Wwww.ramoncasares.com 20240424 GPT 1

Godel Incompleteness and Turing Completeness

Ramon Casares
ORCID: 0000-0003-4973-3128

Following Post program, we will propose a linguistic and empirical
interpretation of Gédel’s incompleteness theorem and related ones
on unsolvability by Church and Turing. All these theorems use
the diagonal argument by Cantor in order to find limitations in
finitary systems, as human language, which can make “infinite use of
finite means”. The linguistic version of the incompleteness theorem
says that every Turing complete language is Godel incomplete. We
conclude that the incompleteness and unsolvability theorems find
limitations in our finitary tool, which is our complete language.

Keywords:  Godel incompleteness, Turing completeness, law of Post,
Cantor's diagonal argument

81 Introduction

q1 - Following Post (1936) program, we will argue in favor of a linguistic and empirical
interpretation of Godel’s (1930) incompleteness theorem and related ones on unsolvability
by Church (1935) and Turing (1936). All these theorems use the diagonal argument by
Cantor (1891) in order to find limitations in finitary systems, as human language, which
can make “infinite use of finite means”. The linguistic version of the incompleteness
theorem says, see §698, that every Turing complete language is Gédel incomplete.

€2 - In section §2, we explain Cantor’s diagonal argument. Next, in §3, we sketch Godel’s
incompleteness theorem, which uses the diagonal argument on an ad hoc language. Then,
in §4 and §5, we present Turing computing: Turing completeness and complete languages.
In §6, we show that the halting problem generalizes Godel’s theorem and, using the diago-
nal argument on a complete language, that it is unsolvable by computing. Then, following
Post program, in §7 and §8, we posit as a refutable law of nature that human language
is just complete, by which the incompleteness and unsolvability theorems become human
limitations. Next, in §9, we defend, in Kant’s terminology, that language is a condition
of all possible theory, and, in §10, that language can “make infinite use of finite means”,
in Humboldt’s words. Finally, in §11, after noticing that the diagonal argument finds
limitations in finitary systems, we conclude that the incompleteness and unsolvability
theorems find limitations in our finitary tool, which is our complete language.

This is DOI: 10.6084/m9.figshare.25434994.v2, version 20240424.
(© 2024 Ramén Casares; licensed as cc-by.
Any comments on it to papa@ramoncasares.com are welcome.


http://orcid.org/0000-0003-4973-3128
https://doi.org/10.6084/m9.figshare.25434994
mailto:papa@ramoncasares.com

Wwww.ramoncasares.com 20240424 GPT 2

§2 Cantor

q1 - Let us start from the beginning. In a four pages paper, Cantor (1891) presented a
new and simpler proof showing that the cardinality of the real numbers |R| is greater
than the cardinality of the natural numbers |N|, that is, [R| > |N].

92 - The proof shows that the powerset (the set of all the subsets) of the natural numbers
cannot be enumerated. First, we should see that every subset R is defined by a predicate
on the natural numbers R(n) that is TRUE if the natural number n belongs to the subset,
and FALSE if it does not. Fully expressed:

R(n) =TRUE ifn€R,
vnEN{R(n):FALSE ifné¢R.
Or, in fewer words,

neR=R(n).

93 - For the sake of the argument, let us assume that all the predicates defining the subsets
of the natural numbers can be enumerated. In that case, we could denote I, the predicate
number p, and we could compose the following matrix of TRUE and FALSE values.

Ro(0) Ro(1) Ro(2) Ro(n)
Rl(O) Rl(l) R1(2) Rl(n)
Ry(0) Rp(1) Rp(2) ... Ry(n)

94 - Now, let us define a subset K this way, where the bar above denotes negation:

ne K =Ryn).

It is easy to see that K # Ry, because, if 0 € Ry then Ry(0) = TRUE, so Ry(0) = FALSE,
and then 0 ¢ K, and conversely, if 0 ¢ Ry then 0 € K. Similarly for 1, and then K # Ry,
and for 2, so K # R, and so on for every natural number. Therefore, Vp € N: K # R,
showing that the assumption was wrong.

€5 - The proof shows that the powerset of the natural numbers cannot be enumerated,
in Cantor’s notation Xy < 280, This is enough for us here, but Cantor was interested in
showing that |N| < |R|, which follows immediately from [N| = Ry and |R| = 280, The
proof is named Cantor’s diagonal argument because the elements chosen to be negated
are those in the matrix diagonal, R, (n), which are the most easily denoted, though the
proof works just by choosing systematically a different column for each row. Below, in
5691, we will learn from Godel that choosing to negate the diagonal instantiates the liar
paradox; other selections will implement other epistemological antinomies.

God made the counting numbers;
all else is the work of man
LEOPOLD KRONECKER



Wwww.ramoncasares.com 20240424 GPT 3

§3 Godel

q1 - In order to explain the incompleteness theorem by Godel (1930), where it is Theorem
VI but sometimes referred to as the first one, we will start showing the following lemma:
in every language that is expressive enough to mean ‘this sentence is false’ there is a
paradox. It is easy to see that the lemma is true because the sentence ‘this sentence is
false’ is a paradox; in fact it is the prototypical liar paradox. Therefore, the hard part of
the incompleteness theorem is to prove that the language required to express arithmetic
has to be expressive enough to mean ‘this sentence is false’. Let us try it!

92 - The language required to express arithmetic has to be able to express that ‘the
successor of zero is one’, which happens to be considered TRUE, that ‘one plus one is
one’, considered FALSE, that ‘thirteen is prime’ and also that ‘thirteen is not prime’, and
an infinity of other propositions. I have written ‘an infinity of other propositions’, perhaps
too lightly, but am I right? The answer is ‘yes’, because there is an infinite enumerable
number of TRUE propositions as ‘the successor of zero is one’, each one referring to a
different natural number, as ‘the successor of one is two’, ‘the successor of two is three’,
and so on and on. This means that the language required to express arithmetic has to
be infinite enumerable, at least.

