereomers ($14: 1 \beta$ to α anomers based on NMR) as a white solid ($81.6 \mathrm{mg}, 0.175 \mathrm{mmol}, 72 \%$ yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.98(\mathrm{~s}, 1 \mathrm{H}), 7.97(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.55(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.41$ $(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.33(\mathrm{t}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H} ; H 3), 5.22(\mathrm{t}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H} ; H 4), 5.09(\mathrm{t}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H} ; H 2)$, $4.44(\mathrm{~d}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H} ; H 1), 4.27(\mathrm{dd}, J=12.8$ and $4.8 \mathrm{~Hz}, 1 \mathrm{H} ; H 0), 4.16(\mathrm{dd}, J=12.8$ and $2.4 \mathrm{~Hz}, 1 \mathrm{H}$; $H 7), 3.89(\mathrm{~s}, 3 \mathrm{H}), 3.83(\mathrm{ddd}, J=10.0,4.8$ and $2.4 \mathrm{~Hz}, 1 \mathrm{H} ; H 5), 2.07(\mathrm{~s}, 3 \mathrm{H}), 2.04(\mathrm{~s}, 3 \mathrm{H}), 1.98(\mathrm{~s}, 3 \mathrm{H})$, $1.79(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 170.7,170.3,169.5,168.8,166.6,136.9,131.3,130.3,130.0$, $128.7,128.5,79.7,76.3,74.1,72.7,68.6,62.3,52.2,20.7,20.6,20.3$. HRMS (ESI): $m / z[\mathrm{M}+\mathrm{Na}]^{+}$found 489.136 , calcd 489.137 for $\mathrm{C}_{22} \mathrm{H}_{26} \mathrm{O}_{11} \mathrm{Na} . \mathrm{MP}=134-135^{\circ} \mathrm{C}$.

(2S, 3S, 4R, 5R, 6R)- 4-(3,4,5-Triacetoxy-6-acetoxymethyl-tetrahydro-pyran-2-yl)-benzoic
acid methyl ester. This compound was prepared according to the General Procedure using acetobromo- $\alpha-$ D-glucose ($100 \mathrm{mg}, 0.24 \mathrm{mmol}, 100 \mathrm{~mol} \%$) and 4-methoxycarbonylphenylzinc iodide/ LiCl ($0.75 \mathrm{~mL}, \sim 0.5$ M, $0.73 \mathrm{mmol}, 150 \mathrm{~mol} \%)$. Flash column chromatography $\left(\mathrm{SiO}_{2}: 20 \%\right.$ ethyl acetate in hexanes) gave a mixture of diastereomers ($10: 1 \beta$ to α anomers based on NMR) as a white solid ($74.8 \mathrm{mg}, 0.160 \mathrm{mmol}, 66 \%$ yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.99(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.39(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 5.32(\mathrm{t}, J=9.6$ $\mathrm{Hz}, 1 \mathrm{H} ; H 3), 5.21(\mathrm{t}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H} ; H 4), 5.07(\mathrm{t}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H} ; H 2), 4.43(\mathrm{~d}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H} ; H 1), 4.28$ (dd, $J=12.4$ and $4.8 \mathrm{~Hz}, 1 \mathrm{H} ; H 1), 4.15(\mathrm{dd}, J=12.4$ and $2.4 \mathrm{~Hz}, 1 \mathrm{H} ; H 7), 3.88(\mathrm{~s}, 3 \mathrm{H}), 3.83(\mathrm{ddd}, J=$ 10.0, 4.8 and $2.4 \mathrm{~Hz}, 1 \mathrm{H} ; H 5$), $2.07(\mathrm{~s}, 3 \mathrm{H}), 2.04(\mathrm{~s}, 3 \mathrm{H}), 1.97(\mathrm{~s}, 3 \mathrm{H}), 1.79(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}(100 \mathrm{MHz}$, CDCl_{3}): $\delta 170.6,170.3,169.4,168.7,166.6,141.2,130.7,129.7,127.1,79.7,76.3,74.1,72.6,68.6,62.3$, 52.1, 20.7, 20.6, 20.3. HRMS (ESI): $m / z[\mathrm{M}+\mathrm{Na}]^{+}$found 489.136 , calcd 489.137 for $\mathrm{C}_{22} \mathrm{H}_{26} \mathrm{O}_{11} \mathrm{Na}$. $\mathrm{MP}=$ $126-128^{\circ} \mathrm{C}$.

2,3-Dihydroxy-5-iodo-benzoic acid methyl ester 3. To an oven-dried round bottom flask charged with 2,2-dihydoxybenzoic acid methyl ester ($1.1 \mathrm{~g}, 100 \mathrm{~mol} \%$, 3.6 mmol) was added BBr_{3} solution in DCM $(1 \mathrm{M}, 200 \mathrm{~mol} \%, 7.2 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$ under argon. The reaction was allowed to stir for 30 min , and was warmed to rt for additional 20 min . The reaction mixture was quenched with ice water (30 mL), and extracted with DCM two times $(2 \times 20 \mathrm{~mL})$. The combined organic layer was dried $\left(\mathrm{MgSO}_{4}\right)$ and filtered. The crude material was dried onto silica gel under reduced pressure. Flash column chromatography $\left(\mathrm{SiO}_{2}\right.$: 3% ethyl acetate in hexanes) gave the title compound as a white solid ($0.70 \mathrm{~g}, 2.38 \mathrm{mmol}, 67 \%$ yield $).{ }^{1} \mathrm{H}$

NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $10.72(\mathrm{~s}, 1 \mathrm{H}), 7.54(\mathrm{~s}, 1 \mathrm{H}), 7.53(\mathrm{~s}, 1 \mathrm{H}), 5.49(\mathrm{~s}, 1 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 169.2, 148.5, 145.6, 128.8, 128.0, 113.7, 79.7, 52.5. HRMS (ESI): $m / z[\mathrm{M}+\mathrm{H}]^{+}$found 294.944, calcd 294.947 for $\mathrm{C}_{8} \mathrm{H}_{8} \mathrm{IO}_{4} . \mathrm{MP}=133-134{ }^{\circ} \mathrm{C}$.

2,3-Bis-benzyloxy-5-iodo-benzoic acid methyl ester. To a flask equipped with a magnetic stir bar was loaded $\mathrm{K}_{2} \mathrm{CO}_{3}(750 \mathrm{mg}, 400 \mathrm{~mol} \%, 5.43 \mathrm{mmol})$ and $\mathrm{NaI}(12.0 \mathrm{mg}, 6 \mathrm{~mol} \%, 0.08 \mathrm{mmol})$. The mixture was flame-dried for 3 min under vacuum. After the flask was cooled to $\mathrm{rt}, \mathbf{3}$ ($385 \mathrm{mg}, 100 \mathrm{~mol} \%, 1.31$ mmol) was added, followed by the addition of DMF (2.8 mL) and $\operatorname{BnBr}(0.33 \mathrm{~mL}, 210 \mathrm{~mol} \%$, 2.75 mmol$)$. The reaction mixture was allowed to stir for 12 h at rt , at which point water (30 mL) was added. The mixture was extracted with EtOAc $(2 \times 60 \mathrm{~mL})$. The combined organic solution was dried $\left(\mathrm{MgSO}_{4}\right)$, and filtered. The crude material was dried onto silica gel. Flash column chromatography (SiO_{2} : 5% ethyl acetate in hexanes) gave the title compound as a white solid ($600 \mathrm{mg}, 1.27 \mathrm{mmol}, 97 \%$ yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $7.61(\mathrm{~s}, 1 \mathrm{H}), 7.23-7.36(\mathrm{~m}, 11 \mathrm{H}), 5.04(\mathrm{~s}, 2 \mathrm{H}), 4.99(\mathrm{~s}, 2 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 164.9, 153.4, 148.1, 136.9, 135.7, 131.3, 128.42, 128.4, 128.3, 128.1, 127.8, 127.4, 126.4, 86.1, 75.5, 71.3, 52.1. HRMS (ESI): $m / z[M+C s]^{+}$found 606.940 , calcd 606.938 for $\mathrm{C}_{22} \mathrm{H}_{19} \mathrm{IO}_{4} \mathrm{Cs}$. $M P=105-106^{\circ} \mathrm{C}$.

