Supporting information for:

Efficient Visible Light Photocatalysis of [2+2] Enone Cycloadditions

Michael A. Ischay, Mary E. Anzovino, Juana Du, and Tehshik P. Yoon* Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin 53706–1396

I. General Information

A 275 W GE Sunlamp was used for all photochemical reactions depicted in Table 1, and the solvents for these reactions were degassed with three freeze-pump-thaw cycles. Acetonitrile, CH_2Cl_2 , and *i*-Pr₂NEt were purified by distillation from CaH₂ immediately prior to use. Ru(bipy)₂•6H₂O was purchased from Strem and used without further purification. Chromatography was performed with Purasil 60Å silica gel (230–400 mesh) using the method of Still.¹ All glassware was oven-dried for at least 1 h before use.

Diastereomer ratios for all compounds were determined by ¹H NMR analysis of the unpurified reaction mixtures. ¹H and ¹³C NMR data for all previously uncharacterized compounds were obtained using Varian Inova-500 and Varian Unity-500 spectrometers and are referenced to TMS (0.00 ppm) and CDCl₃ (77 ppm), respectively. IR spectral data were obtained using a Bruker Vector 22 spectrometer (thin film on NaCl or ATR). Melting points were obtained using a Mel-Temp II (Laboratory Devices, Inc., USA) melting point apparatus. Mass spectrometry was performed with a Micromass LCT (electrospray ionization, time-of-flight analyzer or electron impact.). These facilities are funded by the NSF (CHE-9974839, CHE-9304546) and the University of Wisconsin.

II. Synthesis of cyclization substrates

cis-1,3-Cyclopentane-(*E*,*E*)-diacrylophenone:² Norbornene (368 mg, 3.9 mmol) was placed in a 50 mL 3-neck round-bottomed flask with 13 mL (0.3 M) CH_2Cl_2 . The flask was cooled to -78 °C, and ozone was passed through the reaction mixture until a blue coloration persisted, at which point oxygen was bubbled through the solution to remove excess dissolved ozone. The ozonide was quenched with 3 mL of dimethylsulfide, and the

reaction was slowly warmed to room temperature. (Benzoylmethylene)triphenylphosphorane (3.41 g, 8.97 mmol) was added to the flask, and the reaction was stirred for 18 h. The solvent was removed by rotary evaporation, and the crude reaction mixture was purified by chromatography on a silica gel column (8:1 to 4:1 hexanes:EtOAc) to afford 408 mg (1.23 mmol, 31% yield) of the bisenone as a colorless oil. IR(neat) 2956, 1664, 1613, 1447, 1260; ¹H NMR (500 MHz, CDCl₃) δ 7.93 (d, J = 6.9 Hz, 4H, ArH), 7.55 (t, J = 6.9 Hz, 2H, ArH), 7.47 (t, J = 6.9 Hz, 4H, ArH), 7.05 (dd, J = 14.7, 7.9 Hz, 2H,HC=CH), 6.88 (d, J = 14.7 Hz, 2H, HC=CH), 2.89 (m, 2H, -CH₂), 2.18 (dt, J = 12.8, 6.9 Hz, 1H, CH₂), 2.03 (m, 2H, CH₂), 1.69 (m, 2H, CH₂), 1.48 (q, J = 9.8 Hz, 1H, CH); ¹³C NMR (125 MHz, CDCl₃) δ 190.9, 152.5, 137.9, 132.7, 128.5, 128.5, 124.7, 43.4, 39.4, 31.5. HRMS (EI) calc'd for [C₂₃H₂₂O₂]⁺ requires *m/z* 330.1615, found *m/z* 330.1631.

(*E*,*E*)-1,7-Dibenzoyl-4,4-dimethyl-1,6-heptadiene: 3,3-Dimethylglutardialdehyde³ was dissolved in 25 mL of dry CH₂Cl₂ and treated with 10 g (benzoylmethylene)triphenylphosphorane (26 mmol). The reaction was stirred at room temperature for 80 h. The solvent was then removed by rotary evaporation, and the residue

was purified by chromatography on a silica gel column (6:1 to 4:1 hexanes:EtOAc) to afford 547 mg (1.65 mmol, 22% yield) of the bisenone as a colorless oil. IR(neat) 2958, 1669, 1618, 1448, 1282, 1221; ¹H NMR (500 MHz, CDCl₃) δ 7.94 (d, J = 7.7 Hz, 4H, Ar**H**), 7.57 (t, J = 7.7 Hz, 2H, Ar**H**), 7.47 (t, J = 7.7 Hz, 4H, Ar**H**), 7.12 (dt, J = 15.5, 8.5 Hz, 2H,HC=C**H**), 6.93 (d, J = 15.5 Hz, 2H, HC=C**H**), 2.30 (d, J = 8.5 Hz, 4H, -C**H**₂), 1.06 (s, 6H, C**H**₃); ¹³C NMR (125 MHz, CDCl₃) δ 190.3, 145.9, 137.8, 132.8, 128.6, 128.5, 128.4, 45.4, 35.1, 27.3. HRMS (ESI⁺) calc'd for [C₂₃H₂₄O₂+H]⁺ requires *m/z* 333.1850, found *m/z* 333.1834.