€3 - Although the infinite enumerable sets are the infinite sets with the lowest cardinal
number, N, it is still true that all of them contain proper subsets that are equicardinal
with the whole set. This property is required for full naming, also known as full referring,
that is, to be able to assign a different name to every linguistic object. For example, Godel
(1930) was able to assign a unique natural number, its Gédel number which worked as
its name, to each and every arithmetic object, including the natural numbers themselves!
Of course, self referring, included in full referring, is used in paradoxes as ‘this sentence
is false’.

94 - Above, we were using English statements to express arithmetic propositions, but
Godel, instead of using German, designed a more precise language. All the concepts used
in the proof are implemented in the formal system. We follow Godel’s (1930) sketch of
the proof, in page 175, as translated by Davis (1965) in pages 7 and 8. Godel’s subset K
of natural numbers is defined

n € K = Bew[R,(n)],

where Bew|[z] means ‘x is a provable formula’, and where R, (n) is Cantor’s diagonal
formalized (this last word is decisive!). Since K is a subset of N, then its predicate has
to be some definite enumerated predicate Ry, so K can also be defined

ne K =Ryn).

We now show that the proposition R,(q) is undecidable in the formal system. If we assume
that R,(q) is provable, then it would be TRUE, and then, following the second definition,
q € K, which, following the first definition, means that Bew[R,(q)], contradicting the
assumption. On the other hand, if the negation of R,(q) were provable, then ¢ ¢ K
would hold following the second definition, and then Bew[R,(q)] would be TRUE following
the first one, but now both R,(q) together with its negation would be provable, which is
again impossible.



Wwww.ramoncasares.com 20240424 GPT 4

95 - So Godel is setting out of sight the following Cantor’s matrix of provabilities for every
formalized predicate, which is TRUE if R,(n) is provable, so R,(n) is TRUE, and FALSE if
the negation of R,(n) is provable.

Bew[Ry(0)] Bew[Rop(1)] Bew[Ro(2)] ... Bew[Ro(n)]
Bew[R1(0)] Bew|Ri(1)] Bew|Ri(2)] ... Bew[Ri(n)]
Bew[R,(0)] Bew[Ry(1)] Bew[R,(2)] ... Bew|R,(n)]

The negated diagonal of this matrix is Bew[R,(n)], on which he defines subset K with
its corresponding predicate R, and undecidable proposition R,(q), which Godel writes
[R(q); q], which expresses the liar paradox in the formal system, see §691.

96 - As you can see, Godel (1930) is not as simple as Cantor (1891) and, given Cantor’s
proof, some doubts regarding whether R, is effectively in the enumeration or not could
remain that the full proof conceals behind its many details. Godel’s proof is not as
simple because it implements a comprehensive and logical language specifically designed
to express arithmetic. However, we will not go further into its technicalities here, because
Turing (1936) turned things much easier, and then much easier to understand, I hope.

84 Turing

91 - Instead of using symbols specifically designed to refer to arithmetic concepts, as done
by Goédel (1930), Turing (1936) uses a non-empty and finite set of arbitrary symbols.
Thus, Turing’s way is more general than Godel’s one and, even more important, less
prone to induce us to go from the symbol to its intended meaning. All Turing requires is
one or more symbols that can be strung, that is, that can be composed into unidimensional
and finite structures, which are known as strings.

€2 - And again, where Godel implements the rules of inference specific of arithmetic and
logic to transform arithmetic formulas, Turing uses generic finite-state machines, also
known as finite automata, to transform the generic strings of symbols. Note that finite-
state machines were not formally studied until much later than Turing’s 1936 paper, in
the nineteen-fifties by Mealy (1955), Moore (1956), and others.

93 - How Turing machines work is not hard to understand, and you can find many other
places where it is explained, for example in Casares (T). For us here, it is enough to know
that a Turing machine takes a finite string of symbols written on its tape as input and,
commanded by the finite-state machine, it halts after a finite number of computing steps
with another finite string written on its tape, which is its output, or it keeps computing
without halting. We will denote P(0) the output string of Turing machine P when the
string 0 was used as input; if the machine does not halt, we will write P{d) = oo.

94 - Now, the deepest and more difficult to understand concept is Turing completeness,
that is, that some Turing machines can compute whatever any Turing machine can com-
pute. Those Turing machines that can emulate any Turing machine are called universal
Turing machines. Turing (1936) himself constructs a universal machine, but I would very
much recommend an instructive text book, as Abelson & Sussman (1985), to get the full
details of this counterintuitive concept.



Wwww.ramoncasares.com 20240424 GPT 5

95 - In order to imitate any possible Turing machine P, a universal Turing machine, which
we will denote U, needs a complete description of the Turing machine to imitate as input,
that is, as part of what is written on the tape when it starts. We will call this complete
description the program, and we will denote p the program for P. So the equation of
Turing completeness, where | is an end of program symbol, is:

=
3UNP, Y UPR) = P) .

We say that U is a full-programmable computer because it can compute whatever any
computer P can compute. Let us now examine the equation closely.

