Supporting information for:

Efficient Visible Light Photocatalysis of [2+2] Enone Cycloadditions

Michael A. Ischay, Mary E. Anzovino, Juana Du, and Tehshik P. Yoon*
Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin 53706-1396

I. General Information

A 275 W GE Sunlamp was used for all photochemical reactions depicted in Table 1, and the solvents for these reactions were degassed with three freeze-pump-thaw cycles. Acetonitrile, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, and i - $\mathrm{Pr}_{2} \mathrm{NEt}$ were purified by distillation from CaH_{2} immediately prior to use. Ru(bipy) $)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ was purchased from Strem and used without further purification. Chromatography was performed with Purasil $60 \AA$ silica gel ($230-400$ mesh) using the method of Still. ${ }^{1}$ All glassware was oven-dried for at least 1 h before use.

Diastereomer ratios for all compounds were determined by ${ }^{1} \mathrm{H}$ NMR analysis of the unpurified reaction mixtures. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR data for all previously uncharacterized compounds were obtained using Varian Inova500 and Varian Unity- 500 spectrometers and are referenced to TMS (0.00 ppm) and $\mathrm{CDCl}_{3}(77 \mathrm{ppm})$, respectively. IR spectral data were obtained using a Bruker Vector 22 spectrometer (thin film on NaCl or ATR). Melting points were obtained using a Mel-Temp II (Laboratory Devices, Inc., USA) melting point apparatus. Mass spectrometry was performed with a Micromass LCT (electrospray ionization, time-of-flight analyzer or electron impact.). These facilities are funded by the NSF (CHE-9974839, CHE-9304546) and the University of Wisconsin.

II. Synthesis of cyclization substrates

cis-1,3-Cyclopentane-($\boldsymbol{E}, \boldsymbol{E}$)-diacrylophenone: ${ }^{2}$ Norbornene ($368 \mathrm{mg}, 3.9 \mathrm{mmol}$) was placed in a 50 mL 3-neck round-bottomed flask with $13 \mathrm{~mL}(0.3 \mathrm{M}) \mathrm{CH}_{2} \mathrm{Cl}_{2}$. The flask was cooled to $-78^{\circ} \mathrm{C}$, and ozone was passed through the reaction mixture until a blue coloration persisted, at which point oxygen was bubbled through the solution to remove excess dissolved ozone. The ozonide was quenched with 3 mL of dimethylsulfide, and the reaction was slowly warmed to room temperature. (Benzoylmethylene)triphenylphosphorane ($3.41 \mathrm{~g}, 8.97 \mathrm{mmol}$) was added to the flask, and the reaction was stirred for 18 h . The solvent was removed by rotary evaporation, and the crude reaction mixture was purified by chromatography on a silica gel column ($8: 1$ to $4: 1$ hexanes:EtOAc) to afford $408 \mathrm{mg}\left(1.23 \mathrm{mmol}, 31 \%\right.$ yield) of the bisenone as a colorless oil. IR(neat) 2956, 1664, 1613, 1447, 1260; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.93(\mathrm{~d}, \mathrm{~J}=6.9 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{ArH}), 7.55(\mathrm{t}, \mathrm{J}=6.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}), 7.47(\mathrm{t}, \mathrm{J}=6.9 \mathrm{~Hz}, 4 \mathrm{H}$, $\operatorname{ArH}), 7.05(\mathrm{dd}, \mathrm{J}=14.7,7.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{HC}=\mathrm{CH}), 6.88(\mathrm{~d}, \mathrm{~J}=14.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{HC}=\mathrm{CH}), 2.89(\mathrm{~m}, 2 \mathrm{H},-\mathrm{CH}), 2.18(\mathrm{dt}, \mathrm{J}=$ $\left.12.8,6.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}\right), 2.03\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.69\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.48(\mathrm{q}, \mathrm{J}=9.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}) ;{ }^{13} \mathrm{C}$ NMR (125 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 190.9,152.5,137.9,132.7,128.5,128.5,124.7,43.4,39.4,31.5$. HRMS (EI) calc'd for $\left[\mathrm{C}_{23} \mathrm{H}_{22} \mathrm{O}_{2}\right]^{+}$ requires $m / z 330.1615$, found $m / z 330.1631$.

($\boldsymbol{E}, \boldsymbol{E}$)-1,7-Dibenzoyl-4,4-dimethyl-1,6-heptadiene: 3,3-Dimethylglutardialdehyde ${ }^{3}$ was dissolved in 25 mL of dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and treated with 10 g (benzoylmethylene)triphenylphosphorane (26 mmol). The reaction was stirred at room temperature for 80 h . The solvent was then removed by rotary evaporation, and the residue was purified by chromatography on a silica gel column (6:1 to $4: 1$ hexanes:EtOAc) to afford $547 \mathrm{mg}(1.65 \mathrm{mmol}$, 22% yield) of the bisenone as a colorless oil. IR(neat) $2958,1669,1618,1448,1282,1221 ;{ }^{1} \mathrm{H}$ NMR (500 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.94(\mathrm{~d}, \mathrm{~J}=7.7 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{ArH}), 7.57(\mathrm{t}, \mathrm{J}=7.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}), 7.47(\mathrm{t}, \mathrm{J}=7.7 \mathrm{~Hz}, 4 \mathrm{H}, \operatorname{ArH}), 7.12(\mathrm{dt}, \mathrm{J}=$ $15.5,8.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{HC}=\mathrm{CH}), 6.93(\mathrm{~d}, \mathrm{~J}=15.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{HC=CH}), 2.30\left(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 4 \mathrm{H},-\mathrm{CH}_{2}\right), 1.06\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{CH}_{3}\right) ;$ ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 190.3,145.9,137.8,132.8,128.6,128.5,128.4,45.4,35.1,27.3$. HRMS (ESI ${ }^{+}$) calc'd for $\left[\mathrm{C}_{23} \mathrm{H}_{24} \mathrm{O}_{2}+\mathrm{H}\right]^{+}$requires $\mathrm{m} / \mathrm{z} 333.1850$, found $\mathrm{m} / \mathrm{z} 333.1834$.