(E,E)-1-Benzoyl-7-(diethylcarbamoyl)-1,6-heptadiene: A dry 1.5 dram vial was with charged 6-benzoyl-5-hexenal⁵ (245)mg, 1.2 mmol), [(diethylcarbamoyl)methyl]triphenylphosphonium chloride⁴ (591 mg, 1.4 mmol), and 1.7 mL CHCl₃ 1.7 mL. Sodium hydroxide (1.0 M in water, 1.7 mL, 1.7 mmol) was added

dropwise to the stirring solution. After 20 min, the organic layer was separated, dried over MgSO₄, and concentrated by rotary evaporation. The residue was purified by chromatography (2:1 EtOAc:hexanes eluent) to afford 238 mg (0.79 mmol, 66% yield) of the diene as a clear, colorless liquid. IR (thin film) 1727, 1676; ¹H NMR $(500 \text{ MHz}, \text{CDCl}_3) \delta 7.94-7.92 \text{ (m, 2H, ArH)}, 7.58-7.54 \text{ (m, 1H, ArH)}, 7.47 \text{ (t, J} = 7.6 \text{ Hz}, 2\text{ H}, \text{ArH}), 7.05 \text{ (dt, J} = 7.6 \text{ Hz}, 2\text{ Hz}, 2\text{ Hz}), 7.05 \text{ (dt, J} = 7.6 \text{ Hz}, 2\text{ Hz}), 7.05 \text{ (dt, J} = 7.6 \text{ Hz}, 2\text{ Hz}),$ 15.5, 6.9 Hz, 1H, HC=CH), 6.94–6.88 (m, 2H, HC=CH), 6.23 (dt, J = 15.2, 1.4 Hz, 1H, HC=CH), 3.43 (q, J = 7.1 Hz, 2H, N-CH₂CH₃), 3.37 (q, J = 7.0 Hz, 2H, -NCH₂CH₃), 2.37 (q, J = 7.2 Hz, 2H, =CHCH₂), 2.29 (q, J = 7.3 Hz, 2H, =CHCH₂), 1.72 (quintet, J = 7.5 Hz, 2H, -CH₂CH₂-), 1.19 (t, J = 7.0 Hz, 3H, -NCH₂CH₃), 1.14 (t, J = 284.1 Hz, 3H, -NCH₂CH₃); ¹³C NMR (125 MHz, CDCl₃) δ 190.9, 165.8, 149.1, 145.0, 138.1, 132.9, 128.7, 128.7, 126.5, 121.4, 42.3, 41.0, 32.3, 32.0, 27.2, 15.1, 13.4. HRMS (EI) calc'd for $[C_{19}H_{25}NO_2]^+$ requires m/z 299.1880, found m/z299.1882.

(*E,E*)-1-Benzoyl-7-(ethoxycarbonyl)-7-methyl-1,6-heptadiene: Ethyl 2-(triphenylphosphoranylidene)propanoate (773 mg, 2.1 mmol) was dissolved in 6 mL CH₂Cl₂ in a dry 50 mL round bottom flask. To the stirring solution was added 6-benzoyl-5-hexenal (431 mg, 2.1 mmol) in 7 mL CH₂Cl₂. After 1.5 h, the solution was concentrated

by rotary evaporation, and the residue was purified by chromatography (3:1 hexanes:EtOAc eluent) to afford 349 mg (1.2 mmol, 57% yield) of the diene as a clear, colorless liquid. IR (thin film) 1707, 1670, 1649; ¹H NMR (500 MHz, CDCl₃) δ 7.94–7.92 (m, 2 H), 7.55 (tt, J = 7.4, 1.4 Hz, 1 H), 7.48–7.45 (m, 2 H), 7.05 (dt, J = 15.2, 6.8 Hz, 1 H), 6.91 (dt, J = 15.3, 1.5 Hz, 1 H), 6.76 (td, J = 5.5, 3.1 Hz, 1 H), 4.19 (q, J = 7.1 Hz, 2 H), 2.36 (q, J = 7.3 Hz, 2 H), 3.37 Hz, 3.37 H), 2.25 (q, J = 7.4 Hz, 2 H), 1.84 (d, J = 1.3 Hz, 3 H), 1.70 (quintet, J = 7.4 Hz, 2 H), 1.30 (t, J = 7.2 Hz, 3 H); ¹³C NMR (125 MHz, CDCl₃) & 190.7, 168.2, 148.9, 141.1, 138.0, 132.8, 128.6, 128.6, 126.4, 60.6, 32.4, 28.2, 27.2, 14.4, 12.6. HRMS (EI) calculated for $[C_{18}H_{22}O_3]^+$ requires m/z 286.1564, found m/z 286.1575.