96 - Today, the existence of universal computers, U, is a common experience, since all
general-purpose computers, including our phones, are Turing complete, or universal, or
full-programmable; these last three phrases are synonymous. For the equation to be
true, the next task is to show that for any Turing machine, VP, we can find a string of
symbols p (symbols of U) that describes the Turing machine P completely. This is not
too difficult; just linearize the table defining P’s finite-state machine, and code the states
and symbols of P by using strings composed of symbols of U/; we will denote this p = P.
For example, Turing (1936) in his universal machine uses a semicolon (;) as end of row
symbol to linearize the table, and codes P state number ¢ as one symbol D followed by
1 symbols A, and P symbol number ¢ as one symbol D followed by i symbols C. Other
codings are possible; the only condition for a coding is that it sets a reversible mapping
from the states and symbols of P to some strings of symbols of /. This determines the
syntax of the language used by each specific U to code any possible Turing machine P as
its corresponding program, the string p = 73, and also to code any string 0 of symbols of
P, denoted ; a left pointing arrow on top denotes the corresponding decoding, 2 =0
The remaining task is the difficult one: to implement the semantics of Turing machines
in the hardware of U, that is, in its finite-state machine, in such a way that the equation
of Turing completeness will be satisfied, ever (including co). Once achieved, the resulting
language is a Turing complete language, or a complete language for short. Therefore, in
a complete language, every Turing machine can be meaningfully expressed.

§5 Translation

q1 - As the syntax can be defined in different ways, the program p’ for Turing machine P
in one universal Turing machine ¢’ will differ from the program p” for the same Turing
machine P in another universal Turing machine &” that uses a different syntax, that is,

1

NSra—— A ——
p'#p" though U'(p'[d") =P (o) = U"(p"[0") .

We will call this last double equation the translation equation because it explains how
to translate complete languages, in this case from (or to) the complete language £’
implemented by U’ to (or from) the complete language £” implemented by U”, since
though their syntaxes differ, p’ # p”, their meanings are the same, P. The equations of
Turing completeness and translation imply that all universal Turing machines are equal
i calculating capability, since they differ only on the encodings used.



Wwww.ramoncasares.com 20240424 GPT o6

92 - At this point, we can abstract encodings, that is, codings and decodings, away, since
coding (or decoding) is a trivial transformation that uses a finite mapping, and it is easy to
determine from context whether coding (or decoding) is needed or not. Then, we define
the algorithmic equivalence relation thus: two programs p’ and p” are algorithmically
equivalent, denoted p’ ~ p”, iff their meanings are the same; for instance when they are
translations of the same Turing machine P to two complete languages, £’ and L”:

A IIET JISE—
por= <3P’v° LU =P ) = U"(p" ") ) .

€3 - The corresponding equivalence classes are called algorithms, so algorithm = is the
equivalence class of program p, that is, 7 = [p] = {r: t ~ p}. We are using uppercase
calligraphic letters to denote Turing machines, as P and U, German lowercase letters
for strings in the tapes of Turing machines, as p and 9, or 0 if coded, but typewriter
characters for individual symbols, as A and w, and we will use Greek lowercase letters for
algorithms and information, as 7 and d, where information is data after abstracting away
its encoding. And, after abstracting encodings away, the equation of Turing completeness
is cleaner; the capital upsilon T represents the abstract universal Turing machine:

T(r|5) = P(d) .

94 - While Godel (1930) mimics semantics into syntax from the beginning, making the
distinction between both more difficult to grasp, in Turing’s (1936) approach, meanings
appear only when completeness appears. That is, everything is syntax, except when
implementing a language to fully express computing, because by then implementing the
semantics of computing is required. However, after abstracting encodings away, it is also
possible to confuse concepts in computing. That is, given the coding-decoding bijection
between Turing machines and programs in a complete language, {P} <> {p}, it is nearly
natural to use p for P, or P for p, and after abstracting encodings away, © = [p], it is
only a minor inconvenience to use 7 for p, or p for 7. And the same ambiguity can be
applied to data 0, coded data 9, and information d. But it is much better not to confuse
these three levels:

o Semantics: hardware (P) and data ().

o Syntax: software (p = P) and coded data (9).

o Pragmatics: algorithms (7) and information (6).
95 - By abstracting encodings away we are ignoring syntax. We could do it, but it would
be dangerous because, in computing, syntax is prior to both semantics and pragmatics.
In the beginning everything is syntax, because a Turing machine is a finite-state machine
applying its syntactic rules to generic strings of symbols. It is later, when implementing
a universal Turing machine, that a complete language is required that gives meaning
to the whole of computing; so semantics is required to implement complete languages.
And finally, if we abstract encodings away, we get language independent knowledge; now
we can resolve problems algorithmically, meaning that their solutions can be coded in
different complete languages and implemented in different hardware devices. However,
to pragmatically resolve a problem, the algorithm has to be instantiated, that is, coded
on a specific universal Turing machine, or implemented directly on a specific piece of
hardware. All things considered, language independent knowledge could be misleading,
since it promises more than it provides; use it with caution!



Wwww.ramoncasares.com 20240424 GPT 7

86 Proof

q1 - So we are seeing that Godel (1930) is generalized by Turing (1936). Then we need
to ascertain what generalizes Godel’s incompleteness theorem in Turing’s computing. As
Godel (1930) writes in page 175, translated by Davis (1965) in page 9, “there is also a
close relationship'* with the Liar paradox, for the undecidable proposition [R(q); q] says
[...] that [R(q);q] is not provable.” Note 14 says: “Every epistemological antinomy can
be used for a similar proof of undecidability.” In any case, he uses the canonical liar
paradox, ‘this sentence is false’, that has not a definite meaning because it can neither be
decided true nor false; if it is true what it says, then it is false, but if it is false what it says,
then it is true, thus closing an infinite loop. In Turing computing, the only computations
that result undecided are those that do not halt.