($\boldsymbol{E}, \boldsymbol{E}$)-1-Benzoyl-7-(diethylcarbamoyl)-1,6-heptadiene: A dry 1.5 dram vial was charged with 6-benzoyl-5-hexenal ${ }^{5}$ ($245 \quad \mathrm{mg}, \quad 1.2 \quad \mathrm{mmol}$), [(diethylcarbamoyl)methyl]triphenylphosphonium chloride ${ }^{4}(591 \mathrm{mg}, 1.4 \mathrm{mmol})$, and 1.7 $\mathrm{mL} \mathrm{CHCl} l_{3} 1.7 \mathrm{~mL}$. Sodium hydroxide (1.0 M in water, $1.7 \mathrm{~mL}, 1.7 \mathrm{mmol}$) was added dropwise to the stirring solution. After 20 min , the organic layer was separated, dried over MgSO_{4}, and concentrated by rotary evaporation. The residue was purified by chromatography ($2: 1 \mathrm{EtOAc}: \mathrm{hexanes}$ eluent) to afford 238 mg ($0.79 \mathrm{mmol}, 66 \%$ yield) of the diene as a clear, colorless liquid. IR (thin film) 1727, 1676; ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.94-7.92(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH}), 7.58-7.54(\mathrm{~m}, 1 \mathrm{H}, \mathrm{ArH}), 7.47(\mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}), 7.05(\mathrm{dt}, \mathrm{J}=$ $15.5,6.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{HC}=\mathbf{C H}), 6.94-6.88(\mathrm{~m}, 2 \mathrm{H}, \mathrm{HC}=\mathrm{CH}), 6.23(\mathrm{dt}, \mathrm{J}=15.2,1.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{HC}=\mathrm{CH}), 3.43(\mathrm{q}, \mathrm{J}=7.1$ $\mathrm{Hz}, 2 \mathrm{H}, \mathrm{N}-\mathrm{CH}_{2} \mathrm{CH}_{3}$), $3.37\left(\mathrm{q}, \mathrm{J}=7.0 \mathrm{~Hz}, 2 \mathrm{H},-\mathrm{NCH}_{2} \mathrm{CH}_{3}\right), 2.37(\mathrm{q}, \mathrm{J}=7.2 \mathrm{~Hz}, 2 \mathrm{H},=\mathrm{CHCH}), 2.29(\mathrm{q}, \mathrm{J}=7.3 \mathrm{~Hz}$, $2 \mathrm{H},=\mathrm{CHCH}_{2}$), 1.72 (quintet, $\mathrm{J}=7.5 \mathrm{~Hz}, 2 \mathrm{H},-\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}-$), $1.19\left(\mathrm{t}, \mathrm{J}=7.0 \mathrm{~Hz}, 3 \mathrm{H},-\mathrm{NCH}_{2} \mathrm{CH}_{3}\right), 1.14(\mathrm{t}, \mathrm{J}=284.1$ $\mathrm{Hz}, 3 \mathrm{H},-\mathrm{NCH}_{2} \mathrm{CH}_{3}$); ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 190.9,165.8,149.1,145.0,138.1,132.9,128.7,128.7,126.5$, $121.4,42.3,41.0,32.3,32.0,27.2,15.1,13.4$. HRMS (EI) calc'd for $\left[\mathrm{C}_{19} \mathrm{H}_{25} \mathrm{NO}_{2}\right]^{+}$requires $\mathrm{m} / \mathrm{z} 299.1880$, found m / z 299.1882 .

($\boldsymbol{E}, \boldsymbol{E}$)-1-Benzoyl-7-(ethoxycarbonyl)-7-methyl-1,6-heptadiene: Ethyl 2(triphenylphosphoranylidene)propanoate ($773 \mathrm{mg}, 2.1 \mathrm{mmol}$) was dissolved in 6 mL $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ in a dry 50 mL round bottom flask. To the stirring solution was added 6-benzoyl-5-hexenal ($431 \mathrm{mg}, 2.1 \mathrm{mmol}$) in $7 \mathrm{~mL} \mathrm{CH} \mathrm{Cl}_{2}$. After 1.5 h , the solution was concentrated by rotary evaporation, and the residue was purified by chromatography ($3: 1$ hexanes:EtOAc eluent) to afford 349 $\mathrm{mg}\left(1.2 \mathrm{mmol}, 57 \%\right.$ yield) of the diene as a clear, colorless liquid. IR (thin film) $1707,1670,1649 ;{ }^{1} \mathrm{H}$ NMR (500 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.94-7.92(\mathrm{~m}, 2 \mathrm{H}), 7.55(\mathrm{tt}, \mathrm{J}=7.4,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.48-7.45(\mathrm{~m}, 2 \mathrm{H}), 7.05(\mathrm{dt}, \mathrm{J}=15.2,6.8 \mathrm{~Hz}, 1$ H), $6.91(\mathrm{dt}, \mathrm{J}=15.3,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.76(\mathrm{td}, \mathrm{J}=5.5,3.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.19(\mathrm{q}, \mathrm{J}=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.36(\mathrm{q}, \mathrm{J}=7.3 \mathrm{~Hz}, 2$ H), $2.25(\mathrm{q}, \mathrm{J}=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.84(\mathrm{~d}, \mathrm{~J}=1.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.70$ (quintet, $\mathrm{J}=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.30(\mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 190.7,168.2,148.9,141.1,138.0,132.8,128.6,128.6,126.4,60.6,32.4,28.2,27.2$, 14.4, 12.6. HRMS (EI) calculated for $\left[\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{O}_{3}\right]^{+}$requires $\mathrm{m} / \mathrm{z} 286.1564$, found $\mathrm{m} / \mathrm{z} 286.1575$.

III. Photocycloadditions

General procedure A for cyclization of bisenone substrates (Table 1, entries 1-13): A dry 25 mL Schlenk tube was charged with a solution of the enone (1 equiv), Ru (bipy) $)_{3} \mathrm{Cl}_{2} \bullet 6 \mathrm{H}_{2} \mathrm{O}$ (0.05 equiv), LiBF_{4} (2 equiv), and i - $\mathrm{Pr}_{2} \mathrm{NEt}$ (2 equiv) in acetonitrile (0.1 M). The solution was then degassed using three freeze-pump-thaw cycles under nitrogen in the dark. The Schlenk tube was then placed in a water bath and irradiated using a floodlight placed at a distance of 20 cm . Upon completion of the reaction, the solvent was removed by rotary evaporation, and the residue was purified by chromatography on a silica gel column.

General procedure B for intermolecular [2+2] cycloadditions (Table 1, entries 14 and 15): These experiments were run as above, except with the following molar ratios: 2 equiv enone, 0.05 equiv $\mathrm{Ru}(\mathrm{bipy})_{3} \mathrm{Cl}_{2}, 2$ equiv LiBF_{4}, and 2 equiv $i-\mathrm{Pr}_{2} \mathrm{NEt}$ in acetonitrile (0.2 M with respect to enone).