III. Photocycloadditions

General procedure A for cyclization of bisenone substrates (Table 1, entries 1–13): A dry 25 mL Schlenk tube was charged with a solution of the enone (1 equiv), $Ru(bipy)_3Cl_2 \bullet 6H_2O$ (0.05 equiv), $LiBF_4$ (2 equiv), and *i*-Pr_2NEt (2 equiv) in acetonitrile (0.1 M). The solution was then degassed using three freeze-pump-thaw cycles under nitrogen in the dark. The Schlenk tube was then placed in a water bath and irradiated using a floodlight placed at a distance of 20 cm. Upon completion of the reaction, the solvent was removed by rotary evaporation, and the residue was purified by chromatography on a silica gel column.

General procedure B for intermolecular [2+2] cycloadditions (Table 1, entries 14 and 15): These experiments were run as above, except with the following molar ratios: 2 equiv enone, 0.05 equiv Ru(bipy)₃Cl₂, 2 equiv LiBF₄, and 2 equiv i-Pr₂NEt in acetonitrile (0.2 M with respect to enone).

(1R,5S,6R,7S)-6,7-Dibenzoylbicyclo[3.2.0]heptane (Table 1, entry 1). Experiment 1: Prepared according to general procedure A using 104.8 mg (0.34 mmol) (*E,E*)-1,7-dibenzoyl-1,6-heptadiene,⁵ 14.4 mg (0.019 mmol) Ru(bpy)₃Cl₂·6H₂O, 72 mg (0.77 mmol) LiBF₄, 134 μ L (0.77 mmol) *i*-Pr₂NEt, 3.8 mL acetonitrile, and an irradiation time of 50 min. Purified by chromatography using a solvent gradient (5:1-2:1 hexanes:EtOAc) to afford 98 mg (0.35 mmol, 90% yield, dr = >10:1) of the cycloadduct. Experiment 2: 55 mg (0.19 mmol) bisenone, 7.1 mg (0.0095 mmol)

Ru(bpy)₃Cl₂·6H₂O, 36 mg (0.38 mmol) LiBF₄, 66 µL (0.38 mmol) *i*-Pr₂NEt, and 1.9 mL acetonitrile. Isolated 48 mg (0.17 mmol, 87% yield, dr: >10:1). All spectral data were in complete agreement with previously reported values.⁶

(1R,5S,6R,7S)-6,7-Di(4-methoxybenzoyl)bicyclo[3.2.0]heptane (Table 1, entry 2). Experiment 1: Prepared according to general procedure A using 113 mg (0.31 mmol) (E,E)-1,7-(4-methoxybenzoyl)-1,6-heptadiene,⁷ 12 mg (0.016 mmol) Ru(bpy)₃Cl₂·6H₂O, 58 mg (0.62 mmol) LiBF₄, 108 µL (0.62 mmol) *i*-Pr₂NEt, 3.1 mL acetonitrile, and an irradiation time of 20 min. Purified by chromatography using a solvent gradent (4:1 to 2:1 hexanes:EtOAc) to afford

111 mg (0.304 mmol, 98% yield, dr = 10:1) of the cycloadduct as a white solid (mp = 145–147 °C). Experiment 2: 107.3 mg (0.29 mmol) of bisenone, 11 mg (0.015 mmol) of Ru(bpy)₃Cl₂·6H₂O, 54 mg (0.58 mmol) of LiBF₄, 101 μ L (0.58 mmol) of *i*-Pr₂NEt, and 1.9 mL of acetonitrile. Isolated 104 mg (0.285 mmol, 97% yield, dr = 10:1). IR(neat) 2972, 1740, 1672, 1602, 1358, 1239; ¹H NMR (500 MHz, CDCl₃) δ 7.74 (d, J = 9.0 Hz, 4H, Ar**H**), 6.83 (d, J = 9.0 Hz, 4H, Ar**H**), 3.81 (s, 8H, -O**Me**, -C**H**COAr(cyclobutane)), 3.20 (m, 2H, C**H** (cyclobutane)), 2.02 (m, 2H, C**H** (cyclopentane)), 1.83 (ddd, J = 13.5, 5.3, 1.9 Hz, 2H, C**H** (cyclopentane)), 1.69 (m, 2H, C**H** (cyclopentane)); ¹³C NMR (125 MHz, CDCl₃) δ 197.3, 162.9, 129.9, 129.6, 113.6, 55.3, 48.1, 39.1, 32.5, 25.3. HRMS (ESI⁺) calculated for [C₂₃H₂₄O₄H]⁺ requires *m*/*z* 365.1748, found *m*/*z* 365.1759.

