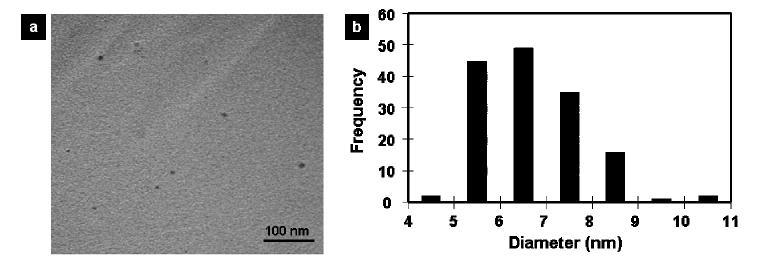
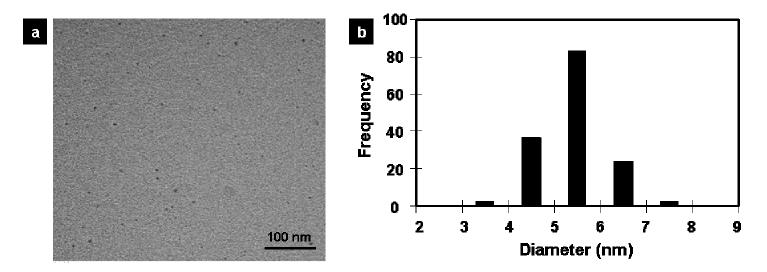

From Phenylsiloxane Polymer Composition to

Size-Controlled Silicon Carbide Nanocrystals


Eric J. Henderson, Jonathan G.C. Veinot*

Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada. Fax: 780-492-8231; Tel: 780-492-7206; email: jveinot@ualberta.ca


13

Supporting Information Figure 1: Low resolution transmission electron microscopy and size determination of freestanding SiC-NCs. a, Low-resolution TEM image of liberated SiC-NCs (A5) and selected-area electron diffraction pattern (inset) showing the (111), (220), and (311) crystal planes of β -SiC. b, Measured size-distribution of liberated SiC-NCs with an average diameter of 8.9 nm (n = 150, $\sigma = 1.1$ nm).

Supporting Information Figure 2: Low resolution transmission electron microscopy and size determination of freestanding SiC-NCs. a, Low-resolution TEM image of liberated SiC-NCs (**B5**). Selected-area electron diffraction pattern of the liberated particles (not shown) were consistent with diamond structure β -SiC. b, Measured size-distribution of liberated SiC-NCs with an average diameter of 6.8 nm (n = 150, $\sigma = 1.0$ nm).

Supporting Information Figure 3: Low resolution transmission electron microscopy and size determination of freestanding SiC-NCs. a, Low-resolution TEM image of liberated SiC-NCs (C5). Selected-area electron diffraction pattern of the liberated particles (not shown) were consistent with diamond structure β -SiC. b, Measured size-distribution of liberated SiC-NCs with an average diameter of 5.5 nm (n = 150, $\sigma = 0.8$ nm).