($\mathbf{1 R , 5 S , 6 R , 7 S) - 6 , 7 - D i b e n z o y l b i c y c l o [3 . 2 . 0}$]heptane (Table 1, entry 1). Experiment 1: Prepared according to general procedure \mathbf{A} using $104.8 \mathrm{mg}(0.34 \mathrm{mmol})(E, E)$-1,7-dibenzoyl-1,6heptadiene, ${ }^{5} 14.4 \mathrm{mg}(0.019 \mathrm{mmol}) \mathrm{Ru}(\mathrm{bpy})_{3} \mathrm{Cl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}, 72 \mathrm{mg}(0.77 \mathrm{mmol}) \mathrm{LiBF}_{4}, 134 \mu \mathrm{~L}(0.77$ $\mathrm{mmol}) ~ i-\mathrm{Pr}_{2} \mathrm{NEt}, 3.8 \mathrm{~mL}$ acetonitrile, and an irradiation time of 50 min . Purified by chromatography using a solvent gradient ($5: 1-2: 1$ hexanes:EtOAc) to afford $98 \mathrm{mg}(0.35 \mathrm{mmol}$, 90% yield, $\mathrm{dr}=>10: 1$) of the cycloadduct. Experiment $2: 55 \mathrm{mg}(0.19 \mathrm{mmol})$ bisenone, $7.1 \mathrm{mg}(0.0095 \mathrm{mmol})$ $\mathrm{Ru}(\text { bpy })_{3} \mathrm{Cl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}, 36 \mathrm{mg}(0.38 \mathrm{mmol}) \mathrm{LiBF}_{4}, 66 \mu \mathrm{~L}(0.38 \mathrm{mmol}) i-\mathrm{Pr}_{2} \mathrm{NEt}$, and 1.9 mL acetonitrile. Isolated 48 mg $(0.17 \mathrm{mmol}, 87 \%$ yield, dr: $>10: 1)$. All spectral data were in complete agreement with previously reported values. ${ }^{6}$

($1 R, 5 S, 6 R, 7 S)-6,7-\operatorname{Di}(4-m e t h o x y b e n z o y l) b i c y c l o[3.2 .0] h e p t a n e \quad$ (Table 1, entry 2). Experiment 1: Prepared according to general procedure A using $113 \mathrm{mg}(0.31 \mathrm{mmol})(E, E)$ -1,7-(4-methoxybenzoyl)-1,6-heptadiene, ${ }^{7} 12 \mathrm{mg}(0.016 \mathrm{mmol}) \mathrm{Ru}(\mathrm{bpy})_{3} \mathrm{Cl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}, 58 \mathrm{mg}(0.62$ $\mathrm{mmol}) \mathrm{LiBF}_{4}, 108 \mu \mathrm{~L}(0.62 \mathrm{mmol}) ~ i-\mathrm{Pr}_{2} \mathrm{NEt}, 3.1 \mathrm{~mL}$ acetonitrile, and an irradiation time of 20 min. Purified by chromatography using a solvent gradent (4:1 to $2: 1$ hexanes:EtOAc) to afford
$111 \mathrm{mg}(0.304 \mathrm{mmol}, 98 \%$ yield, $\mathrm{dr}=10: 1)$ of the cycloadduct as a white solid ($\mathrm{mp}=145-147{ }^{\circ} \mathrm{C}$). Experiment 2 : $107.3 \mathrm{mg}(0.29 \mathrm{mmol})$ of bisenone, $11 \mathrm{mg}(0.015 \mathrm{mmol})$ of $\mathrm{Ru}(\mathrm{bpy})_{3} \mathrm{Cl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}, 54 \mathrm{mg}(0.58 \mathrm{mmol})$ of $\mathrm{LiBF}_{4}, 101$ $\mu \mathrm{L}(0.58 \mathrm{mmol})$ of $i-\mathrm{Pr}_{2} \mathrm{NEt}$, and 1.9 mL of acetonitrile. Isolated $104 \mathrm{mg}(0.285 \mathrm{mmol}, 97 \%$ yield, $\mathrm{dr}=10: 1)$. IR(neat) 2972, 1740, 1672, 1602, 1358, 1239; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.74(\mathrm{~d}, \mathrm{~J}=9.0 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{ArH}), 6.83(\mathrm{~d}$, $\mathrm{J}=9.0 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{ArH}), 3.81(\mathrm{~s}, 8 \mathrm{H},-\mathrm{OMe},-\mathrm{CHCOAr}(\mathrm{cyclobutane})$), $3.20(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}$ (cyclobutane)), $2.02(\mathrm{~m}, 2 \mathrm{H}$, $\mathbf{C H}$ (cyclopentane)), 1.83 (ddd, J = 13.5, 5.3, 1.9 Hz, 2H, CH (cyclopentane)), $1.69\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}\right.$ (cyclopentane)); ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 197.3,162.9,129.9,129.6,113.6,55.3,48.1,39.1,32.5,25.3$. HRMS (ESI ${ }^{+}$) calculated for $\left[\mathrm{C}_{23} \mathrm{H}_{24} \mathrm{O}_{4} \mathrm{H}\right]^{+}$requires $m / z 365.1748$, found $m / z 365.1759$.

 Experiment 1: Prepared according to general procedure A using $113 \mathrm{mg}(0.30 \mathrm{mmol})$ of (E, E)-1,7-(4-chlorobenzoyl)-1,6-heptadiene, ${ }^{8} \quad 11 \mathrm{mg}(0.015 \mathrm{mmol})$ of $\mathrm{Ru}(\mathrm{bpy}))_{3} \mathrm{Cl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}, 57 \mathrm{mg}(0.61 \mathrm{mmol})$ of $\mathrm{LiBF}_{4}, 106 \mu \mathrm{~L}(0.61 \mathrm{mmol})$ of $i-\mathrm{Pr}_{2} \mathrm{NEt}$, 3.0 mL acetonitrile, and an irradiation time of 10 min . Purified by chromatography using a solvent gradent ($10: 1$ to $7: 1$ hexanes:EtOAc) to afford $111 \mathrm{mg}(0.30 \mathrm{mmol}, 98 \%$ yield, $\mathrm{dr}>10: 1$) of the cycloadduct. Experiment $2: 111 \mathrm{mg}(0.30 \mathrm{mmol}, 98 \%$ yield, $\mathrm{dr}>10: 1)$. Experiment 2: $63.9 \mathrm{mg}(0.17 \mathrm{mmol})$ of bisenone, $6.4 \mathrm{mg}(0.009 \mathrm{mmol})$ of $\mathrm{Ru}(\mathrm{bpy})_{3} \mathrm{Cl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}, 32 \mathrm{mg}(0.34 \mathrm{mmol})$ of $\mathrm{LiBF}_{4}, 59 \mu \mathrm{~L}(0.34 \mathrm{mmol})$ of DIEA, and 1.7 mL of MeCN . Isolated $60 \mathrm{mg}(0.16 \mathrm{mmol}, 94 \%$ yield, $\mathrm{dr}>10: 1)$. All spectral data were in complete agreement with previously reported values. ${ }^{8}$