(1*R*,5*S*,6*R*,7*S*)-6,7-Di(4-chlorobenzoyl)bicyclo[3.2.0]heptane (Table 1, entry 3). Experiment 1: Prepared according to general procedure **A** using 113 mg (0.30 mmol) of (E,E)-1,7-(4-chlorobenzoyl)-1,6-heptadiene,⁸ 11 mg (0.015 mmol) of Ru(bpy)₃Cl₂·6H₂O, 57 mg (0.61 mmol) of LiBF₄, 106 µL (0.61 mmol) of *i*-Pr₂NEt, 3.0 mL acetonitrile, and an irradiation time of 10 min. Purified by chromatography

using a solvent gradent (10:1 to 7:1 hexanes:EtOAc) to afford 111 mg (0.30 mmol, 98% yield, dr >10:1) of the cycloadduct. Experiment 2: 111 mg (0.30 mmol, 98% yield, dr >10:1). Experiment 2: 63.9 mg (0.17 mmol) of bisenone, 6.4 mg (0.009 mmol) of Ru(bpy)₃Cl₂·6H₂O, 32 mg (0.34 mmol) of LiBF₄, 59 μ L (0.34 mmol) of DIEA, and 1.7 mL of MeCN. Isolated 60 mg (0.16 mmol, 94% yield, dr >10:1). All spectral data were in complete agreement with previously reported values.⁸

(1*R*,5*S*,6*R*,7*S*)-6,7-Di(2-furoyl)bicyclo[3.2.0]heptane (Table 1, entry 4). Experiment 1: Prepared according to general procedure **A** using 109 mg (0.38 mmol) (*E*,*E*)-1,7-(2-furoyl)-1,6-heptadiene,⁷ 14.4 mg (0.019 mmol) Ru(bpy)₃Cl₂·6H₂O, 72 mg (0.77 mmol) LiBF₄, 134 μ L (0.77 mmol) *i*-Pr₂NEt, 3.8 mL acetonitrile, and an irradiation time of 30 min. Purified by chromatography using a solvent gradient (5:1 to 2:1 hexanes:EtOAc) to afford 98 mg (0.35

mmol, 90% yield, dr = >10:1) of the cycloadduct. Experiment 2: 55 mg (0.19 mmol) bisenone, 7.1 mg (0.0095 mmol) Ru(bpy)₃Cl₂·6H₂O, 36 mg (0.38 mmol) LiBF₄, 66 μ L (0.38 mmol) *i*-Pr₂NEt, and 1.9 mL acetonitrile. Isolated 48 mg (0.17 mmol, 87% yield, dr: >10:1). All spectral data were in complete agreement with previously reported values.⁶

(1*R*,5*S*,6*R*,7*S*)-6,7-Dibenzoyl-3-oxabicyclo[3.2.0]heptane (Table 1, entry 7). Experiment 1: Prepared according to general procedure A using 115 mg (0.38 mmol) (*E*,*E*)-1,7-dibenzoyl-4-oxa-1,6-heptadiene,⁶ 14 mg (0.019 mmol) Ru(bpy)₃Cl₂6H₂O. 71.3 mg (0.76 mmol) LiBF₄, 132 μ L (0.76 mmol) *i*-Pr₂NEt, 3.8 mL acetonitrile, and an irradiation time of 10 min. Purified by chromatography using a solvent gradient (5:1 to 2:1 hexanes:EtOAc) to afford 106 mg (0.346, dr = 5:1) of the cycloadduct. Experiment 2: 100 mg (0.33 mmol) bisenone, 13 mg (0.017 mmol)

mmol, 92% yield, dr = 5:1) of the cycloadduct. Experiment 2: 100 mg (0.33 mmol) bisenone, 13 mg (0.017 mmol) Ru(bpy)₃Cl₂·6H₂O, 56 mg (0.66 mmol) LiBF₄, 115 μ L *i*-Pr₂NEt, and 3.3 mL acetonitrile. Isolated 88 mg (0.29 mmol, 88% yield, dr = 5:1). All spectral data were in complete agreement with previously reported values.⁶