(2R, 3R, 4S, 5S, 6S)-2,3-Bis-benzyloxy-5-(3,4,5-triacetoxy-6-acetoxymethyl-tetrahydro-pyran-2-yl)-benzoic acid methyl ester 4. This compound was prepared according to the General Procedure using acetobromo- α-D-glucose ($500 \mathrm{mg}, 1.22 \mathrm{mmol}, 100 \mathrm{~mol} \%$) and 1-methoxycarboxy-2,3dibenzyloxyphenyl zinc iodide- $\mathrm{LiCl}(3.65 \mathrm{~mL}, \sim 0.5 \mathrm{M}, 1.83 \mathrm{mmol}, 150 \mathrm{~mol} \%$). Flash column chromatography (SiO_{2} : 20% ethyl acetate in hexanes) gave a mixture of diastereomers ($20: 1 \beta$ to α anomers based on NMR) as a white solid ($455 \mathrm{mg}, 0.67 \mathrm{mmol}, 55 \%$ yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 7.19-7.44 $(\mathrm{m}, 12 \mathrm{H}), 5.30(\mathrm{t}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H}, H 3), 5.21(\mathrm{t}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H}, H 4), 5.12(\mathrm{~s}, 2 \mathrm{H}), 5.04(\mathrm{~s}, 2 \mathrm{H}), 5.04(\mathrm{t}, J=$ $9.6 \mathrm{~Hz}, 1 \mathrm{H}, H 2$), 4.35 (d, $10 \mathrm{~Hz}, 1 \mathrm{H}, H 1$), 4.28 (dd, $J=12.4 \mathrm{~Hz}, 4.8 \mathrm{~Hz}, 1 \mathrm{H}, H 0), 4.14$ (d, $J=12.0 \mathrm{~Hz}, 1 \mathrm{H}$, $H 7), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.80-3.90(\mathrm{~m}, 1 \mathrm{H}, H 5), 2.06(\mathrm{~s}, 3 \mathrm{H}), 2.03(\mathrm{~s}, 3 \mathrm{H}), 1.98(\mathrm{~s}, 3 \mathrm{H}), 1.79(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}(100$ $\mathrm{MHz}, \mathrm{CDCl}_{3}$): 170.7, $170.3,169.5,169.0,166.3,153.1,148.6,137.2,136.3,132.1,128.6,128.3,128.2$, $128.0,127.7,126.3,122.2,115.8,79.5,76.2,75.6,74.1,72.3,71.3,68.6,62.4,52.2,20.8,20.7,20.4$. HRMS (ESI): $m / z[\mathrm{M}+\mathrm{Cs}]^{+}$found 811.142 , calcd 811.137 for $\mathrm{C}_{36} \mathrm{H}_{38} \mathrm{O}_{13} \mathrm{Cs} . \mathrm{MP}=128-129{ }^{\circ} \mathrm{C}$.

($2 R, 3 R, 4 S, 5 S, 6 S$)-2,3-Bis-benzyloxy-5-(3,4,5-tris-benzyloxy-6-benzyloxymethyl-tetrahydro-pyran-2-yl)-benzoic acid methyl ester 5. To an oven-dried round bottom flask equipped with a magnetic bar was added $4(100 \mathrm{mg}, 100 \mathrm{~mol} \%, 0.15 \mathrm{mmol}), \mathrm{Na}_{2} \mathrm{CO}_{3}(78 \mathrm{mg}, 500 \mathrm{~mol} \%, 0.74 \mathrm{mmol})$ and anhydrous $\mathrm{MeOH}(4 \mathrm{~mL})$. The reaction was allowed to stir for 3 h at rt . The solid was filtered through a pipette filled with glass whirl, and washed with $\mathrm{MeOH}(4 \times 5 \mathrm{~mL})$. The mother liquid was collected. After the solvent was removed, it was dried in vacuo. The crude polyol was dissolved in anhydrous DMF (1 mL). The resulting solution was added dropwise at $0^{\circ} \mathrm{C}$ to a suspension of $\mathrm{NaH}(28 \mathrm{mg}, 60 \%$ in mineral oil, $476 \mathrm{mmol}, 0.7$ mmol) in DMF (0.5 mL). After $20 \mathrm{~min} \mathrm{BnBr}(0.11 \mathrm{~mL}, 600 \mathrm{~mol} \%$, 0.88 mmol) in DMF (0.5 mL) and $\mathrm{Bu}_{4} \mathrm{NI}(5 \mathrm{mg} 10 \mathrm{~mol} \%, 0.015 \mathrm{mmol})$. After the reaction mixture was warmed to rt and stired for 15 h , it was portioned with water $(5 \mathrm{~mL})$ and extracted with EtOAc $(10 \mathrm{~mL})$. The aqueous layer was washed two times with EtOAC $(2 \times 5 \mathrm{~mL})$. The combined organic layer was dried $\left(\mathrm{MgSO}_{4}\right)$, filtered. The crude material was dried onto silica gel. Flash column chromatography $\left(\mathrm{SiO}_{2}: 20 \%\right.$ ethyl acetate in hexanes) provided the perbenzylated aryl C-glycosides as benzyl ($28.4 \mathrm{mg}, 0.03 \mathrm{mmol}, 20 \%$) and methyl ($69.7 \mathrm{mg}, 0.08 \mathrm{mmol}$, 53%) benzoic acid esters as white solid. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.55(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.22-7.49$ $(\mathrm{m}, 29 \mathrm{H}) 7.00(\mathrm{~m}, 2 \mathrm{H}), 5.16(\mathrm{~s}, 2 \mathrm{H}), 5.02(\mathrm{~s}, 2 \mathrm{H}), 4.90-5.03(\mathrm{~m}, 3 \mathrm{H}), 4.60-4.71(\mathrm{~m}, 3 \mathrm{H}), 4.49(\mathrm{~d}, J=$ $10.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.26(\mathrm{~d}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.84(\mathrm{~s}, 3 \mathrm{H}), 3.82-3.86(\mathrm{~m}, 5 \mathrm{H}), 3.61-3.66(\mathrm{~m}, 1 \mathrm{H}), 3.46(\mathrm{t}, J=8.8$ $\mathrm{Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}): $\delta 166.3,152.5,147.9,138.6,138.2,138.0,137.3,137.2,136.4$, 135.1, 128.7, 128.5, 128.4, 128.3, 128.26, 128.2, 128.0, 127.9, 127.7, 127.6, 127.57, 127.54, 17.5, 86.6, 83.9, 80.8, 79.2, 78.1, 75.6, 75.55, 75.1, 75.0, 73.3, 70.9, 68.9, 52.0. HRMS (ESI): $m / z[\mathrm{M}+\mathrm{Cs}]^{+}$found 1003.289, calcd 10003.282 for $\mathrm{C}_{56} \mathrm{H}_{54} \mathrm{O}_{9} \mathrm{Cs} . \mathrm{MP}=111-113{ }^{\circ} \mathrm{C}$.

(2R, 3R, 4S, 5S, 6S)-2,3-Bis-benzyloxy-5-(3,4,5-tris-benzyloxy-6-benzyloxymethyl-tetrahydro-pyran-2-yl)-benzoic acid. To a solution of $5(500 \mathrm{mg}, 100 \mathrm{~mol} \%, 0.57 \mathrm{mmol})$ in THF/ MeOH ($4 \mathrm{~mL}, 3: 1$) was added NaOH solution $(1.0 \mathrm{~mL}, 5.5 \mathrm{M}, 1000 \mathrm{~mol} \%, 5.5 \mathrm{mmol})$. The reaction mixture was stirred at rt for 4 h , at which point $\mathrm{HCl}(1 \mathrm{M}, 0.3 \mathrm{~mL})$ was added. The resulting mixture was extracted with $\mathrm{DCM}(3 \times 10$ $\mathrm{mL})$. The combined organic layer was dried $\left(\mathrm{MgSO}_{4}\right)$, and filtered. The crude material was dried onto silica gel. Flash column chromatography ($\mathrm{SiO}_{2}: 40 \%$ ethyl acetate in hexanes) gave the acid as white solid (400.0 $\mathrm{mg}, 4.67 \mathrm{mmol}, 82 \%) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.89(\mathrm{~s}, 1 \mathrm{H}), 6.95-7.43(\mathrm{~m}, 29 \mathrm{H}), 6.95(\mathrm{~s}, 2 \mathrm{H}), 5.26$
$(\mathrm{s}, 2 \mathrm{H}), 4.99(\mathrm{~s}, 2 \mathrm{H}), 4.95(\mathrm{~d}, J=3.3 \mathrm{~Hz}, 2 \mathrm{H}), 4.80-4.90(\mathrm{~m}, 1 \mathrm{H}), 4.56-4.67(\mathrm{~m}, 3 \mathrm{H}), 4.49(\mathrm{~d}, J=10.5 \mathrm{~Hz}$, $1 \mathrm{H}), 4.25(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.70-3.86(\mathrm{~m}, 5 \mathrm{H}), 3.51-3.52(\mathrm{~m}, 1 \mathrm{H}), 3.44(\mathrm{t}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 165.8,151.1,146.9,138.3,138.2,137.6,136.4,136.0,135.0,129.1,129.0,128.6$, $128.31,128.28,128.1,128.0,127.9,127.7,127.6,127.54,127.50,126.8,123.0,117.9,86.8,83.9,80.7$, 79.5, 78.4, 75.7, 75.2, 75.0, 73.5, 71.4, 69.2. HRMS (ESI): $m / z[\mathrm{M}+\mathrm{Cs}]^{+}$found 989.273, calcd 989.267 for $\mathrm{C}_{55} \mathrm{H}_{52} \mathrm{O}_{9} \mathrm{Cs} . \mathrm{MP}=94-96{ }^{\circ} \mathrm{C}$.