92 - Therefore, the generalization of Godel’s incompleteness theorem is the theorem show-
ing that the halting problem is unsolvable by a Turing machine. Though, in fact, the
halting problem was defined later by Davis (1958), Turing (1936) had already shown that
it is unsolvable, by resolving the circularity problem, see Petzold (2008) page 179.

93 - Without loss of generality, we will use the complete language £ implemented by the
universal Turing machine ¢ for the proof. £ has a finite set of symbols, and therefore
the set of its finite strings {9} is enumerable, using for example a lexicographic order.
To determine whether a string d of U is a coded string d or not is easily decidable, as
its syntax is straight, just a simple mapping, and then the set of coded strings {5} is
enumerable. Then we will refer to coded string number d as d4. To determine whether
a string codes a Turing machine or not is also easily decidable, as its syntax is simple, a
linearized table of simply coded states and symbols. The conclusion, which was perhaps
doubtful in Godel’s proof, see §396, it is easy to see in computing: the set of programs
{p } is enumerable. Then we will refer to program number p as p,.

94 - We will set a Cantor’s diagonal argument to show that there is not any Turing machine
H that takes any arbitrary pair of program p and coded data d as input, and every time
it outputs, in a finite number of computing steps, a string expressing whether 2(p[0)
will halt or run indefinitely, say the one symbol string Y if it will halt, and N otherwise.

H(p[d) =Y if U(p[d) halts

ﬂ’H,Vp,%{ - , .
H(p[o) =N if U(p|d) does not halt

95 - Now, for the sake of the argument, let us assume that H exists. Then the following
matrix of Y and N string values could be computed (without got stuck in a non-halting
computation).

H(poloo) H(polor) H{pold2) ... H(polog)
Hpiloo) H(pilor) H(pild2) ... H(pilog)
Hipploo) Hipplor) H{pploa) ... H(pplog)

However, the row for program ¢, which negates the diagonal, would not be in the matrix.

Uladn) =Y if Hpa[on) =N

q:vneN { . -
u<q|an> =o0 if H<pn|an> =Y



Wwww.ramoncasares.com 20240424 GPT 8

Program q would exist if the program for H, denoted b, existed, which would be the case
if H existed as assumed. Therefore, the assumption was false.
96 - Then, in the complete language £ of the universal Turing machine U/, a program b
that solves the halting problem is inexpressible. Of course, taking advantage of the
translation equation, this theorem holds for every complete language, which then can be
formulated this way: in every complete language, there is an inexpressible program.
97 - In computing, to say that there are undecidable computations is too trivial to be
of any interest, since it just means that some computations do not halt, as for example
while true { relax } or liar() = return( not liar() ). However, it is not only that in any
complete language there are computations that do not halt, but also that there is not
any computable way of avoiding them definitively. This parallels Gédel’s conclusion that
undecidable propositions cannot be avoided by adding them as axioms; you just need to
use Cantor’s diagonal on the new formal system to find a new undecidable proposition.
98 - From Turing’s conclusion that there are problems that cannot be solved by computing,
it follows that, in every complete language, there are expressible problems the solutions of
which are not expressible, so we can say that in every complete language there are concepts
that can be defined, and named, but not fully expressed. Then a funnier way to state
Turing’s conclusion, which is closer to popular formulations of Gédel’s incompleteness
theorem, is:

every complete language is not complete.

This statement uses two different meanings of the word ‘complete’: the complete language
is (Turing) complete because every Turing machine can be meaningfully expressed in it,
but it is not (Godel) complete because there are definable tasks that no Turing machine
can perform and, consequently, they cannot be expressed in it.

§7 Church

€1 - Some of my readers could suspect that I am pretending to pass as new that Turing
generalizes Godel. It is not my intention. In fact, this is known from the very beginning,
since Turing (1936) himself, in page 259, shows that Godel’s incompleteness theorem is
a consequence of his unsolvability theorem. This is his argument, where Entscheidungs-
problem is the German word for ‘decision problem’:

If the negation of what Gddel [(1930)] has shown had been proved, i.e. if, for
each 2, either 21 or —2 is provable [in the functional calculus K], then we should
have an immediate solution of the Entscheidungsproblem. For we can invent a
[Turing] machine I which will prove consecutively all provable formulae. Sooner
or later IC will reach either 21 or —21. If it reaches %A, then we know that 2l is
provable. If it reaches —2, then, since K is consistent [... ], we know that 2 is
not provable.

In other words, if Godel’s incompleteness theorem were not the case, &, then Turing’s
unsolvability of the decision problem would not be the case, T, denoted & — T, which
is equivalent by contraposition to ¥ — &, which means that Turing’s implies Godel’s, or
in reverse, that Godel’s is a logical consequence of Turing’s.

92 - As these results on decidability and on solvability are all negative, a question arises:
Could it be that they can be decided and solved by devices that are more capable than
universal Turing machines? The accepted answer is Church’s thesis, which asserts that