(1*R*,5*S*,6*R*,7*S*)-6,7-Dibenzoyl-3,3-dimethylbicyclo[3.2.0]heptane (Table 1, entry 8). Experiment 1: Prepared according to general procedure **A** using 76 mg (0.23 mmol) (*E*,*E*)-1,7-(benzoyl)-3,3dimethyl-1,6-heptadiene, 9 mg (0.012 mmol) Ru(bpy)₃Cl₂·6H₂O, 43 mg (0.46 mmol) LiBF₄, 80 μ L (0.46 mmol) *i*-Pr₂NEt, 2.3 mL acetonitrile, and an irradiation time of 10 min. Purified by chromatography using a solvent gradient (10:1 to 8:1 hexanes:EtOAc) to afford 51 mg (0.153

mmol, 67% yield, dr = 5:1) of the cycloadduct as a white solid (mp = 172–175°C). Experiment 2: 71.8 mg (0.22 mmol) bisenone, 8.2 mg (0.011 mmol) Ru(bpy)₃Cl₂·6H₂O, 41 mg (0.44 mmol) LiBF₄, 77 μL (0.44 mmol) *i*-Pr₂NEt, and 2.2 mL acetonitrile. Isolated 49 mg (0.147 mmol, 68% yield, dr = 3:1). IR(neat) 2946, 1680, 1220, 1019; ¹H NMR (500 MHz, CDCl₃) δ 7.79 (d, J = 6.9 Hz, 3H, Ar**H**), 7.48 (t, J = 6.9 Hz, 2H, Ar**H**), 7.38 (t, J = 6.9 Hz, 3H, Ar**H**), 4.11 (m, 2H, **-CH**COAr (cyclobutane)), 3.21 (m, 2H, C**H** (cyclobutane)), 2.01 (m, 2H, C**H** (cyclopentane)), 1.70 (dd, J = 12.7, 5.1 Hz, 2H, C**H** (cyclopentane)), 1.60 (s, 3H, C**H**₃), 1.27 (s, 3H, C**H**₃); ¹³C NMR (125 MHz, CDCl₃) δ 199.3, 136.6, 132.8, 128.7, 128.1, 51.5, 48.7, 44.9, 40.0, 29.0, 28.2. HRMS (ESI⁺) calculated for [C₂₃H₂₄O₄H]⁺ requires *m/z* 333.2850, found *m/z* 333.1853.

(1*R*,2*S*,3*S*,4*R*,5*R*,6*S*)-3,4-Dibenzoyltricyclo[4.2.1.0^{2.5}]nonane (Table 1, entry 9). Experiment 1: Prepared according to general procedure A using 61 mg (0.18 mmol) *cis*-1,3-cyclopentane-(*E*,*E*)-diacrylophenone, 6.7 mg (0.012 mmol) Ru(bpy)₃Cl₂·6H₂O, 34 mg (0.36 mmol) LiBF₄, 63 μ L (0.36 mmol) *i*-Pr₂NEt, 1.8 mL acetonitrile, and an irradiation time of 2 h. Purified by chromatography using 7:1 hexanes:EtOAc as eluent to afford 32 mg (0.097 mmol, 52% yield, dr

= 5:1) of the cycloadduct as a white solid (mp = 163–166°C). Experiment 2: 73.5 mg (0.22 mmol) bisenone, 8.23 mg (0.011 mmol) Ru(bpy)₃Cl₂·6H₂O, 41 mg (0.44 mmol) LiBF₄, 77 μL (0.44 mmol) *i*-Pr₂NEt, and 2.2 mL acetonitrile. Isolated 41 mg (0.12 mmol, 56% yield, dr = 7:1). IR(neat) 2959, 1678, 1596, 1448. 1348, 1222; ¹H NMR (500 MHz, CDCl₃) δ 7.76 (d, J = 8.0 Hz, 4H, Ar**H**), 7.45 (t, J = 7.4 Hz, 2H, Ar**H**), 7.36 (t, J = 6.9 Hz, 4H, Ar**H**), 3.91 (s, 2H, -C**H**COAr(cyclobutane)), 2.73 (s, 2H, C**H** (cyclobutane)), 2.09 (d, J=10.9 Hz, 1H, C**H** (cyclopentane)), 1.55 (m, 2H, C**H** (cyclopentane)), 1.51 (d, J=11.0 Hz, 1H, C**H** (cyclopentane)), 1.14 (dd, J=7.7, 2.0 Hz, 2H, C**H** (cyclopentane)); ¹³C NMR (125 MHz, CDCl₃) δ198.1, 136.4, 132.5, 128.5, 127.8, 47.2, 42.4, 38.6, 33.2, 27.3, 0.0. HRMS (EI) calculated for $[C_{23}H_{22}O_2]^+$ requires *m/z* 330.1615, found *m/z* 330.1620.