$\operatorname{Ser}(\mathbf{O C b z}) \mathrm{Bn}$ trifluoroacid salt. A solution of $\operatorname{Boc-Ser(OCbz)Bn}(\mathrm{g}, \mathrm{mmol})$ in TFA $(0.5 \mathrm{~mL})$ was allowed to stir for 30 min at $0^{\circ} \mathrm{C}$, at which point TFA was removed under reduced pressure. The crude mixture was used without further purification. ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 8.8(\mathrm{~s}, 3 \mathrm{H}), 7.30-7.43(\mathrm{~m}$, $4 \mathrm{H}), 5.12-5.20(\mathrm{~m}, 2 \mathrm{H}), 5.06(\mathrm{q}, ~ J=12 \mathrm{~Hz}, 2 \mathrm{H}), 4.65(\mathrm{~d}, J=11.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.55(\mathrm{dd}, J=12$ and $4 \mathrm{~Hz}, 1 \mathrm{H})$, $4.38(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 166.4,154.1,134.5,134.0128 .9,128.7,128.6,128.56,128.5$, 127.1, 70.6, 69.0, 64.5, 52.6. HRMS (ESI): $m / z[M]^{+}$found 330.1337, calcd 330.1341 for $\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{O}_{5}{ }^{+}$.

Perbenzylated C-glucosyl Serine(Cbz)OBn 7. To a solution of benzoic acid $6(80 \mathrm{mg}, 100 \mathrm{~mol}$ $\%, 0.093 \mathrm{mmol})$ in anhydrous $\mathrm{DCM}(2 \mathrm{~mL})$ was added DMF $(0.02 \mathrm{~mL})$ and $\mathrm{SOCl}_{2}(50 \mu \mathrm{~L}, 400 \mathrm{~mol} \%$, 0.248 mmol). The reaction was stirred for 3 h at rt . After the solvent and excess SOCl_{2} were removed under reduce pressure, the acyl chloride was redissovled in $\mathrm{DCM}(2 \mathrm{~mL})$. At $0{ }^{\circ} \mathrm{C}$, a solution of S $\mathrm{COOBnCH}(\mathrm{OCbz}) \mathrm{NH}_{2}-\mathrm{CF}_{3} \mathrm{COOH}$ salt $(60 \mathrm{mg}, 150 \mathrm{~mol} \%, 0.014 \mathrm{mmol})$ in $\mathrm{DCM}(1 \mathrm{~mL})$ was added, followed by $\mathrm{Et}_{3} \mathrm{~N}(19.5 \mu \mathrm{~L}, 150 \mathrm{~mol} \%, 0.014 \mathrm{mmol})$. The reaction mixture was allowed to warm to rt , and stirred for 30 min , at which point it was dried over silica gel. Flash column chromatography $\left(\mathrm{SiO}_{2}: 20 \%\right.$ EtOAc in hexanes) gave the triamide 7 as foam ($95 \mathrm{mg}, 0.081 \mathrm{mmol}, 88 \%$). ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $8.89(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.88(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.26-7.39(\mathrm{~m}, 29 \mathrm{H}), 7.13-7.19(\mathrm{~m}, 7 \mathrm{H}), 7.08(\mathrm{t}, J=7.2$ $\mathrm{Hz}, 2 \mathrm{H}), 6.95(\mathrm{t}, J=3.6 \mathrm{~Hz}, 2 \mathrm{H}), 5.17(\mathrm{t}, J=12 \mathrm{~Hz}, 1 \mathrm{H}), 5.14(\mathrm{dd}, J=10.8,1.2 \mathrm{~Hz}, 2 \mathrm{H}), 5.09$ (quint, $J=$ $3.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.04(\mathrm{t}, J=12 \mathrm{~Hz}, 1 \mathrm{H}), 5.01(\mathrm{dd}, J=10.8$ and $4.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.90-4.96(\mathrm{~m}, 4 \mathrm{H}), 4.86(\mathrm{~d}, J=$ $10.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.63(\mathrm{~d}, J=4.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.62(\mathrm{~s}, 1 \mathrm{H}), 4.56(\mathrm{~s}, 1 \mathrm{H}), 4.56-4.59(\mathrm{~m}, 1 \mathrm{H}), 4.45(\mathrm{dd}, J=11.4$, $4.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.42(\mathrm{~d}, J=10.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.23(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.81(\mathrm{~d}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.79(\mathrm{~d}, J=8.4$ $\mathrm{Hz}, 1 \mathrm{H}), 3.76(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.73(\mathrm{t}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.61(\mathrm{dt}, J=9.6$ and $3.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.47(\mathrm{t}, J=$ $9.0 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 168.9,164.7,154.5,151.5,146.5,138.7,138.3,138.1,137.6$, $136.1,135.9,135.5,135.1,134.9,129.1,128.6,128.5,128.4,128.3,128.27,128.23,128.21,128.0,127.9$,
$127.7,127.6,127.5,126.1,122.1,116.4,86.7,83.9,81.0,79.3,78.3,76.1,75.6,75.1,74.9,73.4,71.1$, 69.8, 69.1, 67.5, 67.2, 52.2. HRMS (ESI): $m / z[\mathrm{M}+\mathrm{H}]^{+}$found 1168.479 , calcd 1168.485 for $\mathrm{C}_{73} \mathrm{H}_{70} \mathrm{NO}_{13}$.

Salmochelin SX. To a flame-dried round bottom flask (10 mL) equipped with a magnetic stir bar was loaded $7(90 \mathrm{mg}, 0.077 \mathrm{mmol})$ followed by the addition of $\mathrm{MeOH} / \mathrm{EtOAc}(2 \mathrm{~mL}, 1: 1)$ and $\mathrm{Pd}(\mathrm{OH})_{2}$ ($30 \mathrm{mg}, 20 \%$ weight on carbon, wet). The reaction mixture was first purged with argon for 3 min , and then hydrogen for 3 min . After the reaction mixture was stirred for 18 h under hydrogen, it was filtered and washed with dry $\mathrm{MeOH}(3 \times 5 \mathrm{~mL})$. The organic solution was collected, and the solvent was removed under reduced pressure to give a white solid ($29 \mathrm{mg}, 0.072 \mathrm{mmol}, 93 \%$). ${ }^{1} \mathrm{H} \mathrm{NMR}\left(600 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right)$: 7.41 (s, $1 \mathrm{H}), 7.00(\mathrm{~s}, 1 \mathrm{H}), 4.68(\mathrm{~s}, 1 \mathrm{H}), 4.00(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.92(\mathrm{dd}, J=11.4$ and $3.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.82(\mathrm{~d}, J=$ $10.8 \mathrm{~Hz}, 1 \mathrm{H}$), $3.67(\mathrm{dd}, J=11.4$ and $4.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.38-3.44(\mathrm{~m}, 2 \mathrm{H}), 3.30-3.34(\mathrm{~m}, 2 \mathrm{H}), 3.26(\mathrm{~d}, J=1.2$ Hz). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$): $\delta 173.4,170.7,150.0,146.8,131.4,119.5,119.0,116.5,83.1,82.0$, 79.7, 76.3, 71.7, 62.9, 56.3, 49.9. HRMS (ESI): $m / z[\mathrm{M}+\mathrm{H}]^{+}$found 404.1188, calcd 404.1193 for $\mathrm{C}_{16} \mathrm{H}_{22} \mathrm{NO}_{11} . \mathrm{MP}: 147{ }^{\circ} \mathrm{C}$ (decomposed).