Wwww.ramoncasares.com 20240424 GPT 9

there are mot more capable calculating devices than universal Turing machines. Before
going on, please note that, in linguistic terms, the question is a bit silly, since it is asking
for a language more expressive than a complete language but in which the sentence
‘this sentence is false’ is not expressible, a sentence that is expressible in every complete
language. Linguistically, the impossibility is apparent.
93 - The interesting story, or history, around Church’s thesis is detailed by Davis (1982),
who explains why Godel preferred Turing machines over his own recursive functions and
over Church’s A-calculus in order to fix Church’s thesis. As we have written above,
the advantage of Turing computable functions, which are those from strings to strings
implemented by Turing machines, is that they are much more generic and simpler than
Godel’s recursive functions, and the same applies to Church’s A-definable functions. For
example, in the case of the recursive functions, in order to achieve a capability equivalent
to Turing completeness, it was necessary to add a conditional incremental loop to the
conditional decremental loop of primitive recursion, see Kleene (1952) Chapter XI, an
addition which we could describe as a hack, and even then Godel “was [...] not at all
convinced that [his] concept of recursion comprises all possible recursions”, as cited by
Davis (1982) in page 8. This explains why we have used universal Turing machines when
we presented Church’s thesis, while Church (1935) himself used recursive functions and -
calculus instead, and it also explains why, though he resolved the Entscheidungsproblem
as unsolvable before Turing (1936), we prefer the cleaner proof by Turing.
94 - According to Kleene (1952), from page 319 on, the arguments supporting Church’s
thesis as the accepted answer are of four types: heuristic evidence, equivalence of diverse
formulations, Turing’s concept of a computing machine, and symbolic logics and symbolic
algorithms. As an example of the second type, it is really convincing that, even being so
different, computing, recursive functions, and A-calculus are all capable of universality.
The computing version of universality is Turing completeness, that is, that computing
can express computing completely, as we saw above. In the case of recursive functions,
it is Kleene’s (1935a) normal form, see Kleene (1952) Theorem IX in page 288, where a
recursive function can express any recursive function. And, for Church’s A-calculus, it is
that an evaluator of A-expressions can be defined as a A-defined function, resulting that
the evaluator is a A-defined function able to express any A-defined function; this is done
(in Lisp) by Abelson & Sussman (1985). Universality, or full-self-expressibility, manifests
itself in all three formulations because they are equivalent, as shown by Kleene (1935b)
and Turing (1937).
95 - To me, that all formulations of the concept of computing point to the same calculating
limit, which is universality, suggests that the limit has an empirical meaning. For suppose
these two possibilities:

o Tomorrow someone devises a procedure to perform calculations that are beyond the

capability of a universal Turing machine.
o Tomorrow some machine is found that performs calculations that are beyond the
capability of a universal Turing machine.

In either case, Church’s thesis would be wrong. Therefore, Church’s thesis is uncertain
because it depends on what it might occur tomorrow, showing that it is empirically
refutable.



Wwww.ramoncasares.com 20240424 GPT 10

88 Post
q1 - In other words, I am with Post (1936) when he concludes, in page 105:

Only so, [that is, only if Church’s thesis is a natural law stating the limitations
of the mathematicizing power of our species Homo sapiens|, can Gédel’s theorem
concerning the incompleteness of symbolic logics of a certain general type and
Church’s results on the recursive unsolvability of certain problems be transformed
into conclusions concerning all symbolic logics and all methods of solvability.

That natural law, deservedly named the law of Post, can be stated as follows:
in calculating capability, we are just Turing complete .
The corresponding linguistic version of the law of Post is:
in expressive capability, human language is just Turing complete.

92 - Church’s thesis is a consequence of the law of Post because, as shown in Casares (C),
where the law of Post is introduced, if we are just Turing complete, then Church’s thesis
is true. As any natural law, the law of Post is empirically refutable and then it is in
need of continual verification. It can be refuted by empirical evidence negating it, or by
empirical evidence negating any of its consequences, for example by evidence negating
Church’s thesis. Therefore, what is supporting both the law of Post and Church’s thesis is
the lack of empirical evidence on the contrary, for the time being. Nothing more, nothing
less.

€3 - For example, hypercomputers would refute Church’s thesis. According to Shagrir &
Pitowsky (2003): “A hypercomputer is a physical or an abstract system that computes
functions that cannot be computed by a universal Turing machine.” However, only the
physical ones will refute it. Unbounded idealizations, including analog computers with
unbounded precision and accuracy, or those performing unbounded in time computations,
do not count as empirical evidence, see Casares (E), and therefore they cannot refute
Church’s thesis.

94 - Under Church’s thesis, complete languages are the most capable languages, that is,
the most expressive ones, see Casares (H). Therefore, under Church’s thesis, undecidable
propositions cannot be avoided. Although this is very general, it still depends on Church’s
thesis being true. In order to determine the scope of validity of Church’s thesis, we need to
ascertain its nature. And here we follow Post (1936) program. We defend that Church’s
thesis is a consequence of the law of Post. The law of Post is a law of nature, and as
such it can be refuted empirically, but, as long as it is not refuted, it provides general
formulations of the incompleteness and unsolvability theorems that state some absolute
human limitations:

we humans cannot avoid undecidable propositions,
we humans cannot solve every problem,

human knowledge cannot be complete.



Wwww.ramoncasares.com 20240424 GPT 11

89 Kant

q1 - In my opinion, see Casares (K), the main point made by Kant is that all each subject
knows is calculated by her brain. Except the raw data acquired by my senses, for example
a red photon being detected at some point of my left retina, everything else is the result
of some calculations done by my brain. Since we do not experience photons hitting our
retinas, what we do experience, for example seeing a red stone, is the result of some
calculations done by our brains. Therefore, what we take for real, as the red stone, is the
result of some complex calculations done by our brains, implying that even the evidence
that ‘I am seeing a red stone now’ is calculated by my brain.

92 - However, Kant seemed to like both to use a cryptic language and to make transcenden-
tal deductions, so I am possibly misunderstanding him. Nevertheless, this is immaterial
as long as you accept that what is written in the previous paragraph is sensible save,
perhaps, its attribution to Kant. In fact, we can ignore his deductions, because the law
of Post is what Kant was looking for, since it states precisely the limits of the calculating
capability of the human brain, but again I could well be wrong on Kant’s intentions. And
again this does not matter, provided you agree to name Post-Kantian subjectivism the
position stating both Kant’s thesis, which I interpret to say that

all we subjects know is calculated by our brain,
and the law of Post, now formulated to say that
our human brain calculating capability is limited to universal computing.

