Supporting Information

Total Synthesis of Pseudodehydrothyrsiferol

Hideaki Hioki,* Masatoshi Motosue, Yasuhiko Mizutani, Akira Noda, Tomoaki Shimoda, Miwa Kubo, Kenichi Harada, Yoshiyasu Fukuyama and Mitsuaki Kodama
Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Yamashiro-cho, Tokushima 770-8514, Japan.
Email hioki@ph.bunri-u.ac.jp
Contents

Experimental details and full characterization of compounds.

General S-2
Synthesis of segment A S-2
Synthesis of segment B S-5
Synthesis of Pseudodehydrothyrsiferol S-7
${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra of all compounds

General

All reactions involving air- and moisture-sensitive reagents were carried out using oven dried glassware and standard syringe-septum cap techniques. Routine monitorings of reaction were carried out using glass-supported Merck silica gel 60 F254 TLC plates. Column chromatography was performed on Kanto Chemical Silica Gel 60 N (spherical, neutral $40-50 \mu \mathrm{~m}$) with the solvents indicated. All solvents and reagents were used as supplied with following exceptions. Tetrahydrofuran (THF), toluene and benzene were freshly distilled from Na metal/benzophenone under argon. Measurements of optical rotations were performed with a JASCO DIP-370 automatic digital polarimeter. Melting points were taken on a Yanaco MP-3 micro melting point apparatus and are uncorrected. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were measured with a Varian Gemini-200 (200 MHz), Mercury-300 (300 MHz), GX-400 (400 MHz), Unity-600 (600 MHz), JEOL AL-400 $(400 \mathrm{MHz}$) spectrometer. Chemical shifts were expressed in ppm using $\mathrm{Me}_{4} \mathrm{Si}(\delta=0)$ as an internal standard. The following abbreviations are used: singlet (s), doublet (d), triplet (t), quartet (q), broad (br). Infrared (IR) spectral measurements were carried out with a JASCO FT/IR-4100 spectrometer (ATR method). Low- and High-resolution mass (HRMS) spectra were measured on a JEOL JMS-DX 303/JMA-DA 5000 SYSTEM high resolution mass spectrometer.

Synthesis of Segment A

To a stirred solution of $2(4.24 \mathrm{~g}, 13.5 \mathrm{mmol})$ and $2,6-\mathrm{lutidine}(9.43 \mathrm{~mL}, 81 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{~mL})$ was added TBSOTf $(9.3 \mathrm{~mL}, 40 \mathrm{mmol})$ at $-78^{\circ} \mathrm{C}$. After stirring for 9 h , the reaction was quenched by addition of saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ and the mixture was diluted with ethyl acetate. The phases were separated and the aqueous phase was extracted with ethyl acetate. The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated to give a colorless oil (8.0 g), which was used for the next reaction without further purification. The crude compound described above was dissolved in 20 mL of $\mathrm{THF} / \mathrm{H}_{2} \mathrm{O}$ (3:2). To the solution was added 8 mL NaOH aqueous solution $\left(2 \mathrm{moll}^{-1}\right)$ at rt . After stirring for 4 h , the reaction was quenched by addition of saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ and the mixture was diluted with ethyl acetate. The phases were separated and the aqueous phase was extracted with ethyl acetate. The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated. The residue was purified by column chromatography (hexane/EtOAc, 9:1) to give 3 ($5.94 \mathrm{~g}, 11.9$ $\mathrm{mmol}, 88 \%$ yield, 2 steps) as a colorless oil.
$[\alpha]_{\mathrm{D}}{ }^{18}=-3.34\left(c 0.99, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 0.07(12 \mathrm{H}, \mathrm{s}), 0.86(9 \mathrm{H}, \mathrm{s}), 0.89(9 \mathrm{H}, \mathrm{s}), 1.09(3 \mathrm{H}$, $\mathrm{s}), 1.16(3 \mathrm{H}, \mathrm{s}), 1.17(3 \mathrm{H}, \mathrm{s}), 1.39-1.59(3 \mathrm{H}, \mathrm{m}), 1.67(3 \mathrm{H}, \mathrm{s}), 1.70-2.20(5 \mathrm{H}, \mathrm{m}), 3.48(2 \mathrm{H}, \mathrm{dd}, J=6.9,3.8 \mathrm{~Hz})$, $3.62(1 \mathrm{H}, \mathrm{dd}, J=8.8,6.3 \mathrm{~Hz}), 4.15(2 \mathrm{H}, \mathrm{brd}, J=6.3 \mathrm{~Hz}), 5.41(1 \mathrm{H}, \mathrm{t}, J=6.9 \mathrm{~Hz}) .{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $\delta-4.09$ (q), -3.73 (q), -2.06 (q), -2.05 (q), 16.33 (q), 18.14 (s), 18.18 (s), 22.43 (q), 24.85 (q), 25.88 (q), 26.04 (q), $26.49(\mathrm{t}), 28.11(\mathrm{q}), 32.24(\mathrm{t}), 35.09(\mathrm{t}), 36.62(\mathrm{t}), 59.39(\mathrm{t}), 74.34(\mathrm{~s}), 77.40(\mathrm{~d}), 85.84(\mathrm{~s}), 86.93(\mathrm{~d}), 122.94$ (d), 140.49 (s). CIMS m/z $501[\mathrm{M}+\mathrm{H}]^{+}, 351$ (90), 257 (100), 173 (40). HRCIMS calcd 501.3795 for $\mathrm{C}_{27} \mathrm{H}_{57} \mathrm{O}_{4} \mathrm{Si}_{2}$, found $501.3772[\mathrm{M}+\mathrm{H}]^{+}$. IR (neat, cm^{-1}) 3327, 2954, 2931, 2857, 1467, 1363, 1252, 1172, 1097, 1067, 1038, 1005, 910, 834, 772.