($2 R, 3 R, 4 R, 5 R$)-Acetic acid 3,5-diacetoxy-2-phenyl-tetrahydro-pyran-4-yl ester. This compound was prepared according to the General Procedure using tri-O-acetyl- β-D-arabinosylbromide ($164.8 \mathrm{mg}, 0.48 \mathrm{mmol}, 100 \mathrm{~mol} \%$) and phenylzinc iodide/ $\mathrm{LiCl}(1.5 \mathrm{~mL}, \sim 0.5 \mathrm{M}, 1.46 \mathrm{mmol}, 150 \mathrm{~mol} \%$). Flash column chromatography ($\mathrm{SiO}_{2}: 20 \%$ ethyl acetate in hexanes) gave a mixture of diastereomers (2.6:1 β to α anomers based on NMR) as a white solid ($73.3 \mathrm{mg}, 0.10 \mathrm{mmol}, 45 \%$ yield). ${ }^{1} \mathrm{H}$ NMR (400 MHz , CDCl_{3}): $\delta 7.30-7.37(\mathrm{~m}, 5 \mathrm{H}), 5.36-5.41(\mathrm{~m}, 2 \mathrm{H} ; H 2, H 4), 5.17(\mathrm{dd}, J=10.2$ and $3.6 \mathrm{~Hz}, 1 \mathrm{H} ; H 3), 4.25(\mathrm{~d}, J$ $=9.6 \mathrm{~Hz}, 1 \mathrm{H} ; H 1), 4.12(\mathrm{dd}, J=13.2$ and $1.8 \mathrm{~Hz}, 1 \mathrm{H} ; H 5), 3.79(\mathrm{dd}, J=13.2$ and $0.6 \mathrm{~Hz}, 1 \mathrm{H} ; H 0) .{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right): ~ \delta 170.5,170.3,169.0,136.8,128.9,128.4,127.3,81.5,71.9,70.2,69.0,68.5$, 21.1, 20.8, 20.5. HRMS (ESI): $m / z[\mathrm{M}+\mathrm{Na}]^{+}$found 359.111 , calcd 359.111 for $\mathrm{C}_{17} \mathrm{H}_{20} \mathrm{O}_{7} \mathrm{Na} . \mathrm{MP}=98-100$ ${ }^{\circ} \mathrm{C}$.

$(2 R, 3 S, 4 R, 5 S, 6 S)$-Acetic acid 3-acetoxy-2-acetoxymethyl-5-(1,3-dioxo-1,3-dihydro-isoindol-2-yl)-6-phenyl-tetrahydro-pyran-4-yl ester. This compound was prepared according to the General Procedure using triaceto $\boldsymbol{\alpha}$-D-ribofuranosyl chloride ($72 \mathrm{mg}, 0.24 \mathrm{mmol}, 100 \mathrm{~mol} \%$) and phenylzinc iodide/ $\mathrm{LiCl}(0.75 \mathrm{~mL}, \sim 0.5 \mathrm{M}, 0.73 \mathrm{mmol}, 150 \mathrm{~mol} \%)$. Flash column chromatography $\left(\mathrm{SiO}_{2}\right.$: 20% ethyl acetate in hexanes) gave a mixture of diastereomers ($>20: 1 \beta$ to α anomers based on NMR) as a white solid ($48 \mathrm{mg}, 0.10 \mathrm{mmol}, 41 \%$ yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.80(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}$), 7.65 $(\mathrm{d}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.62(\mathrm{~s}, 2 \mathrm{H}), 7.21-7.29(\mathrm{~m}, 5 \mathrm{H}), 5.92(\mathrm{t}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H} ; H 3), 5.34(\mathrm{~d}, J=10.4 \mathrm{~Hz}, 1 \mathrm{H}$; $H 1), 5.31(\mathrm{t}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H} ; H 4), 4.52(\mathrm{t}, J=10.4 \mathrm{~Hz}, 1 \mathrm{H} ; H 2), 4.32(\mathrm{dd}, J=12.4$ and $4.8 \mathrm{~Hz}, 1 \mathrm{H} ; H 6)$, $4.17(\mathrm{dd}, J=12.4$ and $2.0 \mathrm{~Hz}, 1 \mathrm{H} ; H 7), 4.04(\mathrm{ddd}, J=10.0,4.4$ and $2.0 \mathrm{~Hz}, 1 \mathrm{H}, H 5), 2.10(\mathrm{~s}, 3 \mathrm{H}), 2.05(\mathrm{~s}$, $3 \mathrm{H}), 1.83(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 170.8,170.1,169.6,169.2,136.4,134.3,134.1,129.0$, $128.6,127.1,123.5,77.8,76.3,71.9,69.3,62.5,55.9,20.8,20.7,20.5$. HRMS (ESI): $m / z[\mathrm{M}+\mathrm{Cs}]^{+}$found 628.064 , calcd 628.058 for $\mathrm{C}_{26} \mathrm{H}_{25} \mathrm{NO}_{9} \mathrm{Cs} . \mathrm{MP}=130-132{ }^{\circ} \mathrm{C}$.

(2R, 3R, 4R, 5S, 6S)-Benzoic acid 3,4,5-tribenzoyloxy-6-phenyl-tetrahydro-pyran-2-ylmethyl
ester. This compound was prepared according to the General Procedure using 1-bromo-D-glucose precursor ($121 \mathrm{mg}, 0.24 \mathrm{mmol}, 100 \mathrm{~mol} \%$) and phenylzinc iodide/ $\mathrm{LiCl}(0.75 \mathrm{~mL}, \sim 0.5 \mathrm{M}, 0.73 \mathrm{mmol}, 150$ $\mathrm{mol} \%)$. Flash column chromatography (SiO_{2} : 20% ethyl acetate in hexanes) gave a mixture of diastereomers ($10: 1 \beta$ to α anomers based on NMR) as a white solid ($60 \mathrm{mg}, 0.14 \mathrm{mmol}, 58 \%$ yield). ${ }^{1} \mathrm{H}$ NMR (400 MHz, CDCl_{3}): $\delta 8.03(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.92(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.74(\mathrm{dd}, J=17.6,7.6 \mathrm{~Hz}$, $4 \mathrm{H}), 7.2-7.6(\mathrm{~m}, 17 \mathrm{H}), 6.02(\mathrm{t}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H} ; H 3), 5.84(\mathrm{t}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H} ; H 4), 5.65(\mathrm{t}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H}$; $H 2), 4.76(\mathrm{~d}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H} ; H 1), 4.68(\mathrm{dd}, J=12.0$ and $2.4 \mathrm{~Hz}, 1 \mathrm{H} ; H 6), 4.52(\mathrm{dd}, J=12.0$ and 4.8 Hz , $1 \mathrm{H} ; H 7$), 4.29 (ddd, $J=12.0,4.8$ and $2.0 \mathrm{~Hz}, 1 \mathrm{H} ; H 5$). ${ }^{13} \mathrm{C} \mathrm{NMR} \mathrm{(} 100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 170.7,170.4$, $169.5,168.9,160.0,128.5,128.3,80.0,76.1,74.4,72.6,68.7,62.4,55.2,20.7,20.6,20.4$. HRMS (ESI): $m /$ $z[\mathrm{M}+\mathrm{Cs}]^{+}$found 789.116 , calcd 789.110 for $\mathrm{C}_{40} \mathrm{H}_{32} \mathrm{O} 9 \mathrm{Cs} . \mathrm{MP}=180-181^{\circ} \mathrm{C}$.