93 - Without Kant’s thesis, the law of Post is the fundamental law of cognition. With
Kant’s thesis, in addition, the law of Post culminates an epistemological endeavor. Under
Kant’s thesis, the law of Post sets the limits of knowledge, and even the limits of all
possible knowledge. The law of Post fits nicely with Kant!

€4 - For us humans, physical reality and complete language are given a priori, in Kantian
parlance. Although neither is operative when born, because both need some development,
both are available some time later. After that point in time, every human investigation
starts with a firmly-established physical reality, which we can observe and measure at
will, and a full-self-expressible complete language, which is a finite calculating tool able
to be used infinitely. It is in this way that both are given a priori. In other words, when
we investigate anything, these are the two tools we have at our disposal.

OUTSIDE [ INSIDE

Physical Theoretical
. Reality World
= = +
1E : =
? :>8 8 = Perception = 2= Language = g
g I S U S
o 2




Wwww.ramoncasares.com 20240424 GPT 12

95 - We cannot experience physical reality without our brain’s perception, a name we
use to refer to some brain modules. Therefore, perception is a condition of all possible
experience. As my evidence is what I am certain about, then, following Descartes, my
evidence is only what I experience in first person. Now, perception is a condition of all
possible evidence.

96 - And language is a condition of all possible theory, since we cannot set any theory,
including physics, without language. So our Kantian priority of the complete language
is an epistemological priority. We are not saying, for example, that language is chrono-
logically prior to life, or to the universe. However, without language the mere idea that
life and language are somehow situated in time would be impossible; inconceivable is a
better word, since there would not be any conceptual world without language.

8§10 Discussion

§10.1 Physics

1 - Godel’s incompleteness theorem is limited to formal systems. In addition, if the
number of propositions is finite, then (in principle) it is possible to list the truth value of
all of them. Consequently, Godel’s incompleteness theorem is limited to formal systems
that are not finite. In particular, given that the proof by Godel (1930) is finitary, his
theorem is limited to formal systems that are infinite enumerable.

€2 - From this conclusion is easy to dismiss the impact of Godel’s incompleteness theorem.
In one direction, we could argue that infinities do not really exist, and finite systems
can be complete. And, in the other direction, we could say that physical reality is not
enumerable, but continuous, as the real numbers, see §2, and then reality would be out
of Godel’s incompleteness theorem scope. So physics should not be affected, although
it is a formal system that includes arithmetic and that it has to be either consistent or
useless, but not both.

93 - Computing by Turing (1936) introduces a new point of view on these matters. Instead
of focusing on reality, now we center on language, and human language is certainly infinite
enumerable, since it can “make infinite use of finite means”. This is Humboldt’s famous
definition quoted by Chomsky (1965, in page 8) to introduce the generative grammars,
which are Turing machines, see Casares (H). The definition remarks that both the number
of rules of syntax and of words are finite, but the number of words in a sentence is
unbounded, potentially infinite. And the same can be said of those formal systems where
both the number of rules of inference and of axioms are finite, but the number of steps
in a proof is unbounded, potentially infinite.

94 - So, from the wider Turing computing point of view, physics is affected simply because
physics is a theory that has to be expressed in a complete language, which happens
because arithmetic has to be expressed in a complete language, which is a consequence of
Godel’s incompleteness theorem. Then, physics cannot be complete. This contrasts with
physical reality, since all we can observe or measure is finite, that is, all we perceive are
finite means used finitely. As an aside, noticing that physical measurements are never
irrational real numbers, but always rational numbers, should imply that physical reality
is not continuous, but discrete.



Wwww.ramoncasares.com 20240424 GPT 13

§10.2 Paradoxes

91 - From the wider Turing computing point of view, it is easier to see the nature of
paradoxes. For example, let us name the set of the halting computations of a complete
language H, where a computation is defined by a pair of program and input coded data,
that is, by a pair (p|5) in the complete language £ implemented by the universal Turing
machine . In a sense, set H is well defined, because the condition for a computation
to belong to it is definite. In other words, the problem defining the set is perfectly
determined. However, as shown by the diagonal argument in §6, we know that this
particular problem is unsolvable. That is, we know of some computations that belong
to the set, and of some other computations that do not belong to the set, but the exact
extent of set H is essentially indeterminate.

92 - It happens the same, as a consequence of Godel’s (1930) incompleteness theorem, to
the set of all TRUE arithmetic propositions 7" the exact extent of set T  is essentially
indeterminate. So set T is complete by fiat, but we would need to invoke an oracle
in order to instantiate it. Note that oracles, see Turing (1938), are definable but not
implementable, remember §698, meaning that, whenever an oracle is needed, we are
beyond what we can calculate.

93 - We will use Post (1944) terminology to characterize these sets: a set is recursive if
and only if it is possible to recursively enumerate both the set and its complement, where
recursion is synonymous with computing, see §7. Therefore, the extents of the recursive
sets are exactly determined, since we can always decide what is in and what is out of them,
but, as a consequence of Godel’s undecidability, there are sets that are not recursive, as
H and T, and the extents of the non-recursive sets are essentially indeterminate.

94 - They are essentially indeterminate because, as this happens in complete languages,
the indeterminacy cannot be cured by using more expressive languages, since the complete
languages are, under Church’s thesis, the most expressive ones; see Casares (H). Then
we should conclude that the indeterminacy is caused by limitations of the complete
languages. So it is by implementing the liar paradox in diagonal arguments, see §295,
that the incompleteness and unsolvability theorems show some limitations of the complete
languages, including human language if the law of Post is right. And given that, as Godel
(1930) writes in note 14 (see §691), every epistemological antinomy can be used to prove
a case of undecidability, then for each paradox we obtain its corresponding essentially
indeterminate non-recursive set. In this way, paradozes are linguistic illusions.