3

$\mathrm{CH}_{2} \mathrm{Cl}_{2},-43^{\circ} \mathrm{C}$ to $0^{\circ} \mathrm{C}$

4

To a stirred suspension of molecular sieves $4 \mathrm{~A}(152 \mathrm{mg})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added titanium(IV) isopropoxide ($90 \mu \mathrm{~L}$, 0.30 mmol) and $(+)$-diethyl L-tartarate ($78 \mu \mathrm{~L}, 0.76 \mathrm{mmol}$). After cooling at $-30^{\circ} \mathrm{C}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution of 3 (762 $\mathrm{mg}, 1.520 \mathrm{mmol}$) and tert-butyl hydroperoxide ($5.0-6.0 \mathrm{moll}_{\mathrm{L}} \mathrm{L}^{-1}$ in decane, $360 \mu \mathrm{~L}, 1.8-2.1 \mathrm{mmol}$) was add to the mixture. The reaction mixture was allowed to warm to $0{ }^{\circ} \mathrm{C}$. After stirring for 2 days, the reaction was quenched by addition of saturated aqueous NaHSO_{3} and the mixture was filtered through Celite. The filtrate was diluted with ethyl acetate. The phases were separated and the aqueous phase was extracted with ethyl acetate. The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated. The residue was purified by column chromatography (hexane/EtOAc, 5:1) to give $4(694 \mathrm{mg}, 1.34 \mathrm{mmol}, 88 \%)$ as a colorless oil. The compound 4 are obtained in 77% diastereomeric excess which was determined by ${ }^{1} \mathrm{H}$ NMR analysis.
$[\alpha]_{\mathrm{D}}{ }^{18}=-7.49\left(c 1.51, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 0.05(3 \mathrm{H}, \mathrm{s}), 0.06(3 \mathrm{H}, \mathrm{s}), 0.07(6 \mathrm{H}, \mathrm{s}), 0.85(9 \mathrm{H}$, s), $0.88(9 \mathrm{H}, \mathrm{s}), 1.08(3 \mathrm{H}, \mathrm{s}), 1.16(3 \mathrm{H}, \mathrm{s}), 1.17(3 \mathrm{H}, \mathrm{s}), 1.28(3 \mathrm{H}, \mathrm{s}), 1.40(1 \mathrm{H}, \mathrm{m}), 1.55(1 \mathrm{H}, \mathrm{m}), 1.62(2 \mathrm{H}, \mathrm{m})$, $1.72-1.88(4 \mathrm{H}, \mathrm{m}), 1.93(1 \mathrm{H}, \mathrm{m}), 2.95(1 \mathrm{H}, \mathrm{dd}, J=6.3,4.4 \mathrm{~Hz}), 3.47(1 \mathrm{H}, \mathrm{dd}, J=6.7,4.4 \mathrm{~Hz}), 3.62(1 \mathrm{H}, \mathrm{dd}, J=$ $9.1,6.0 \mathrm{~Hz}), 3.69(1 \mathrm{H}, \mathrm{m}), 3.84(1 \mathrm{H}, \mathrm{m})$. Selected minor signals. $2.96(1 \mathrm{H}), 3.62(1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $(75 \mathrm{MHz}$, CDCl_{3}): $\delta-4.16(\mathrm{q}),-3.76(\mathrm{q}),-2.06(\mathrm{q}), 16.77(\mathrm{q}), 18.13(\mathrm{~s}), 22.36(\mathrm{q}), 24.89(\mathrm{q}), 25.88(\mathrm{q}), 26.00(\mathrm{q}), 26.46(\mathrm{t})$, $28.05(\mathrm{q}), 29.09(\mathrm{t}), 35.19(\mathrm{t}), 35.47(\mathrm{t}), 61.44(\mathrm{t}), 61.53(\mathrm{~s}), 62.68(\mathrm{~d}), 74.30(\mathrm{~s}), 77.33(\mathrm{~d}), 85.77(\mathrm{~s}), 86.97(\mathrm{~d})$. CIMS m/z $517[\mathrm{M}+\mathrm{H}]^{+}, 385$ (30), 257 (100), 173 (35). HRCIMS calcd 517.3745 for $\mathrm{C}_{27} \mathrm{H}_{57} \mathrm{O}_{5} \mathrm{Si}_{2}$, found $517.3716[\mathrm{M}+\mathrm{H}]^{+}$. IR (neat, cm^{-1}) 3389, 2955, 2931, 2857, 1467, 1383, 1253, 1172, 1097, 1067, 1038, 910, 834, 773.