${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta 7.24(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.84(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 5.30(\mathrm{t}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H}$; $H 3$), $5.20(\mathrm{t}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H} ; H 4), 5.12(\mathrm{t}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H} ; H 2), 4.33(\mathrm{~d}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H} ; H 1), 4.25(\mathrm{dd}, J=$ 12.4 and $4.8 \mathrm{~Hz}, 1 \mathrm{H} ; H 6), 4.12(\mathrm{dd}, J=12.4$ and $2.0 \mathrm{~Hz}, 1 \mathrm{H} ; H 7), 3.80(\mathrm{ddd}, J=10.0,4.8$ and $2.0 \mathrm{~Hz}, 1 \mathrm{H}$; H5), $3.77(\mathrm{~s}, 3 \mathrm{H}), 2.06(\mathrm{~s}, 3 \mathrm{H}), 2.03(\mathrm{~s}, 3 \mathrm{H}), 1.98(\mathrm{~s}, 3 \mathrm{H}), 1.78(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta 170.7,170.4,169.5,168.9,160.0,128.5,128.3,80.0,76.1,74.4,72.6$, 68.7, 62.4, 55.2, 20.7, 20.6, 20.4.

${ }^{\mathbf{1}} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta 7.27(\mathrm{~m}, 2 \mathrm{H}), 7.06(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.28(\mathrm{t}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H} ; H 3), 5.19$ (t, $J=9.2 \mathrm{~Hz}, 1 \mathrm{H} ; H 4), 5.14(\mathrm{t}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H} ; H 2), 4.52(\mathrm{~d}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H} ; H 1), 4.25(\mathrm{dd}, J=12.4$ and $4.8 \mathrm{~Hz}, 1 \mathrm{H} ; H 6$), $4.13(\mathrm{dd}, J=12.4$ and $1.6 \mathrm{~Hz} ; H 7), 3.80(\mathrm{ddd}, J=9.2,4.4$ and $2.0 \mathrm{~Hz}, 1 \mathrm{H} ; H 5), 2.06$ (s, $3 \mathrm{H}), 2.03(\mathrm{~s}, 3 \mathrm{H}), 1.98(\mathrm{~s}, 3 \mathrm{H}), 1.84(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (100 MHz, $\mathbf{C D C l}_{3}$): $\delta 170.8,170.4,169.5,169.0,137.2,126.4,126.0,123.7,76.2,76.1,74.2$, $72.2,68.5,62.3,20.8,20.7,20.67,20.5$.

${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathbf{C D}_{\mathbf{2}} \mathbf{C l}_{\mathbf{2}}$): $\delta 6.42(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 2 \mathrm{H}), 5.88(\mathrm{~s}, 1 \mathrm{H}), 5.39(\mathrm{t}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H} ; H 3), 5.32$ (t, $J=9.6 \mathrm{~Hz}, 1 \mathrm{H} ; H 4), 5.18(\mathrm{t}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H} ; H 2), 4.58(\mathrm{~d}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H} ; H 1), 4.27(\mathrm{dd}, J=12.4$ and $4.8 \mathrm{~Hz}, 1 \mathrm{H} ;$ Hб $^{\prime}, 4.07-4.20(\mathrm{~m}, 3 \mathrm{H}), 4.07-4.00(\mathrm{~m}, 2 \mathrm{H}), 3.88(\mathrm{ddd}, J=10.0,4.8$ and $2.0 \mathrm{~Hz}, 1 \mathrm{H} ; H 5), 2.09$ $(\mathrm{s}, 3 \mathrm{H}), 2.06(\mathrm{~s}, 3 \mathrm{H}), 2.02(\mathrm{~s}, 3 \mathrm{H}), 1.90(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (100 MHz, $\mathbf{C D}_{2} \mathbf{C l}_{2}$): $\delta 170.5,170.0,169.4,169.0,152.2,149.7,110.0,109.3,97.38,75.9,74.0$, 73.2, 69.7, 68.2, 65.2, 65.1, 62.2, 20.5, 20.4, 20.2.

Charaterization data for the α-anomer: ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(400 \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right): \delta 7.20-7.40(\mathrm{~m}, 5 \mathrm{H}), 6.76(\mathrm{~d}, J=$ $16.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.36(\mathrm{dd}, J=16.0$ and $6.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.38(\mathrm{t}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H} ; H 3), 5.13(\mathrm{dd}, J=10.0$ and 6.0 $\mathrm{Hz}, 1 \mathrm{H} ; H 2), 5.07(\mathrm{t}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H} ; H 4), 4.90(\mathrm{t}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H} ; H 1), 4.23(\mathrm{dd}, J=12.0$ and $4.4 \mathrm{~Hz}, 1 \mathrm{H}$; $H 6), 4.10(\mathrm{dd}, J=12.0$ and $1.6 \mathrm{~Hz}, 1 \mathrm{H} ; H 7), 4.03(\mathrm{ddd}, J=10.0,4.8$ and $2.0 \mathrm{~Hz}, 1 \mathrm{H} ; H 5), 2.09(\mathrm{~s}, 3 \mathrm{H})$, $2.03(\mathrm{~s}, 3 \mathrm{H}), 2.02(\mathrm{~s}, 3 \mathrm{H}), 2.01(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($100 \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 170.7,170.2,169.8,169.6,137.1$, $135.8,128.7,128.6,126.7,120.6,73.13,70.8,70.5,69.3,69.0,62.3,20.8,20.7,20.6$.

Charaterization data for the β-anomer: ${ }^{1} \mathbf{H} \mathbf{N M R}\left(400 \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right)$: $\delta 7.15-7.45(\mathrm{~m}, 5 \mathrm{H}), 6.63(\mathrm{~d}, J=$ $16.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.36(\mathrm{dd}, J=16.0$ and $8.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.26(\mathrm{t}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H} ; H 3), 5.11(\mathrm{t}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H}$; $H 4), 5.01(\mathrm{t}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H} ; H 2), 4.26(\mathrm{dd}, J=12.4$ and $4.4 \mathrm{~Hz}, 1 \mathrm{H} ; H 6), 4.12(\mathrm{dd}, J=12.4$ and 2.0 Hz , $1 \mathrm{H} ; H 7$), $4.01(\mathrm{dd}, J=9.2$ and $8.0 \mathrm{~Hz}, 1 \mathrm{H} ; H 1), 3.74(\mathrm{ddd}, J=10.0,4.8$ and $2.0 \mathrm{~Hz}, 1 \mathrm{H} ; H 5), 2.09(\mathrm{~s}, 3 \mathrm{H})$, $2.03(\mathrm{~s}, 3 \mathrm{H}), 2.02(\mathrm{~s}, 3 \mathrm{H}), 2.01(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (100 MHz, CDCl ${ }_{3}$): $\delta 170.8,170.4,169.5,135.6,135.3$, $128.6,128.4,126.8,124.0,79.8,74.1,75.7,73.8,73.1,71.4,70.8,69.4,69.0,68.5,62.3,20.8,20.7,20.6$. Residual alpha anomer is present in this partially purified product. Additional purification was not possible.

${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta 7.65(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.06(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.29(\mathrm{t}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H}$; $H 3), 5.19(\mathrm{t}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H} ; H 4), 5.06(\mathrm{t}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H} ; H 2), 4.32(\mathrm{~d}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H} ; H 1), 4.25(\mathrm{dd}, J=$ 12.4 and $4.4 \mathrm{~Hz}, 1 \mathrm{H} ; H 6), 4.12(\mathrm{dd}, J=12.4$ and $1.6 \mathrm{~Hz}, 1 \mathrm{H} ; H 7), 3.80(\mathrm{ddd}, J=9.6,4.4$ and $2.0 \mathrm{~Hz}, 1 \mathrm{H}$; H5), $2.06(\mathrm{~s}, 3 \mathrm{H}), 2.03(\mathrm{~s}, 3 \mathrm{H}), 1.97(\mathrm{~s}, 3 \mathrm{H}), 1.81(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta 170.7,170.4,169.5,168.8,137.6,135.9,128.0,94.8,79.6,74.1,72.4$, 68.4, 62.2, 20.8, 20.64, 20.63, 20.4.