95 - Although we can refer to the non-recursive sets the same way we refer to the well-
behaved recursive ones, this is an illusion: under the law of Post, the non-recursive sets
are beyond our calculating capability. This is both marginal and fundamental:

o It is marginal because our calculating capability is more than enough for our everyday
tasks. In fact, the corresponding complete language has made our species the most
powerful and dangerous one, see Casares (T), showing that our calculating capability
is much more than enough to survive; perhaps much too much!

o It is fundamental because sets are not only the basis of mathematics, but sets are also
the very foundation of the whole theoretical world, since every conceptual definition
is a predicate determining what is in and what is out of it. Being fundamental, it
can cause basic misunderstandings. For example, the real numbers R are considered
real, but R is a non-recursive set, see §2; consequently, that ‘reality is continuous’ is
a linguistic illusion.



Wwww.ramoncasares.com 20240424 GPT 14

8§11 Conclusion

q1 - Using Cantor’s (1891) diagonal argument, see §2, Godel (1930) showed that there
are more formalized arithmetical propositions than enumerable proofs, see §3; therefore
some propositions are undecidable since they can neither be proved TRUE nor FALSE using
finitary formal systems. Using Cantor’s diagonal argument, Turing (1936) showed that
there are more definable problems than enumerable computations, see §6; therefore some
problems are unsolvable by finitary machinery.

92 - The word ‘finitary’ is a bit weird, since it is neither ‘finite’ nor ‘infinite’, but midway
between the two. Finitary refers to the infinite use of finite means. This point us twice
to human language. Firstly, because that is precisely Humboldt’s definition, see §10.1,
and secondly, because out of the two Kantian tools, see §994, physical reality is already
much more limited since, as seen above, all we perceive are finite means used finitely. In
any case, as the means are finite, the finitary system products are always enumerable.
93 - The finitary concept is best grasped by the Turing machine, see §4 and §5: the finite-
state machine represents the finite means, and the unbounded tape allows the infinite
use. And in Turing computing the most expressive languages are the complete languages
implemented by universal Turing machines: a complete language implements the whole
semantics of computing, which is thus full-self-expressible. This means that the most
expressive languages that finitary systems can implement are the complete languages.
94 - Therefore, the diagonal argument is used to show some limitations of human language,
see §10.2, and of other finitary systems, which derive from it. In these systems, the means
are finite, but we do not limit their use. This is, of course, an idealization, but nevertheless
it would also be wrong to limit, for example, the number of words in a sentence, or the
number of steps in a proof. Summarizing, the incompleteness and unsolvability theorems
by Godel, Church, and Turing find limitations in our finitary tool, which is our complete
language.

95 - And, in any complete language, there are definable concepts that cannot be expressed.
This generalizes Godel’s incompleteness theorem, see §698, which represents, under the
law of Post, an absolute human limitation, see §7 and §8, which Kant promotes to tran-
scendental, see §9. So, epistemologically, Godel’s incompleteness theorem elevates

from Turing’s generalization,

every Turing complete language is Gadel incomplete,
to its Post-Kantian formulation,

knowledge cannot be complete.



Wwww.ramoncasares.com 20240424 GPT 15

References

Abelson & Sussman (1985): Harold Abelson and Gerald Jay Sussman with Julie Sussman,
Structure and Interpretation of Computer Programs; The MIT Press, Cambridge MA,
1985, 1SBN: 978-0-262-01077-1.

Cantor (1891): Georg Cantor, ,Ueber eine elementare Frage der Mannigfaltigkeitslehre “;
in Jahresbericht der Deutschen Mathematiker-Vereinigung, vol. 1, pp. 75-78, 1890—
1891, https://gdz.sub.uni-goettingen.de/id/PPN37721857X_0001.

Casares (C): Ramén Casares, “Proof of Church’s Thesis”;

DOI: 10.6084/m9.figshare.4955501, DOT: 10.48550/arXiv.1209.5036.

Casares (E): Ramén Casares, “Errors in Infinite Computations”;

DOI: 10.6084/m9.figshare.13686439.

Casares (H): Ramén Casares, “A Complete Hierarchy of Languages”;
DOI: 10.6084/m9.figshare.6126917.

Casares (K): Ramoén Casares, “Subjectivist Propaganda”;

DOI: 10.6084/m9.figshare.13076906.

Casares (T): Ramén Casares, “On Turing Completeness, or Why We Are So Many”;
DOI: 10.6084/m9.figshare.5631922.

Chomsky (1965): Noam Chomsky, Aspects of the Theory of Syntax; The MIT Press, Cam-
bridge MA, 1965, 1SBN: 978-0-262-53007-1.

Church (1935): Alonzo Church, “An Unsolvable Problem of Elementary Number The-
ory”; in American Journal of Mathematics, vol. 58, no. 2, pp. 345-363, April 1936,
DOI: 10.2307/2371045. Presented to the American Mathematical Society, April 19,
1935.

Davis (1958): Martin Davis, Computability & Unsolvability; Dover Publications, New
York, 1982, 1SBN: 978-0-486-61471-7. Enlarged version of the work originally pub-
lished by McGraw-Hill Book Company, New York, in 1958.

Davis (1965): Martin Davis (editor), The Undecidable: Basic Papers on Undecidable Pro-
positions, Unsolvable Problems and Computable Functions; Dover, Mineola, New
York, 2004, 1SBN: 978-0-486-43228-1. Corrected republication of the same title by
Raven, Hewlett, New York, 1965.