(1S^{*},5R^{*},6S^{*},7R^{*})-6-Acyl-7-benzoylbicyclo[3.2.0]heptane (Table 1, entry 10). Experiment 1: Prepared according to general procedure A using 107 mg (0.44 mmol) (*E,E*)-7-acetyl-1-benzoyl-1,6-heptadiene,⁷ 16 mg (0.022 mmol) Ru(bpy)₃Cl₂·6H₂O, 83 mg (0.88 mmol) LiBF₄, 153 μ L (0.88 mmol) *i*-Pr₂NEt, 4.4 mL acetonitrile, and an irradiation time of 75 min. Purified by chromatography using a solvent gradient (4:1 to 3:1 hexanes:EtOAc) to afford 88 mg (0.36 mmol,

82.5% yield, dr >10:1) of the cycloadduct. Experiment 2: 78.3 mg (0.32 mmol) bisenone, 12 mg (0.016 mmol) Ru(bpy)₃Cl₂·6H₂O, 60 mg (0.64 mmol) LiBF₄, 112 μ L *i*-Pr₂NEt, and 3.2 mL acetonitrile. Isolated 68 mg (0.28 mmol, 86.8% yield, dr >10:1). All spectral data were in complete agreement with previously reported values.⁷

(1S^{*},5R^{*},6S^{*},7R^{*})-6-Benzoyl-7-(ethoxycarbonyl)bicyclo[3.2.0]heptane (Table 1, entry 11). Experiment 1: Prepared according to general procedure A using 108 mg (0.40 mmol) (*E,E*)-1benzoyl-7-(ethoxycarbonyl)-1,6-heptadiene,⁹ 15 mg (0.020 mmol) Ru(bpy)₃Cl₂·6H₂O, 74 mg (0.79 mmol) LiBF₄, 141 μ L (0.81 mmol) *i*-Pr₂NEt, 4.0 mL acetonitrile, and an irradiation time of 45 min. Purified by chromatography using 3:1 hexanes:EtOAc to afford 97 mg (0.36 mmol),

90% yield, dr >10:1) of the cycloadduct as a white solid (m.p. 45–46 °C). Experiment 2: 102 mg (0.37 mmol) diene, 14 mg (0.019 mmol) Ru(bpy)₃Cl₂·6H₂O, 70 mg (0.75 mmol) LiBF₄, 133 µL (0.75 mmol) *i*-Pr₂NEt, and 3.7 mL acetonitrile. Isolated 87 mg (0.32 mmol, 85% yield, dr >10:1) of the cycloadduct. IR (neat) 1722, 1671; ¹H NMR (500 MHz, CDCl₃) δ 7.85–7.83 (m, 2H), 7.52 (tt, J = 7.3, 1.4 Hz, 1H, ArH), 7.43 (t, J = 7.8 Hz, 2H, ArH), 3.87 (qd, J = 7.2, 1.8 Hz, 2H, ArH), 3.69 (dd, J = 10.1, 5.2 Hz, 1H, ArCOCH), 3.22 (ddd, J = 6.7, 6.7, 6.7 Hz, 1H, CH (cyclobutane)), 3.07 (ddd, J = 6.7, 6.7, 6.7 Hz, 1H, CH (cyclobutane)), 3.01 (dd, J = 10.1, 5.2 Hz, 1H, -CHCO₂Et), 1.98–1.86 (m, 2H, CH (cyclopentane)), 1.75–1.71 (m, 2H), 1.68–1.57 (m, 2H, -CH (cyclopentane)), 0.97 (t, J = 7.2 Hz, 3H, -CH₂CH₃); ¹³C NMR (125 MHz, CDCl₃) δ 173.3, 136.4, 133.0, 128.7, 128.3, 60.6, 46.7, 44.6, 39.1, 38.8, 32.5, 32.5, 25.4, 14.0. HRMS (EI) calc'd for [C₁₇H₂₀O₃+H]⁺ requires *m/z* 273.2486, found *m/z* 273.1475.