${ }^{1} \mathbf{H}$ NMR ($\mathbf{3 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 7.28(\mathrm{dd}, J=5.1,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.03(\mathrm{~d}, J=3.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.94(\mathrm{dd}, J=5.1$ and $3.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.29(\mathrm{t}, J=9.3 \mathrm{~Hz}, 1 \mathrm{H} ; H 3), 5.20(\mathrm{t}, J=9.3 \mathrm{~Hz}, 1 \mathrm{H} ; H 4), 5.16(\mathrm{t}, J=9.3 \mathrm{~Hz}, 1 \mathrm{H} ; H 2)$, $4.90(\mathrm{~d}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H} ; H 1), 4.25(\mathrm{dd}, J=12.3$ and $4.5 \mathrm{~Hz}, 1 \mathrm{H} ; H 6), 4.15\left(\mathrm{dd}, J=12.3\right.$ and $\left.2.4 \mathrm{~Hz} ; H^{7}\right)$, 3.82 (ddd, $J=9.6,4.8$ and $2.4 \mathrm{~Hz}, 1 \mathrm{H} ; H 5$), $2.07(\mathrm{~s}, 3 \mathrm{H}), 2.03(\mathrm{~s}, 3 \mathrm{H}), 1.99(\mathrm{~s}, 3 \mathrm{H}), 1.87(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta 170.8,170.4,169.5,169.0,138.6,126.6,126.3,126.2,76.2,76.0,74.2$, $72.8,68.4,62.2,20.8,20.69,20.66,20.5$.

${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.46(\mathrm{~s}, 1 \mathrm{H}), 7.42(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.26(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.19(\mathrm{t}, J=$ $7.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.30(\mathrm{t}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H} ; H 3), 5.19(\mathrm{t}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H} ; H 4), 5.04(\mathrm{t}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H} ; H 2), 4.33$ (d, $J=9.6 \mathrm{~Hz}, 1 \mathrm{H} ; H 1), 4.25(\mathrm{dd}, J=12.4$ and $4.4 \mathrm{~Hz}, 1 \mathrm{H} ; H 6), 4.13(\mathrm{~d}, J=12.4$ and $2.0 \mathrm{~Hz}, 1 \mathrm{H} ; H 7)$, $3.80(\mathrm{ddd}, J=10.0,4.8$ and $2.0 \mathrm{~Hz}, 1 \mathrm{H} ; H 5), 2.06(\mathrm{~s}, 3 \mathrm{H}), 2.02(\mathrm{~s}, 3 \mathrm{H}), 1.96(\mathrm{~s}, 3 \mathrm{H}), 1.82(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta 170.6,170.2,169.4,168.7,138.6,131.9,130.2,130.0,125.4,122.3$, $79.3,77.0,74.0,72.6,68.5,62.2,20.7,20.6,20.3$.

${ }^{1} \mathbf{H}$ NMR (400 MHz, CDCl $_{3}$): $\delta 7.08(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.49(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.34(\mathrm{t}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H}$; $H 3), 5.27(J=9.6 \mathrm{~Hz}, 1 \mathrm{H} ; H 4), 5.14(\mathrm{t}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H} ; H 2), 4.56(\mathrm{~d}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H} ; H 1), 4.23$ (dd, $J=$ 12.4 and $4.8 \mathrm{~Hz}, 1 \mathrm{H}$; H0), 4.10 (dd, $J=12.4$ and $2.0 \mathrm{~Hz}, 1 \mathrm{H} ; H 7$), 3.85 (s, 3 H), 3.79 (ddd, $J=10.0,4.8$ and $2.0 \mathrm{~Hz}, 1 \mathrm{H} ; H 5), 2.05(\mathrm{~s}, 3 \mathrm{H}), 2.01(\mathrm{~s}, 3 \mathrm{H}), 1.99(\mathrm{~s}, 3 \mathrm{H}), 1.91(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta 170.6,170.2,169.3,169.2,158.7,153.5,144.8,118.5,110.6,76.2,74.0$, $73.2,70.0,68.2,62.0,51.9,20.7,20.6,20.4$.

${ }^{1} \mathbf{H}$ NMR ($\mathbf{3 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 7.61(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.40(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.31(\mathrm{t}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H}$; $H 3), 5.19(J=9.6 \mathrm{~Hz}, 1 \mathrm{H} ; H 4), 5.02(\mathrm{t}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H} ; H 2), 4.43$ (d, $J=9.6 \mathrm{~Hz}, 1 \mathrm{H} ; H 1), 4.27$ (dd, $J=$ 12.3 and $4.8 \mathrm{~Hz}, 1 \mathrm{H} ; H \sigma$), $4.13(\mathrm{dd}, J=12.3$ and $2.1 \mathrm{~Hz}, 1 \mathrm{H} ; H 7$), $3.82(\mathrm{ddd}, J=9.9,4.8$ and $2.1 \mathrm{~Hz}, 1 \mathrm{H}$; H5), $2.06(\mathrm{~s}, 3 \mathrm{H}), 2.03(\mathrm{~s}, 3 \mathrm{H}), 1.97(\mathrm{~s}, 3 \mathrm{H}), 1.81(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta 170.7,170.3,169.5,168.7,141.5,132.3,127.8,118.4,112.8,79.2,76.3$, 73.9, 72.4, 68.3, 62.2, 20.8, 20.6, 20.4.

${ }^{1}{ }^{1}$ NMR (400 MHz, CDCl ${ }_{3}$): $\delta 7.74(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.95(\mathrm{~s}, 1 \mathrm{H}), 6.91(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.30(\mathrm{t}, J$ $=9.6 \mathrm{~Hz}, 1 \mathrm{H} ; H 3), 5.21(J=9.6 \mathrm{~Hz}, 1 \mathrm{H} ; H 4), 5.11(\mathrm{t}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H} ; H 2), 4.40(\mathrm{~d}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H} ; H 1)$, $4.27(\mathrm{dd}, J=12.4$ and $4.8 \mathrm{~Hz}, 1 \mathrm{H} ; H 0), 4.15(\mathrm{dd}, J=12.4$ and $1.6 \mathrm{~Hz}, 1 \mathrm{H} ; H 7), 3.89(\mathrm{~s}, 3 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H})$, $3.82(\mathrm{ddd}, J=10.0,4.8$ and $2.0 \mathrm{~Hz}, 1 \mathrm{H} ; H 5), 2.06(\mathrm{~s}, 3 \mathrm{H}), 2.04(\mathrm{~s}, 3 \mathrm{H}), 1.98(\mathrm{~s}, 3 \mathrm{H}), 1.81(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta 170.5,170.2,169.4,168.6,166.1,159.1,141.9,131.6,120.4,119.0,79.6$, $76.2,74.1,72.3,68.5,62.2,56.0,51.9,20.6,20.5,20.3$.

${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta 7.24(\mathrm{~s}, 1 \mathrm{H}), 7.05(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.29(\mathrm{t}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H} ; H 3), 5.20(J$ $=9.6 \mathrm{~Hz}, 1 \mathrm{H} ; H 4), 5.12(\mathrm{t}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H} ; H 5), 4.35(\mathrm{~d}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H} ; H 1), 4.25(\mathrm{dd}, J=12.4$ and 4.8 $\mathrm{Hz}, 1 \mathrm{H} ; H 6$), 4.14 (dd, $J=12.4$ and $1.6 \mathrm{~Hz}, 1 \mathrm{H} ; H 7$), $3.87(\mathrm{~s}, 3 \mathrm{H}), 3.86(\mathrm{~s}, 3 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H}), 3.81$ (ddd, $J=$ 9.6, 4.8 and $2.0 \mathrm{~Hz}, 1 \mathrm{H}$; H5), $2.05(\mathrm{~s}, 3 \mathrm{H}), 2.03(\mathrm{~s}, 3 \mathrm{H}), 1.97(\mathrm{~s}, 3 \mathrm{H}), 1.82(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta 170.6,170.2,169.5,168.9,166.2,153.8,149.7,131.8,125.5,121.7$, $114.0,79.6,77.2,76.3,74.2,72.3,68.7,62.4,61.5,56.2,52.2,20.7,20.6,20.4$.