($\mathbf{1 R , 5 S , 6 R , 7 S) - 6 , 7 - D i (2 - f u r o y l) b i c y c l o [3 . 2 . 0] h e p t a n e ~ (T a b l e ~ 1 , ~ e n t r y ~ 4) . ~ E x p e r i m e n t ~ 1 : ~}$ Prepared according to general procedure \mathbf{A} using $109 \mathrm{mg}(0.38 \mathrm{mmol})(E, E)$-1,7-(2-furoyl)1,6 -heptadiene, ${ }^{7} 14.4 \mathrm{mg}(0.019 \mathrm{mmol}) \mathrm{Ru}(\text { bpy })_{3} \mathrm{Cl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}, 72 \mathrm{mg}\left(0.77 \mathrm{mmol}^{2}\right) \mathrm{LiBF}_{4}, 134$ $\mu \mathrm{L}(0.77 \mathrm{mmol}) i-\mathrm{Pr}_{2} \mathrm{NEt}, 3.8 \mathrm{~mL}$ acetonitrile, and an irradiation time of 30 min . Purified by chromatography using a solvent gradient ($5: 1$ to $2: 1$ hexanes:EtOAc) to afford $98 \mathrm{mg}(0.35$ $\mathrm{mmol}, 90 \%$ yield, $\mathrm{dr}=>10: 1$) of the cycloadduct. Experiment 2: $55 \mathrm{mg}(0.19 \mathrm{mmol})$ bisenone, $7.1 \mathrm{mg}(0.0095$ mmol) $\mathrm{Ru}(\mathrm{bpy})_{3} \mathrm{Cl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}, 36 \mathrm{mg}(0.38 \mathrm{mmol}) \mathrm{LiBF}_{4}, 66 \mu \mathrm{~L}(0.38 \mathrm{mmol}) i-\mathrm{Pr}_{2} \mathrm{NEt}$, and 1.9 mL acetonitrile. Isolated $48 \mathrm{mg}(0.17 \mathrm{mmol}, 87 \%$ yield, dr: $>10: 1)$. All spectral data were in complete agreement with previously reported values. ${ }^{6}$

($1 R, 5 S, 6 R, 7 S$)-6,7-Dibenzoyl-3-oxabicyclo[3.2.0]heptane (Table 1, entry 7). Experiment 1: Prepared according to general procedure \mathbf{A} using $115 \mathrm{mg}(0.38 \mathrm{mmol})(E, E)$-1,7-dibenzoyl-4-oxa1,6 -heptadiene, ${ }^{6} 14 \mathrm{mg}(0.019 \mathrm{mmol}) \mathrm{Ru}(\mathrm{bpy})_{3} \mathrm{Cl}_{2} 6 \mathrm{H}_{2} \mathrm{O} .71 .3 \mathrm{mg}(0.76 \mathrm{mmol}) \mathrm{LiBF}_{4}, 132 \mu \mathrm{~L}$ (0.76 mmol) $i-\mathrm{Pr}_{2} \mathrm{NEt}, 3.8 \mathrm{~mL}$ acetonitrile, and an irradiation time of 10 min . Purified by chromatography using a solvent gradient (5:1 to $2: 1$ hexanes:EtOAc) to afford $106 \mathrm{mg}(0.346$ $\mathrm{mmol}, 92 \%$ yield, $\mathrm{dr}=5: 1$) of the cycloadduct. Experiment 2: $100 \mathrm{mg}(0.33 \mathrm{mmol})$ bisenone, $13 \mathrm{mg}(0.017 \mathrm{mmol})$ $\mathrm{Ru}(\text { bpy })_{3} \mathrm{Cl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}, 56 \mathrm{mg}(0.66 \mathrm{mmol}) \mathrm{LiBF}_{4}, 115 \mu \mathrm{~L} i-\mathrm{Pr}_{2} \mathrm{NEt}$, and 3.3 mL acetonitrile. Isolated $88 \mathrm{mg}(0.29$ $\mathrm{mmol}, 88 \%$ yield, $\mathrm{dr}=5: 1$). All spectral data were in complete agreement with previously reported values. ${ }^{6}$

(1R,5S,6R,7S)-6,7-Dibenzoyl-3,3-dimethylbicyclo[3.2.0]heptane (Table 1, entry 8). Experiment 1: Prepared according to general procedure \mathbf{A} using $76 \mathrm{mg}(0.23 \mathrm{mmol})(E, E)-1,7$-(benzoyl)-3,3-dimethyl-1,6-heptadiene, $9 \mathrm{mg}(0.012 \mathrm{mmol}) \mathrm{Ru}(\mathrm{bpy})_{3} \mathrm{Cl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}, 43 \mathrm{mg}(0.46 \mathrm{mmol}) \mathrm{LiBF}_{4}, 80$ $\mu \mathrm{L}(0.46 \mathrm{mmol}) ~ i-\mathrm{Pr}_{2} \mathrm{NEt}, 2.3 \mathrm{~mL}$ acetonitrile, and an irradiation time of 10 min . Purified by chromatography using a solvent gradient ($10: 1$ to $8: 1$ hexanes:EtOAc) to afford $51 \mathrm{mg}(0.153$ $\mathrm{mmol}, 67 \%$ yield, $\mathrm{dr}=5: 1$) of the cycloadduct as a white solid $\left(\mathrm{mp}=172-175^{\circ} \mathrm{C}\right)$. Experiment 2: $71.8 \mathrm{mg}(0.22$ mmol) bisenone, $8.2 \mathrm{mg}(0.011 \mathrm{mmol}) \mathrm{Ru}(\mathrm{bpy})_{3} \mathrm{Cl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}, 41 \mathrm{mg}(0.44 \mathrm{mmol}) \mathrm{LiBF}_{4}, 77 \mu \mathrm{~L}(0.44 \mathrm{mmol}) i-\mathrm{Pr}_{2} \mathrm{NEt}$, and 2.2 mL acetonitrile. Isolated $49 \mathrm{mg}(0.147 \mathrm{mmol}, 68 \%$ yield, $\mathrm{dr}=3: 1)$. $\mathrm{IR}(\mathrm{neat}) 2946,1680,1220,1019 ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.79(\mathrm{~d}, \mathrm{~J}=6.9 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{ArH}), 7.48(\mathrm{t}, \mathrm{J}=6.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}), 7.38(\mathrm{t}, \mathrm{J}=6.9 \mathrm{~Hz}, 3 \mathrm{H}$, $\mathrm{ArH}), 4.11$ ($\mathrm{m}, 2 \mathrm{H},-\mathrm{CHCOAr}$ (cyclobutane)), 3.21 ($\mathrm{m}, 2 \mathrm{H}, \mathbf{C H}$ (cyclobutane)), 2.01 ($\mathrm{m}, 2 \mathrm{H}, \mathrm{CH}$ (cyclopentane)), 1.70 (dd, J = 12.7, $5.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}$ (cyclopentane)), $1.60\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.27\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR (125 MHz , CDCl_{3}) $\delta 199.3,136.6,132.8,128.7,128.1,51.5,48.7,44.9,40.0,29.0,28.2$. HRMS (ESI ${ }^{+}$) calculated for $\left[\mathrm{C}_{23} \mathrm{H}_{24} \mathrm{O}_{4} \mathrm{H}\right]^{+}$requires $m / z 333.2850$, found $\mathrm{m} / \mathrm{z} 333.1853$.