(1S^{*},5R^{*},6S^{*},7R^{*})-6-Benzoyl-7-(diethylcarbamoyl)bicyclo[3.2.0]heptane (Table 1, entry 12). Experiment 1: Prepared according to general procedure A using 102 mg (0.34 mmol) (*E,E*)-1-benzoyl-7-(diethylcarbamoyl)-1,6-heptadiene, 13 mg (0.017 mmol) Ru(bpy)₃Cl₂·6H₂O, 64 mg (0.68 mmol) LiBF₄, 118 μ L (0.68 mmol) *i*-Pr₂NEt, 4.5 mL acetonitrile, and an irradiation time of 30 min. Purified by chromatography using 3:1 hexanes:EtOAc to afford 74 mg (0.25 mmol,

73% yield, dr >10:1) of the cycloadduct as a white solid (m.p. 88–89 °C). Experiment 2: same quantities; isolated 76 mg (0.25 mmol, 75% yield, dr >10:1). IR (neat) 1677, 1614; ¹H NMR (500 MHz, CDCl₃) δ 7.77–7.75 (m, 2H, Ar**H**), 7.12–7.05 (m, 3H, Ar**H**), 3.77 (ddd, J = 6.8, 6.8, 6.8 Hz, 1H, C**H**, cyclobutane), 3.21 (dq, J = 13.8, 6.8 Hz, 1H, -NC**H**₂CH₃), 3.09–3.05 (m, 1H, -C**H**COAr (cyclobutane)), 2.97–2.93 (m, 1H-C**H**CONEt₂ (cyclobutane)), 2.88–2.84 (m, 1H, -C**H** (cyclobutane)), 2.71–2.60 (m, 2H, -NC**H**₂CH₃), 2.53–2.45 (m, 1H, -NC**H**₂CH₃), 1.70–1.63 (m, 2H, -C**H** (cyclopentane)), 1.54–1.50 (m, 1H, -C**H** (cyclopentane)), 1.48–1.31 (m, 3H, -C**H** (cyclopentane)), 0.67 (td, J = 7.1, 2.8 Hz, 3H, -CH₂C**H**₃), 0.60 (t, J = 7.0 Hz, 3H, -CH₂C**H**₃); ¹³C NMR (125 MHz, CDCl₃) δ 198.8, 171.6, 137.3, 132.2, 128.5, 127.8, 46.4, 44.8, 42.0, 40.3, 40.0, 38.5, 32.7, 32.7, 25.6, 14.9, 12.7. HRMS (EI) calc'd for [C₁₉H₂₅NO₂]⁺ requires *m*/z 299.1880, found *m*/z 299.1877.

 $(1S^*,5R^*,6S^*,7R^*)$ -6-Benzoyl-7-(ethoxycarbonyl)-7-methylbicyclo[3.2.0]heptane (Table 1, entry 13). Experiment 1: Prepared according to general procedure A using 101 mg (0.35 mmol) (*E,E*)-1-benzoyl-7-(ethoxycarbonyl)-7-methyl-1,6-heptadiene, 13 mg (0.017 mmol) Ru(bpy)₃Cl₂·6H₂O, 66 mg (0.70 mmol) LiBF₄, 123 µL (0.70 mmol) *i*-Pr₂NEt, 3.5 mL acetonitrile, and an irradiation time of 60 min. Purified by chromatography using 3:1 hexanes:EtOAc to

afford 85 mg (0.30 mmol, 84% yield, dr = 10:1) of the cycloadduct as a clear, colorless liquid. Experiment 2: 100 mg (0.35 mmol) (*E*,*E*)-1-benzoyl-7-ethoxycarbonyl-7-methyl-1,6-heptadiene, 13 mg (0.017 mmol) Ru(bpy)₃Cl₂·6H₂O, 65 mg (0.69 mmol) LiBF₄, 121 µL (0.69 mmol) *i*-Pr₂NEt, and 3.5 mL acetonitrile. Isolated 83 mg (0.29 mmol, 83% yield, dr = 10:1). IR (thin film) 1707, 1670, 1649; ¹H NMR (500 MHz, CDCl₃) δ 7.81–7.80 (m, 2H, Ar**H**), 7.53 (tt, J = 7.3, 1.4 Hz, 1H, Ar**H**), 7.45 (t, J = 7.6 Hz, 2H, Ar**H**), 3.95–3.89 (m, 2H, -OC**H**₂CH₃), 3.45 (ddd, J = 7.2, 7.2, 7.2 Hz, 1H, C**H** (cyclobutane)), 3.19 (dd, J = 7.0, 0.9 Hz, 1H, ArCOC**H**-), 2.94 (dd, J = 8.4, 8.4 Hz, 1H, C**H** (cyclobutane)), 1.98–176 (m, 3H, C**H** (cyclopentane)), 1.67 (dd, J = 12.9, 6.1 Hz, 1H, C**H** (cyclopentane)), 1.63–1.54 (m, 3H, C**H** (cyclopentane)), 1.42 (s, 3H, EtOC(O)CC**H**₃), 1.02 (t, J = 7.1 Hz, 3H, -CH₂C**H**₃); ¹³C NMR (125 MHz, CDCl₃) δ 200.1, 175.8, 137.7, 132.7, 128.6, 128.2, 60.8, 54.6, 47.7, 42.0, 37.9, 31.9, 27.2, 26.6, 19.1, 13.9. HRMS (EI) calc'd for [C₁₈H₂₂O₃]⁺ requires *m/z* 286.1564, found *m/z* 286.1554.