${ }^{1}{ }^{1} \mathbf{H}$ NMR ($300 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta 7.33(\mathrm{~s}, 1 \mathrm{H}), 7.20-7.30(\mathrm{~m}, 3 \mathrm{H}), 5.33(\mathrm{t}, J=9.3 \mathrm{~Hz}, 1 \mathrm{H} ; H 3), 5.22(\mathrm{t}, J=$ $9.6 \mathrm{~Hz}, 1 \mathrm{H} ; H 4), 5.07(\mathrm{t}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H} ; H 2), 4.38(\mathrm{~d}, J=9.9 \mathrm{~Hz}, 1 \mathrm{H} ; H 1), 4.29(\mathrm{dd}, J=12.3$ and 4.8 Hz , $1 \mathrm{H} ; H 6), 4.16(\mathrm{dd}, J=12.3$ and $2.1 \mathrm{~Hz} ; H 7), 3.83(\mathrm{ddd}, J=9.9,4.8$ and $2.1 \mathrm{~Hz}, 1 \mathrm{H} ; H 5), 2.10(\mathrm{~s}, 3 \mathrm{H})$, $2.06(\mathrm{~s}, 3 \mathrm{H}), 2.03(\mathrm{~s}, 3 \mathrm{H}), 1.85(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (100 MHz, CDCl ${ }_{3}$): $\delta 170.8,170.4,169.5,168.9,138.3,134.3,129.8,129.1,127.4,125.1$, 79.4, 76.2, 74.1, 72.6, 68.4, 62.3, 20.8, 20.7, 20.4.

${ }^{1} \mathbf{H}$ NMR (400 MHz, CDCl $_{3}$): $\delta 7.98(\mathrm{~s}, 1 \mathrm{H}), 7.97(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.55(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.41(\mathrm{t}, J=$ $7.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.33(\mathrm{t}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H} ; H 3), 5.22(\mathrm{t}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H} ; H 4), 5.09(\mathrm{t}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H} ; H 2), 4.44$ (d, $J=9.6 \mathrm{~Hz}, 1 \mathrm{H} ; H 1), 4.27(\mathrm{dd}, J=12.8$ and $4.8 \mathrm{~Hz}, 1 \mathrm{H} ; H 0), 4.16(\mathrm{dd}, J=12.8$ and $2.4 \mathrm{~Hz}, 1 \mathrm{H} ; H 7$), $3.89(\mathrm{~s}, 3 \mathrm{H}), 3.83(\mathrm{ddd}, J=10.0,4.8$ and $2.4 \mathrm{~Hz}, 1 \mathrm{H} ; H 5), 2.07(\mathrm{~s}, 3 \mathrm{H}), 2.04(\mathrm{~s}, 3 \mathrm{H}), 1.98(\mathrm{~s}, 3 \mathrm{H}), 1.79(\mathrm{~s}$, 3H). ${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta 170.7,170.3,169.5,168.8,166.6,136.9,131.3,130.3,130.0,128.7$, 128.5, 79.7, 76.3, 74.1, 72.7, 68.6, 62.3, 52.2, 20.7, 20.6, 20.3.

${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta 7.99(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.39(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 5.32(\mathrm{t}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H}$; $H 3), 5.21(\mathrm{t}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H} ; H 4), 5.07(\mathrm{t}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H} ; H 2), 4.43(\mathrm{~d}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H} ; H 1), 4.28(\mathrm{dd}, J=$ 12.4 and $4.8 \mathrm{~Hz}, 1 \mathrm{H} ; H 1), 4.15(\mathrm{dd}, J=12.4$ and $2.4 \mathrm{~Hz}, 1 \mathrm{H} ; H 7), 3.88(\mathrm{~s}, 3 \mathrm{H}), 3.83(\mathrm{ddd}, J=10.0,4.8$ and $2.4 \mathrm{~Hz}, 1 \mathrm{H} ; H 5), 2.07(\mathrm{~s}, 3 \mathrm{H}), 2.04(\mathrm{~s}, 3 \mathrm{H}), 1.97(\mathrm{~s}, 3 \mathrm{H}), 1.79(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta 170.6,170.3,169.4,168.7,166.6,141.2,130.7,129.7,127.1,79.7,76.3$, $74.1,72.6,68.6,62.3,52.1,20.7,20.6,20.3$.

${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta 7.30-7.37(\mathrm{~m}, 5 \mathrm{H}), 5.36-5.41(\mathrm{~m}, 2 \mathrm{H} ; H 2, H 4), 5.17(\mathrm{dd}, J=10.2$ and 3.6 $\mathrm{Hz}, 1 \mathrm{H} ; H 3), 4.25(\mathrm{~d}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H} ; H 1), 4.12(\mathrm{dd}, J=13.2$ and $1.8 \mathrm{~Hz}, 1 \mathrm{H} ; H 5), 3.79(\mathrm{dd}, J=13.2$ and $0.6 \mathrm{~Hz}, 1 \mathrm{H}$; H6).
${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta 170.5,170.3,169.0,136.8,128.9,128.4,127.3,81.5,71.9,70.2,69.0$, 68.5, 21.1, 20.8, 20.5.

2D-COSY:

2D-NOESY:

${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta 8.03(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.92(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.74(\mathrm{dd}, J=17.6,7.6$ $\mathrm{Hz}, 4 \mathrm{H}), 7.2-7.6(\mathrm{~m}, 17 \mathrm{H}), 6.02(\mathrm{t}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H} ; H 3), 5.84(\mathrm{t}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H} ; H 4), 5.65(\mathrm{t}, J=9.6 \mathrm{~Hz}$, $1 \mathrm{H} ; H 2), 4.76(\mathrm{~d}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H} ; H 1), 4.68(\mathrm{dd}, J=12.0$ and $2.4 \mathrm{~Hz}, 1 \mathrm{H} ; H 6), 4.52(\mathrm{dd}, J=12.0$ and 4.8 $\mathrm{Hz}, 1 \mathrm{H} ; H 7$), 4.29 (ddd, $J=12.0,4.8$ and $2.0 \mathrm{~Hz}, 1 \mathrm{H} ; H 5$).
${ }^{13} \mathbf{C}$ NMR (100 MHz, CDCl ${ }_{3}$): $\delta 170.7,170.4,169.5,168.9,160.0,128.5,128.3,80.0,76.1,74.4,72.6$, 68.7, 62.4, 55.2, 20.7, 20.6, 20.4.

${ }^{1}$ H NMR ($400 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta 7.80(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.65(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.62(\mathrm{~s}, 2 \mathrm{H}), 7.21-7.29$ $(\mathrm{m}, 5 \mathrm{H}), 5.92(\mathrm{t}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H} ; H 3), 5.34(\mathrm{~d}, J=10.4 \mathrm{~Hz}, 1 \mathrm{H} ; H 1), 5.31(\mathrm{t}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H} ; H 4), 4.52(\mathrm{t}, J$ $=10.4 \mathrm{~Hz}, 1 \mathrm{H} ; H 2), 4.32(\mathrm{dd}, J=12.4$ and $4.8 \mathrm{~Hz}, 1 \mathrm{H} ; H 6), 4.17(\mathrm{dd}, J=12.4$ and $2.0 \mathrm{~Hz}, 1 \mathrm{H} ; H 7), 4.04$ (ddd, $J=10.0,4.4$ and $2.0 \mathrm{~Hz}, 1 \mathrm{H}, H 5), 2.10(\mathrm{~s}, 3 \mathrm{H}), 2.05(\mathrm{~s}, 3 \mathrm{H}), 1.83(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{{ }^{13} \mathbf{C}} \mathbf{N M R}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): ~ \delta 170.8,170.1,169.6,169.2,136.4,134.3,134.1,129.0,128.6,127.1$, $123.5,77.8,76.3,71.9,69.3,62.5,55.9,20.8,20.7,20.5$.

2D-COSY:

${ }^{1}{ }^{\mathbf{H}}$ NMR ($400 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $10.72(\mathrm{~s}, 1 \mathrm{H}), 7.54(\mathrm{~s}, 1 \mathrm{H}), 7.53(\mathrm{~s}, 1 \mathrm{H}), 5.49(\mathrm{~s}, 1 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H})$. ${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathbf{C D C l}_{3}$): 169.2, 148.5, 145.6, 128.8, 128.0, 113.7, 79.7, 52.5.

${ }^{1}{ }^{1} \mathbf{N}$ NMR (400 MHz, CDCl $_{3}$): $7.61(\mathrm{~s}, 1 \mathrm{H}), 7.23-7.36(\mathrm{~m}, 11 \mathrm{H}), 5.04(\mathrm{~s}, 2 \mathrm{H}), 4.99(\mathrm{~s}, 2 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H})$. ${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $164.9,153.4,148.1,136.9,135.7,131.3,128.42,128.4,128.3,128.1$, 127.8, 127.4, 126.4, 86.1, 75.5, 71.3, 52.1.