To a stirred solution of $4(1.01 \mathrm{~g}, 1.95 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{~mL})$ was added Dess-Martin periodinane (900 mg , 2.12 mmol) at rt . After stirring for 5 h , the reaction was quenched by addition of 10% aqueous sodium thiosulfate. The mixture was diluted with aqueous sodium hydrogen carbonate and diethyl ether. The phases were separated and the aqueous phase was extracted with diethyl ether. The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated. The residue was purified by column chromatography (hexane/EtOAc, 15:1) to give a corresponding aldehyde $\mathbf{4 a}(999 \mathrm{mg}, 1.94 \mathrm{mmol}, 99 \%)$ as a colorless oil.
$[\alpha]_{\mathrm{D}}{ }^{18}=+20.0\left(c 1.56, \mathrm{CDCl}_{3}\right) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 0.04(3 \mathrm{H}, \mathrm{s}), 0.07(3 \mathrm{H}, \mathrm{s}), 0.08(6 \mathrm{H}, \mathrm{s}), 0.85$ $(9 \mathrm{H}, \mathrm{s}), 0.85(9 \mathrm{H}, \mathrm{s}), 1.08(3 \mathrm{H}, \mathrm{s}), 1.16(6 \mathrm{H}, \mathrm{s}), 1.43(3 \mathrm{H}, \mathrm{s}), 1.54-1.64(3 \mathrm{H}, \mathrm{m}), 1.66-1.96(5 \mathrm{H}, \mathrm{m}), 3.16(1 \mathrm{H}, \mathrm{d}$, $J=4.9 \mathrm{~Hz}), 3.47(1 \mathrm{H}, \mathrm{m}), 3.62(1 \mathrm{H}, \mathrm{m}), 9.46(1 \mathrm{H}, \mathrm{d}, J=4.9 \mathrm{~Hz}) .{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right):-4.17(\mathrm{q}),-3.77$ (q), -2.07 (q), -2.05 (q), 17.23 (q), 18.12 (s), 22.11 (q), 24.93 (q), 25.88 (q), 25.97 (q), 26.42 (t), 27.98 (q), 28.83 (t), 35.23 (t), 35.62 (t), 63.39 (d), 64.52 (s$), 74.27$ (s$), 77.10$ (d), 85.67 (s), 87.06 (d), 199.76 (d). CIMS m/z 515 $[\mathrm{M}+\mathrm{H}]^{+}, 383$ (100), 257 (65), 251 (30), 57 (64). HRCIMS calcd 515.3588 for $\mathrm{C}_{27} \mathrm{H}_{55} \mathrm{O}_{5} \mathrm{Si}_{2}$, found 515.3580 $[\mathrm{M}+\mathrm{H}]^{+}$. IR (neat, cm^{-1}) 2956, 2930, 2857, 1725, 1471, 1383, 1253, 1172, 1098, 1066, 1040.