$(1 R, 2 S, 3 S, 4 R, 5 R, 6 S)-3,4-$ Dibenzoyltricyclo[4.2.1.0 $\left.{ }^{2,5}\right]$ nonane (Table 1, entry 9). Experiment 1 : Prepared according to general procedure \mathbf{A} using $61 \mathrm{mg}(0.18 \mathrm{mmol})$ cis-1,3-cyclopentane- (E, E) diacrylophenone, $6.7 \mathrm{mg}(0.012 \mathrm{mmol}) \mathrm{Ru}(\mathrm{bpy})_{3} \mathrm{Cl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}, 34 \mathrm{mg}(0.36 \mathrm{mmol}) \mathrm{LiBF}_{4}, 63 \mu \mathrm{~L}$ (0.36 mmol) $i-\mathrm{Pr}_{2} \mathrm{NEt}, 1.8 \mathrm{~mL}$ acetonitrile, and an irradiation time of 2 h . Purified by chromatography using 7:1 hexanes:EtOAc as eluent to afford $32 \mathrm{mg}(0.097 \mathrm{mmol}, 52 \%$ yield, dr $=5: 1)$ of the cycloadduct as a white solid $\left(\mathrm{mp}=163-166^{\circ} \mathrm{C}\right)$. Experiment 2: $73.5 \mathrm{mg}(0.22 \mathrm{mmol})$ bisenone, 8.23 mg $(0.011 \mathrm{mmol}) \mathrm{Ru}(\mathrm{bpy})_{3} \mathrm{Cl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}, 41 \mathrm{mg}(0.44 \mathrm{mmol}) \mathrm{LiBF}_{4}, 77 \mu \mathrm{~L}(0.44 \mathrm{mmol}) i-\mathrm{Pr}_{2} \mathrm{NEt}$, and 2.2 mL acetonitrile. Isolated $41 \mathrm{mg}(0.12 \mathrm{mmol}, 56 \%$ yield, $\mathrm{dr}=7: 1)$. $\operatorname{IR}($ neat $) 2959,1678,1596,1448.1348,1222 ;{ }^{1} \mathrm{H}$ NMR (500 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.76(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{ArH}), 7.45(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}), 7.36(\mathrm{t}, \mathrm{J}=6.9 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{ArH}), 3.91(\mathrm{~s}$, $2 \mathrm{H},-\mathrm{CHCOAr}($ cyclobutane)), 2.73 ($\mathrm{s}, 2 \mathrm{H}, \mathrm{CH}$ (cyclobutane)), 2.09 (d, J=10.9 Hz, 1H, CH (cyclopentane)), 1.55 (m, $2 \mathrm{H}, \mathrm{CH}$ (cyclopentane)), 1.51 (d, J=11.0 Hz, $1 \mathrm{H}, \mathbf{C H}$ (cyclopentane)), 1.14 (dd, J=7.7, $2.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}$ (cyclopentane)); ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 198.1,136.4,132.5,128.5,127.8,47.2,42.4,38.6,33.2,27.3,0.0$. HRMS (EI) calculated for $\left[\mathrm{C}_{23} \mathrm{H}_{22} \mathrm{O}_{2}\right]^{+}$requires $m / z 330.1615$, found $\mathrm{m} / \mathrm{z} 330.1620$.

$\left(1 S^{*}, 5 R^{*}, 6 S^{*}, 7 R^{*}\right)$-6-Acyl-7-benzoylbicyclo[3.2.0]heptane (Table 1, entry 10). Experiment 1 : Prepared according to general procedure \mathbf{A} using $107 \mathrm{mg}(0.44 \mathrm{mmol})(E, E)$-7-acetyl-1-benzoyl1,6 -heptadiene, ${ }^{7} 16 \mathrm{mg}(0.022 \mathrm{mmol}) \mathrm{Ru}(\mathrm{bpy})_{3} \mathrm{Cl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}, 83 \mathrm{mg}(0.88 \mathrm{mmol}) \mathrm{LiBF}_{4}, 153 \mu \mathrm{~L}(0.88$ $\mathrm{mmol}) ~ i-\mathrm{Pr}_{2} \mathrm{NEt}, 4.4 \mathrm{~mL}$ acetonitrile, and an irradiation time of 75 min . Purified by chromatography using a solvent gradient ($4: 1$ to $3: 1$ hexanes: EtOAc) to afford $88 \mathrm{mg}(0.36 \mathrm{mmol}$, 82.5% yield, $\mathrm{dr}>10: 1$) of the cycloadduct. Experiment 2: $78.3 \mathrm{mg}(0.32 \mathrm{mmol})$ bisenone, $12 \mathrm{mg}(0.016 \mathrm{mmol})$ $\mathrm{Ru}(\mathrm{bpy})_{3} \mathrm{Cl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}, 60 \mathrm{mg}(0.64 \mathrm{mmol}) \mathrm{LiBF}_{4}, 112 \mu \mathrm{~L} i-\mathrm{Pr}_{2} \mathrm{NEt}$, and 3.2 mL acetonitrile. Isolated $68 \mathrm{mg}(0.28$ $\mathrm{mmol}, 86.8 \%$ yield, $\mathrm{dr}>10: 1$). All spectral data were in complete agreement with previously reported values. ${ }^{7}$