Davis (1982): Martin Davis, “Why Gdédel Didn’t Have Church’s Thesis”; in Information
and Control, vol. 54, pp. 3-24, 1982, por: 10.1016/s0019-9958(82)91226-8.

Godel (1930): Kurt Godel, ,Uber formal unentscheidbare Sitze der Principia Mathemat-
ica und verwandter Systeme 1% in Monatshefte fir Mathematik und Physik, vol. 38,
pp. 173-198, 1931, por: 10.1007/BF01700692. Received November 17, 1930. English
translation in Davis (1965).

Kleene (1935a): Stephen Kleene, “General Recursive Functions of Natural Numbers”; in
Mathematische Annalen, vol. 112, no. 1, pp. 727-742, December 1936,

DOI: 10.1007/BF01565439. Presented to the American Mathematical Society, Septem-
ber 1935.

Kleene (1935b): Stephen Kleene, “A-Definability and Recursiveness”; in Duke Mathemat-
ical Journal, vol. 2, pp. 340-353, 1936, DO1: 10.1215/s0012-7094-36-00227-2. Received
July 1, 1935; presented to the American Mathematical Society, September 13, 1935.

Kleene (1952): Stephen Kleene, Introduction to Meta-Mathematics; Ishi Press, New York,
2009, 1SBN: 978-0-923891-57-2. Reprint of the same title by North-Holland, Amster-
dam, 1952.


https://gdz.sub.uni-goettingen.de/id/PPN37721857X_0001
https://doi.org/10.6084/m9.figshare.4955501
https://doi.org/10.48550/arXiv.1209.5036
https://doi.org/10.6084/m9.figshare.13686439
https://doi.org/10.6084/m9.figshare.6126917
https://doi.org/10.6084/m9.figshare.13076906
https://doi.org/10.6084/m9.figshare.5631922
https://doi.org/10.2307/2371045
https://doi.org/10.1016/s0019-9958(82)91226-8
https://doi.org/10.1007/BF01700692
https://doi.org/10.1007/BF01565439
https://doi.org/10.1215/s0012-7094-36-00227-2

Wwww.ramoncasares.com 20240424 GPT 16

Mealy (1955): George H. Mealy, “A Method for Synthesizing Sequential Circuits”; in
Bell System Technical Journal, vol. 34, no. 5, pp. 1045-1079, September 1955, DOI:
10.1002/j.1538-7305.1955.tb03788.x. Manuscript received May 6, 1955.

Moore (1956): Edward F. Moore, “Gedanken-Experiments on Sequential Machines”; DOT:
10.1515/9781400882618-006. In Automata Studies (editors C. E. Shannon and J. Mc-
Carthy), Volume 34 in the series Annals of Mathematics Studies (AM34); Princeton
University Press, Princeton, 1956, pp. 129-153; 1SBN: 0-691-07916-1.

Petzold (2008): Charles Petzold, The Annotated Turing: A Guided Tour Through Alan
Turing’s Historic Paper on Computability and the Turing Machine; Wiley Publishing,
Indianapolis, 2008, 1SBN: 978-0-470-22905-7.

Post (1936): Emil L. Post, “Finite Combinatory Processes — Formulation 17; in The
Journal of Symbolic Logic, Volume 1, Number 3, pp. 103-105, September 1936, DOTI:
10.2307/2269031. Received October 7, 1936.

Post (1944): Emil L. Post, “Recursively Enumerable Sets of Positive Integers and their
Decision Problems”; in Bulletin of the American Mathematical Society, vol. 50, no. 5,
pp. 284-316, 1944, por: 10.1090/s0002-9904-1944-08111-1.

Shagrir & Pitowsky (2003): Oron Shagrir and Itamar Pitowsky, “Physical Hypercompu-
tation and the Church-Turing Thesis”; in Minds and Machines, vol. 13, pp. 87-101,
2003, por: 10.1023/A:1021365222692.

Turing (1936): A. M. Turing, “On Computable Numbers, with an Application to the
Entscheidungsproblem”; in Proceedings of the London Mathematical Society, vol. s2-
42, no. 1, pp. 230-265, 1937, por: 10.1112/plms/s2-42.1.230. Received 28 May, 1936.
Read 12 November, 1936.

Turing (1937): A. M. Turing, “Computability and A-Definability”; in The Journal of Sym-
bolic Logic, vol. 2, no. 4, pp. 153-163, December 1937, por: 10.2307/2268280.

Turing (1938): A. M. Turing, “Systems of Logic Based on Ordinals”; in Proceedings of
the London Mathematical Society, vol. s2-45, no. 1, pp. 161-228, 1939,

DOI: 10.1112/plms/s2-45.1.161. Received 31 May, 1938. Read 16 June, 1938.


https://doi.org/10.1002/j.1538-7305.1955.tb03788.x
https://doi.org/10.1515/9781400882618-006
https://doi.org/10.2307/2269031
https://doi.org/10.1090/s0002-9904-1944-08111-1
https://doi.org/10.1023/A:1021365222692
https://doi.org/10.1112/plms/s2-42.1.230
https://doi.org/10.2307/2268280
https://doi.org/10.1112/plms/s2-45.1.161

	Gödel Incompleteness and Turing Completeness
	§1 Introduction
	§2 Cantor
	§3 Gödel
	§4 Turing
	§5 Translation
	§6 Proof
	§7 Church
	§8 Post
	§9 Kant
	§10 Discussion
	§10.1 Physics
	§10.2 Paradoxes

	§11 Conclusion
	References