${ }^{1}{ }^{1}$ N NMR ($400 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $7.19-7.44(\mathrm{~m}, 12 \mathrm{H}), 5.30(\mathrm{t}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H}, H 3), 5.21(\mathrm{t}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H}$, H4), $5.12(\mathrm{~s}, 2 \mathrm{H}), 5.04(\mathrm{~s}, 2 \mathrm{H}), 5.04(\mathrm{t}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H}, H 2), 4.35(\mathrm{~d}, 10 \mathrm{~Hz}, 1 \mathrm{H}, H 1), 4.28(\mathrm{dd}, J=12.4 \mathrm{~Hz}$, $4.8 \mathrm{~Hz}, 1 \mathrm{H}, H 0), 4.14(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}, H 7), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.80-3.90(\mathrm{~m}, 1 \mathrm{H}, H 5), 2.06(\mathrm{~s}, 3 \mathrm{H}), 2.03(\mathrm{~s}$, $3 \mathrm{H}), 1.98(\mathrm{~s}, 3 \mathrm{H}), 1.79(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}\left(100 \mathrm{MHz}, \mathbf{C D C l}_{3}\right): 170.7,170.3,169.5,169.0,166.3,153.1,148.6,137.2,136.3,132.1,128.6,128.3$, $128.2,128.0,127.7,126.3,122.2,115.8,79.5,76.2,75.6,74.1,72.3,71.3,68.6,62.4,52.2,20.8,20.7$, 20.4 .

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta 7.55(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.22-7.49(\mathrm{~m}, 29 \mathrm{H}) 7.00(\mathrm{~m}, 2 \mathrm{H}), 5.16(\mathrm{~s}, 2 \mathrm{H})$, $5.02(\mathrm{~s}, 2 \mathrm{H}), 4.90-5.03(\mathrm{~m}, 3 \mathrm{H}), 4.60-4.71(\mathrm{~m}, 3 \mathrm{H}), 4.49(\mathrm{~d}, J=10.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.26(\mathrm{~d}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.84$ (s, 3H), 3.82-3.86(m, 5H), 3.61-3.66(m, 1H), 3.46 (t, $J=8.8 \mathrm{~Hz}, 1 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta 166.3,152.5,147.9,138.6,138.2,138.0,137.3,137.2,136.4,135.1$, $128.7,128.5,128.4,128.3,128.26,128.2,128.0,127.9,127.7,127.6,127.57,127.54,17.5,86.6,83.9$, 80.8, 79.2, 78.1, 75.6, 75.55, 75.1, 75.0, 73.3, 70.9, 68.9, 52.0.

${ }^{1}{ }^{1}$ NMR (400 MHz, CDCl ${ }_{3}$): $\delta 7.89(\mathrm{~s}, 1 \mathrm{H}), 6.95-7.43(\mathrm{~m}, 29 \mathrm{H}), 6.95(\mathrm{~s}, 2 \mathrm{H}), 5.26(\mathrm{~s}, 2 \mathrm{H}), 4.99(\mathrm{~s}, 2 \mathrm{H})$, $4.95(\mathrm{~d}, J=3.3 \mathrm{~Hz}, 2 \mathrm{H}), 4.80-4.90(\mathrm{~m}, 1 \mathrm{H}), 4.56-4.67(\mathrm{~m}, 3 \mathrm{H}), 4.49(\mathrm{~d}, J=10.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.25(\mathrm{~d}, J=9.0$ $\mathrm{Hz}, 1 \mathrm{H}), 3.70-3.86(\mathrm{~m}, 5 \mathrm{H}), 3.51-3.52(\mathrm{~m}, 1 \mathrm{H}), 3.44(\mathrm{t}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H})$.
${ }^{13}$ C NMR (100 MHz, CDCl ${ }_{3}$): $\delta 165.8,151.1,146.9,138.3,138.2,137.6,136.4,136.0,135.0,129.1$, $129.0,128.6,128.31,128.28,128.1,128.0,127.9,127.7,127.6,127.54,127.50,126.8,123.0,117.9,86.8$, $83.9,80.7,79.5,78.4,75.7,75.2,75.0,73.5,71.4,69.2$.

$\stackrel{\text { CbzO }}{\oplus}$
${ }^{1} \mathbf{H}$ NMR (400 MHz, CDCl $\mathbf{C D}_{3}$: $\delta 8.8(\mathrm{~s}, 3 \mathrm{H}), 7.30-7.43(\mathrm{~m}, 4 \mathrm{H}), 5.12-5.20(\mathrm{~m}, 2 \mathrm{H}), 5.06(\mathrm{q}, J=12 \mathrm{~Hz}, 2 \mathrm{H})$, $4.65(\mathrm{~d}, J=11.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.55(\mathrm{dd}, J=12$ and $4 \mathrm{~Hz}, 1 \mathrm{H}), 4.38(\mathrm{~s}, 1 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta 166.4,154.1,134.5,134.0128 .9,128.7,128.6,128.56,128.5,127.1,70.6$, 69.0, 64.5, 52.6.

1	180	200	180	160	140	120	100	80	60	40	20

${ }^{1} \mathbf{H}$ NMR ($600 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $8.89(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.88(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.26-7.39(\mathrm{~m}, 29 \mathrm{H})$, $7.13-7.19(\mathrm{~m}, 7 \mathrm{H}), 7.08(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.95(\mathrm{t}, J=3.6 \mathrm{~Hz}, 2 \mathrm{H}), 5.17(\mathrm{t}, J=12 \mathrm{~Hz}, 1 \mathrm{H}), 5.14(\mathrm{dd}, J=$ $10.8,1.2 \mathrm{~Hz}, 2 \mathrm{H}$), 5.09 (quint, $J=3.6 \mathrm{~Hz}, 1 \mathrm{H}$), $5.04(\mathrm{t}, J=12 \mathrm{~Hz}, 1 \mathrm{H}), 5.01(\mathrm{dd}, J=10.8$ and $4.2 \mathrm{~Hz}, 2 \mathrm{H}$), 4.90-4.96 (m, 4H), $4.86(\mathrm{~d}, J=10.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.63(\mathrm{~d}, J=4.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.62(\mathrm{~s}, 1 \mathrm{H}), 4.56(\mathrm{~s}, 1 \mathrm{H}), 4.56-4.59$ $(\mathrm{m}, 1 \mathrm{H}), 4.45(\mathrm{dd}, J=11.4,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.42(\mathrm{~d}, J=10.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.23(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.81(\mathrm{~d}, J=$ $9.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.79(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.76(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.73(\mathrm{t}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.61(\mathrm{dt}, J=9.6$ and $3.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.47(\mathrm{t}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta 168.9,164.7,154.5,151.5,146.5,138.7,138.3,138.1,137.6,136.1$, $135.9,135.5,135.1,134.9,129.1,128.6,128.5,128.4,128.3,128.27,128.23,128.21,128.0,127.9,127.7$, $127.6,127.5,126.1,122.1,116.4,86.7,83.9,81.0,79.3,78.3,76.1,75.6,75.1,74.9,73.4,71.1,69.8,69.1$, 67.5, 67.2, 52.2.

${ }^{1} \mathbf{H}$ NMR ($600 \mathrm{MHz}, \mathbf{C D}_{3} \mathbf{O D}$): $7.41(\mathrm{~s}, 1 \mathrm{H}), 7.00(\mathrm{~s}, 1 \mathrm{H}), 4.68(\mathrm{~s}, 1 \mathrm{H}), 4.00(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.92(\mathrm{dd}, J$ $=11.4$ and $3.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.82(\mathrm{~d}, J=10.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.67(\mathrm{dd}, J=11.4$ and $4.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.38-3.44(\mathrm{~m}, 2 \mathrm{H})$, $3.30-3.34(\mathrm{~m}, 2 \mathrm{H}), 3.26(\mathrm{~d}, J=1.2 \mathrm{~Hz})$.
${ }^{13} \mathbf{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CD}_{3} \mathbf{O D}\right): ~ \delta 173.4,170.7,150.0,146.8,131.4,119.5,119.0,116.5,83.1,82.0,79.7$, 76.3, 71.7, 62.9, 56.3, 49.9.

[^0]: (12) Krasovskiy, A.; Knochel, P. Synthesis 2006, 890-891.