($1 \mathrm{~S}^{*}, 5 \mathrm{R}^{*}, \mathbf{6 S}$,, $7 \mathrm{R}^{*}$)-6-Benzoyl-7-(ethoxycarbonyl)bicyclo[3.2.0]heptane (Table 1, entry 11). Experiment 1: Prepared according to general procedure A using $108 \mathrm{mg}(0.40 \mathrm{mmol})(E, E)-1-$ benzoyl-7-(ethoxycarbonyl)-1,6-heptadiene, ${ }^{9} 15 \mathrm{mg}(0.020 \mathrm{mmol}) \mathrm{Ru}(\mathrm{bpy})_{3} \mathrm{Cl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}, 74 \mathrm{mg}$ $(0.79 \mathrm{mmol}) \mathrm{LiBF}_{4}, 141 \mu \mathrm{~L}(0.81 \mathrm{mmol}) i-\mathrm{Pr}_{2} \mathrm{NEt}, 4.0 \mathrm{~mL}$ acetonitrile, and an irradiation time of 45 min . Purified by chromatography using $3: 1$ hexanes: EtOAc to afford $97 \mathrm{mg}(0.36 \mathrm{mmol}$, 90% yield, $\mathrm{dr}>10: 1$) of the cycloadduct as a white solid (m.p. $45-46^{\circ} \mathrm{C}$). Experiment 2: $102 \mathrm{mg}(0.37 \mathrm{mmol})$ diene, $14 \mathrm{mg}(0.019 \mathrm{mmol}) \mathrm{Ru}(\mathrm{bpy})_{3} \mathrm{Cl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}, 70 \mathrm{mg}(0.75 \mathrm{mmol}) \mathrm{LiBF}_{4}, 133 \mu \mathrm{~L}(0.75 \mathrm{mmol}) i-\mathrm{Pr}_{2} \mathrm{NEt}$, and 3.7 mL acetonitrile. Isolated $87 \mathrm{mg}(0.32 \mathrm{mmol}, 85 \%$ yield, $\mathrm{dr}>10: 1)$ of the cycloadduct. IR (neat) 1722,$1671 ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.85-7.83(\mathrm{~m}, 2 \mathrm{H}), 7.52(\mathrm{tt}, \mathrm{J}=7.3,1.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 7.43(\mathrm{t}, \mathrm{J}=7.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH})$, $3.87(\mathrm{qd}, \mathrm{J}=7.2,1.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}), 3.69(\mathrm{dd}, \mathrm{J}=10.1,5.2 \mathrm{~Hz}, 1 \mathrm{H}, \operatorname{ArCOCH}), 3.22(\mathrm{ddd}, \mathrm{J}=6.7,6.7,6.7 \mathrm{~Hz}, 1 \mathrm{H}$, CH (cyclobutane)), 3.07 (ddd, J = 6.7, $6.7,6.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathbf{C H}$ (cyclobutane)), 3.01 (dd, J = 10.1, $5.2 \mathrm{~Hz}, 1 \mathrm{H}$, $\left.\mathrm{CHCO}_{2} \mathrm{Et}\right), 1.98-1.86(\mathrm{~m}, 2 \mathrm{H}, \mathbf{C H}$ (cyclopentane)), 1.75-1.71 (m, 2H), 1.68-1.57 (m, $2 \mathrm{H},-\mathrm{CH}$ (cyclopentane)), $0.97\left(\mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, 3 \mathrm{H},-\mathrm{CH}_{2} \mathrm{CH}_{3}\right)$; ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 173.3,136.4,133.0,128.7,128.3,60.6,46.7$, 44.6, 39.1, 38.8, 32.5, 32.5, 25.4, 14.0. HRMS (EI) calc'd for $\left[\mathrm{C}_{17} \mathrm{H}_{20} \mathrm{O}_{3}+\mathrm{H}\right]^{+}$requires $\mathrm{m} / \mathrm{z} 273.2486$, found m / z 273.1475 .

($1 S^{*}, 5 R^{*}, 6 S^{*}, 7 R^{*}$)-6-Benzoyl-7-(diethylcarbamoyl)bicyclo[3.2.0]heptane (Table 1, entry 12). Experiment 1: Prepared according to general procedure A using $102 \mathrm{mg}(0.34 \mathrm{mmol})(E, E)-1-$ benzoyl-7-(diethylcarbamoyl)-1,6-heptadiene, 13 mg (0.017 mmol) $\mathrm{Ru}(\mathrm{bpy})_{3} \mathrm{Cl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}, 64 \mathrm{mg}$ $(0.68 \mathrm{mmol}) \mathrm{LiBF}_{4}, 118 \mu \mathrm{~L}(0.68 \mathrm{mmol}) i-\mathrm{Pr}_{2} \mathrm{NEt}, 4.5 \mathrm{~mL}$ acetonitrile, and an irradiation time of 30 min . Purified by chromatography using $3: 1$ hexanes:EtOAc to afford $74 \mathrm{mg}(0.25 \mathrm{mmol}$, 73% yield, $\mathrm{dr}>10: 1$) of the cycloadduct as a white solid (m.p. $88-89^{\circ} \mathrm{C}$). Experiment 2: same quantities; isolated $76 \mathrm{mg}(0.25 \mathrm{mmol}, 75 \%$ yield, $\mathrm{dr}>10: 1)$. IR (neat) 1677,$1614 ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.77-7.75(\mathrm{~m}, 2 \mathrm{H}$, ArH), 7.12-7.05 (m, 3H, ArH), 3.77 (ddd, J = 6.8, $6.8,6.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}$, cyclobutane), 3.21 (dq, J = 13.8, 6.8 Hz , $1 \mathrm{H},-\mathrm{NCH}_{2} \mathrm{CH}_{3}$), 3.09-3.05 (m, 1H, -CHCOAr (cyclobutane)), 2.97-2.93 (m, 1H-CHCONEt ${ }_{2}$ (cyclobutane)), 2.88$2.84\left(\mathrm{~m}, 1 \mathrm{H},-\mathrm{CH}\right.$ (cyclobutane)), 2.71-2.60(m,2H, $\left.-\mathrm{NCH}_{2} \mathrm{CH}_{3}\right), 2.53-2.45\left(\mathrm{~m}, 1 \mathrm{H},-\mathrm{NCH}_{2} \mathrm{CH}_{3}\right), 1.70-1.63(\mathrm{~m}$, $2 \mathrm{H},-\mathrm{CH}$ (cyclopentane)), 1.54-1.50 (m, 1H, -CH (cyclopentane)), $1.48-1.31$ (m,3H,-CH (cyclopentane)), 0.67 (td, $\left.\mathrm{J}=7.1,2.8 \mathrm{~Hz}, 3 \mathrm{H},-\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 0.60\left(\mathrm{t}, \mathrm{J}=7.0 \mathrm{~Hz}, 3 \mathrm{H},-\mathrm{CH}_{2} \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 198.8, 171.6, $137.3,132.2,128.5,127.8,46.4,44.8,42.0,40.3,40.0,38.5,32.7,32.7,25.6,14.9,12.7$. HRMS (EI) calc'd for $\left[\mathrm{C}_{19} \mathrm{H}_{25} \mathrm{NO}_{2}\right]^{+}$requires m / z 299.1880, found $\mathrm{m} / \mathrm{z} 299.1877$.