Ph Ph Ph

4-CIPh Me^{-1} Me^{-1}

h. Purified by chromatography using 8:1 hexanes:EtOAc to afford 119 mg (0.33 mmol, 93% yield) of the cycloadduct as a white solid (mp = 124–129 °C).. Experiment 2: 125 mg (0.69 mmol) enone, 12 mg (0.016 mmol) Ru(bpy)₃Cl₂·6H₂O, 66 mg (0.70 mmol) LiBF₄, 122 μ L (0.69 mmol) *i*-Pr₂NEt, and 3.3 mL acetonitrile. Isolated 116 mg (0.32 mmol, 93% yield). IR (neat) 1695, 1645; ¹H NMR (500 MHz, CDCl₃) δ 7.92 (dt, J = 9.2, 2.4 Hz, 4H, Ar**H**), 7.42 (dt, J = 9.2, 2.4 Hz, 4H, Ar**H**), 3.97–3.95 (m, 2H, C**H**), 2.15–2.11 (m, 2H C**H**), 1.20 (dt, J = 6.4 Hz, 6H, C**H**₃); ¹³C NMR (125 MHz, CDCl₃) δ 198.5, 140.0, 134.7, 130.2, 129.1, 77.6, 77.2, 76.8, 47.5, 39.6, 19.4.. HRMS (EI) calculated for [C₂₀H₁₈Cl₂O₃]⁺ requires *m*/z 360.0679, found *m*/z 360.0689.

Large-scale photocycloaddition (eq 1). A dry 50 mL Schlenk flask was charged with a solution of (E,E)-1,7-(4-methoxybenzoyl)-1,6-heptadiene (1.06 g 2.9 mmol, 1 equiv), Ru(bipy)₃Cl₂•6H₂O (109 mg, 0.145 mmol, 0.05 equiv), LiBF₄ (543 mg, 5.8 mmol, 2 equiv), and *i*-Pr₂NEt (101 mL, 5.8 mmol 2 equiv) in acetonitrile (29 mL, 0.1 M). The solution was then degassed using three freeze-pump-thaw cycles under nitrogen in the dark. The Schlenk flask was then placed in put into a window ledge with direct sunlight and stirred for 1 h. The solar intensity at the time of this experiment (9:00 am, July 8, 2008)¹⁰ was measured to be 3.9 watts/cm² using a Scientech Astral Calorimeter (model AC2500). Upon completion of the reaction, the solvent was removed by rotary evaporation, and the residue was purified by chromatography on a silica gel column (4:1 to 2:1 hexanes:EtOAc eluent) to afford 992 mg (2.72 mmol, 94% yield, dr = 10:1) of the cycloadduct.

IV. NOE assignments for new compounds

Table 1, entries 1, 3, 4, 7, and 10, are known compounds and have been previously characterized. Entry 15 was determined by X-ray crystallographic analysis (vide infra). NOEs for entries 12 and 14 were inconclusive; stereochemistry assigned by analogy.

V. References

- (1) Still, W. C.; Kahn, M.; Mitra, A. J. J. Org. Chem. 1978, 43, 2923–2925.
- (2) Hon, Y. S.; Chu, K. P.; Hong, P. C.; Lu, L. Syn. Commun. 1992, 22, 429–443.
- (3) Chandler, C. L.; List, B. J. Am. Chem. Soc. 2008, 130, 6737–6739.
- (4) Fernandez, M. V.; Durante-Lanes, P.; Lopez-Herrera, F. J. Tetrahedron 1990, 46 (23), 7911–7922.
- (5) Montgomery, J.; Savchenko, A. V.; Zhao, Y. J. Org. Chem. 1995, 60, 5699–5701.
- (6) Baik, T.-G.; Luis, A. L.; Wang, L.-C.; Krische, M. J. J. Am. Chem. Soc. 2001, 123, 6716–6717.
- (7) Wang, L.-C.; Jang, H.-Y.; Roh, Y.; Lynch, V.; Schultz, A. J.; Wang, X.; Krische, M. J. J. Am. Chem. Soc. 2002, 124, 9448–9453.
- (8) Yang, J.; Felton, G. A. N.; Bauld, N. L.; Krische, M. J. J. Am. Chem. Soc. 2004, 126, 1634–1635.
- (9) Aroyan, C. E.; Miller, S. J. J. Am. Chem. Soc. 2007, 129, 256–257.
- (10) The morning of July 8, 2008, was partly cloudy in Madison, WI.

VI. NMR spectra for new compounds