(1S* ${ }^{*}$ 5R ${ }^{*}, 6 S^{*}, 7 \mathrm{R}^{*}$)-6-Benzoyl-7-(ethoxycarbonyl)-7-methylbicyclo[3.2.0]heptane (Table 1, entry 13). Experiment 1 : Prepared according to general procedure A using $101 \mathrm{mg}(0.35 \mathrm{mmol})$ (E, E)-1-benzoyl-7-(ethoxycarbonyl)-7-methyl-1,6-heptadiene, $13 \mathrm{mg} \quad(0.017 \mathrm{mmol}$) $\mathrm{Ru}(\text { bpy })_{3} \mathrm{Cl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}, 66 \mathrm{mg}(0.70 \mathrm{mmol}) \mathrm{LiBF}_{4}, 123 \mu \mathrm{~L}(0.70 \mathrm{mmol}) i-\mathrm{Pr}_{2} \mathrm{NEt}, 3.5 \mathrm{~mL}$ acetonitrile, and an irradiation time of 60 min . Purified by chromatography using $3: 1$ hexanes:EtOAc to afford $85 \mathrm{mg}(0.30 \mathrm{mmol}, 84 \%$ yield, $\mathrm{dr}=10: 1)$ of the cycloadduct as a clear, colorless liquid. Experiment 2: 100 $\mathrm{mg} \quad(0.35 \mathrm{mmol})(E, E)$-1-benzoyl-7-ethoxycarbonyl-7-methyl-1,6-heptadiene, 13 mg (0.017 mmol) $\mathrm{Ru}(\text { bpy })_{3} \mathrm{Cl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}, 65 \mathrm{mg}(0.69 \mathrm{mmol}) \mathrm{LiBF}_{4}, 121 \mu \mathrm{~L}(0.69 \mathrm{mmol}) i-\mathrm{Pr}_{2} \mathrm{NEt}$, and 3.5 mL acetonitrile. Isolated 83 $\mathrm{mg}(0.29 \mathrm{mmol}, 83 \%$ yield, $\mathrm{dr}=10: 1)$. IR (thin film) $1707,1670,1649 ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.81-7.80$ $(\mathrm{m}, 2 \mathrm{H}, \mathrm{ArH}), 7.53(\mathrm{tt}, \mathrm{J}=7.3,1.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 7.45(\mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}), 3.95-3.89\left(\mathrm{~m}, 2 \mathrm{H},-\mathrm{OCH}_{2} \mathrm{CH}_{3}\right)$, 3.45 (ddd, $\mathrm{J}=7.2,7.2,7.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}$ (cyclobutane)), 3.19 (dd, $\mathrm{J}=7.0,0.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArCOCH}-), 2.94$ (dd, J = 8.4, $8.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}$ (cyclobutane)), 1.98-176 (m, 3H, CH (cyclopentane)), 1.67 (dd, J = 12.9, $6.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}$ (cyclopentane)), 1.63-1.54 (m, 3H, CH (cyclopentane)), $1.42\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{EtOC}(\mathrm{O}) \mathrm{CCH}_{3}\right), 1.02(\mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}, 3 \mathrm{H}$, $\mathrm{CH}_{2} \mathrm{CH}_{3}$); ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 200.1,175.8,137.7,132.7,128.6,128.2,60.8,54.6,47.7,42.0,37.9,31.9$, 27.2, 26.6, 19.1, 13.9. HRMS (EI) calc'd for $\left[\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{O}_{3}\right]^{+}$requires m / z 286.1564, found $\mathrm{m} / \mathrm{z} 286.1554$.

1,2-Dibenzoyl-3,4-dimethylcyclobutane (Table 1, entry 14). Experiment 1: Prepared according to general procedure \mathbf{B} using $102 \mathrm{mg}(0.70 \mathrm{mmol})(E)-1$-phenyl-2-buten-1-one, $12 \mathrm{mg}(0.016$ $\mathrm{mmol}) \mathrm{Ru}(\mathrm{bpy})_{3} \mathrm{Cl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}, 66 \mathrm{mg}(0.70 \mathrm{mmol}) \mathrm{LiBF}_{4}, 122 \mu \mathrm{~L}(0.69 \mathrm{mmol}) i-\mathrm{Pr}_{2} \mathrm{NEt}$, and 3.3 mL acetonitrile, and an irradiation time of 2 h . Purified by chromatography using 9:1 hexanes:EtOAc to afford $81 \mathrm{mg}(0.28 \mathrm{mmol}, 80 \%$ yield $)$ of the cycloadduct as a clear, colorless liquid. Experiment $2: 103 \mathrm{mg}(0.70$ mmol) enone, $12 \mathrm{mg}(0.016 \mathrm{mmol}) \mathrm{Ru}(\mathrm{bpy})_{3} \mathrm{Cl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}, 66 \mathrm{mg}(0.70 \mathrm{mmol}) \mathrm{LiBF}_{4}, 122 \mu \mathrm{~L}(0.69 \mathrm{mmol}) i-\mathrm{Pr}_{2} \mathrm{NEt}$, and 3.3 mL acetonitrile. Isolated $86 \mathrm{mg}\left(0.29 \mathrm{mmol}, 84 \%\right.$ yield). IR (thin film) 1669,$1625 ;{ }^{1} \mathrm{H} \mathrm{NMR}(500 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 7.98(\mathrm{dt}, \mathrm{J}=6.1,1.8 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{ArH}), 7.54(\mathrm{tt}, \mathrm{J}=6.7,1.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}), 7.44(\mathrm{tt}, \mathrm{J}=7.9 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{ArH})$, 4.04-4.03 (m, 2H, CH), 2.18-2.13 (m, J = Hz, 2H, CH), $1.21\left(\mathrm{dt}, \mathrm{J}=4.6,2.1 \mathrm{~Hz}, 6 \mathrm{H}, \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR (125 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 199.7,136.3,133.2,128.6,128.6,77.3,77.0,76.8,47.4,39.4,19.2$. HRMS (EI) calculated for $\left[\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{O}_{2}\right]^{+}$requires m / z 292.1458, found $m / z 292.1471$.

1,2-Di(4-chlorobenzoyl)-3,4-dimethylcyclobutane (Table 1, entry 15). Experiment 1 : Prepared according to general procedure \mathbf{B} using $127 \mathrm{mg}(0.71 \mathrm{mmol})(E)-1-(4-$ chlorophenyl)-2-buten-1-one, $12 \mathrm{mg}(0.016 \mathrm{mmol}) \mathrm{Ru}(\mathrm{bpy})_{3} \mathrm{Cl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}, 66 \mathrm{mg}(0.70 \mathrm{mmol})$ $\mathrm{LiBF}_{4}, 122 \mu \mathrm{~L}(0.69 \mathrm{mmol}) i-\mathrm{Pr}_{2} \mathrm{NEt}$, and 3.3 mL acetonitrile, and an irradiation time of 1 h. Purified by chromatography using $8: 1$ hexanes:EtOAc to afford $119 \mathrm{mg}(0.33 \mathrm{mmol}, 93 \%$ yield $)$ of the cycloadduct as a white solid $\left(\mathrm{mp}=124-129^{\circ} \mathrm{C}\right) .$. Experiment 2: $125 \mathrm{mg}(0.69 \mathrm{mmol})$ enone, $12 \mathrm{mg}(0.016 \mathrm{mmol})$ $\mathrm{Ru}(\text { bpy })_{3} \mathrm{Cl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}, 66 \mathrm{mg}(0.70 \mathrm{mmol}) \mathrm{LiBF}_{4}, 122 \mu \mathrm{~L}(0.69 \mathrm{mmol}) i-\mathrm{Pr}_{2} \mathrm{NEt}$, and 3.3 mL acetonitrile. Isolated 116 $\mathrm{mg}\left(0.32 \mathrm{mmol}, 93 \%\right.$ yield). IR (neat) 1695,$1645 ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.92(\mathrm{dt}, \mathrm{J}=9.2,2.4 \mathrm{~Hz}, 4 \mathrm{H}$, $\operatorname{ArH}), 7.42(\mathrm{dt}, \mathrm{J}=9.2,2.4 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{ArH}), 3.97-3.95(\mathrm{~m}, 2 \mathrm{H}, \mathbf{C H}), 2.15-2.11(\mathrm{~m}, 2 \mathrm{HCH}), 1.20(\mathrm{dt}, \mathrm{J}=6.4 \mathrm{~Hz}$, $6 \mathrm{H}, \mathrm{CH}_{3}$) ${ }^{13}{ }^{13} \mathrm{CNMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$) $\delta 198.5,140.0,134.7,130.2,129.1,77.6,77.2,76.8,47.5,39.6,19.4$. HRMS (EI) calculated for $\left[\mathrm{C}_{20} \mathrm{H}_{18} \mathrm{Cl}_{2} \mathrm{O}_{2}\right]^{+}$requires $m / z 360.0679$, found $m / z 360.0689$.

Large-scale photocycloaddition (eq 1). A dry 50 mL Schlenk flask was charged with a solution of (E, E)-1,7-(4-methoxybenzoyl)-1,6-heptadiene (1.06 g 2.9 mmol , 1 equiv), Ru (bipy) ${ }_{3} \mathrm{Cl}_{2} \bullet 6 \mathrm{H}_{2} \mathrm{O}$ ($109 \mathrm{mg}, 0.145 \mathrm{mmol}, 0.05$ equiv), $\mathrm{LiBF}_{4}\left(543 \mathrm{mg}, 5.8 \mathrm{mmol}, 2\right.$ equiv), and $i-\mathrm{Pr}_{2} \mathrm{NEt}(101 \mathrm{~mL}, 5.8 \mathrm{mmol} 2$ equiv) in acetonitrile ($29 \mathrm{~mL}, 0.1 \mathrm{M}$). The solution was then degassed using three freeze-pump-thaw cycles under nitrogen in the dark. The Schlenk flask was then placed in put into a window ledge with direct sunlight and stirred for 1 h . The solar intensity at the time of this experiment (9:00 am, July 8, 2008) ${ }^{10}$ was measured to be 3.9 watts $/ \mathrm{cm}^{2}$ using a Scientech Astral Calorimeter (model AC2500). Upon completion of the reaction, the solvent was removed by rotary evaporation, and the residue was purified by chromatography on a silica gel column ($4: 1$ to $2: 1$ hexanes:EtOAc eluent) to afford 992 mg (2.72 mmol , 94% yield, $\mathrm{dr}=10: 1$) of the cycloadduct.

IV. NOE assignments for new compounds

Table 1, Entry 2

Table 1, Entry 8

Table 1, Entry 9

Table 1, Entry 11

Table 1, Entry 13

Table 1 , entries $1,3,4,7$, and 10 , are known compounds and have been previously characterized. Entry 15 was determined by X-ray crystallographic analysis (vide infra). NOEs for entries 12 and 14 were inconclusive; stereochemistry assigned by analogy.

V.References

(1) Still, W. C.; Kahn, M.; Mitra, A. J. J. Org. Chem. 1978, 43, 2923-2925.
(2) Hon, Y. S.; Chu, K. P.; Hong, P. C.; Lu, L. Syn. Commun. 1992, 22, 429-443.
(3) Chandler, C. L.; List, B. J. Am. Chem. Soc. 2008, 130, 6737-6739.
(4) Fernandez, M. V.; Durante-Lanes, P.; Lopez-Herrera, F. J. Tetrahedron 1990, 46 (23), 7911-7922.
(5) Montgomery, J.; Savchenko, A. V.; Zhao, Y. J. Org. Chem. 1995, 60, 5699-5701.
(6) Baik, T.-G.; Luis, A. L.; Wang, L.-C.; Krische, M. J. J. Am. Chem. Soc. 2001, 123, 6716-6717.
(7) Wang, L.-C.; Jang, H.-Y.; Roh, Y.; Lynch, V.; Schultz, A. J.; Wang, X.; Krische, M. J. J. Am. Chem. Soc. 2002, 124, 9448-9453.
(8) Yang, J.; Felton, G. A. N.; Bauld, N. L.; Krische, M. J. J. Am. Chem. Soc. 2004, 126, 1634-1635.
(9) Aroyan, C. E.; Miller, S. J. J. Am. Chem. Soc. 2007, 129, 256-257.
(10) The morning of July 8, 2008, was partly cloudy in Madison, WI.
VI. NMR spectra for new compounds

(

(

		$\underbrace{\text { ®. }}$	W	
8	${ }^{6}$	4	$\frac{1}{2}$	\bigcirc ¢ PPM