To a stirred suspension of methyltriphenylphosphonium bromide ($953 \mathrm{mg}, 2.67 \mathrm{mmol}$) in THF (15 mL) was added lithium bis(trimethylsilyl)amide ($2.57 \mathrm{~mL}, 2.57 \mathrm{mmol}, 1.0 \mathrm{~mol}_{\mathrm{L}} \mathrm{L}^{-1}$ hexane solution) at $0{ }^{\circ} \mathrm{C}$. After stirring for further 15 min , a solution of the aldehyde $\mathbf{4 a}(980 \mathrm{mg}, 1.90 \mathrm{mmol})$ in THF (5 mL) was added via cannula. After stirring for 1 h , acetone ($100 \mu \mathrm{~L}, 1.4 \mathrm{mmol}$) was added to the mixture. The mixture was concentrated and the residue was purified by column chromatography (hexane to toluene) to give 5 ($815 \mathrm{mg}, 1.59 \mathrm{mmol}, 84 \%$) as
a colorless oil.
$[\alpha]_{\mathrm{D}}{ }^{18}=-25.15\left(c 0.88, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 0.06(3 \mathrm{H}, \mathrm{s}), 0.06(3 \mathrm{H}, \mathrm{s}), 0.07(6 \mathrm{H}, \mathrm{s}), 0.85(9 \mathrm{H}$, s), $0.89(9 \mathrm{H}, \mathrm{s}), 1.09(3 \mathrm{H}, \mathrm{s}), 1.16(6 \mathrm{H}, \mathrm{s}), 1.26(3 \mathrm{H}, \mathrm{s}), 1.35-1.70(4 \mathrm{H}, \mathrm{m}), 1.70-2.00(4 \mathrm{H}, \mathrm{m}), 3.18(1 \mathrm{H}, \mathrm{d}, J=$ $7.0 \mathrm{~Hz}), 3.48(1 \mathrm{H}, \mathrm{dd}, J=6.7,3.4 \mathrm{~Hz}), 3.63(1 \mathrm{H}, \mathrm{dd}, J=8.5,6.3 \mathrm{~Hz}), 5.32(1 \mathrm{H}, \mathrm{dd}, J=1.1,10.4 \mathrm{~Hz}), 5.43(1 \mathrm{H}$, d, $J=1.1,17.2 \mathrm{~Hz}), 5.74(1 \mathrm{H}$, ddd, $J=7.0,10.4,17.2 \mathrm{~Hz}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta-4.14(\mathrm{q}),-3.74(\mathrm{q})$, -2.04 (q), 16.60 (q), 18.15 (s), 22.43 (q), 24.89 (q), 25.89 (q), 26.03 (q), 26.48 (t), 28.09 (q), 29.14 (t), 35.16 (t), 35.41 (t), 62.93 (s), 63.33 (d), 74.32 (s$), 77.41$ (d), 85.80 (s$), 86.98$ (d), 119.78 (t), 133.67 (d). CIMS 511 [M-H] ${ }^{+}$ (10), 381 (43), 257 (100), 173 (90). HRCIMS calcd 511.3639 for $\mathrm{C}_{28} \mathrm{H}_{55} \mathrm{O}_{4} \mathrm{Si}_{2}$, found 511.3635 [M-H] . IR (neat, cm^{-1}) 2938, 2862, 1465, 1379, 1251, 1173, 1096, 835, 775.

To a stirred solution of $5(650 \mathrm{mg}, 1.27 \mathrm{mmol})$ in THF (6 mL) was added tetrabutylammonium fluoride (7.6 mL , $7.6 \mathrm{mmol}, 1.0 \mathrm{moll} \mathrm{L}^{-1} \mathrm{THF}$ solution) at rt . After stirring for 14 h , the reaction was quenched by addition of aqueous sodium hydrogen carbonate. The mixture was diluted with additional aqueous sodium hydrogen carbonate and diethyl ether. The phases were separated and the aqueous phase was extracted with diethyl ether. The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated to give a colorless oil (612 mg), which was used for the next reaction without further purification. The crude compound described above was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(150 \mathrm{~mL})$. To the solution was added (1S)-(+)-10-camphorsulfonic acid (72 mg of 0.31 mmol) at $-78{ }^{\circ} \mathrm{C}$. After stirring for 90 min , the reaction was quenched by addition of saturated aqueous NaHCO_{3} and the mixture was diluted with diethyl ether. The phases were separated and the aqueous phase was extracted with diethyl ether. The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated to give a colorless oil (566 mg). The residue was purified by column chromatography (hexane/EtOAc, 9:1) to give 6 ($289 \mathrm{mg}, 0.724 \mathrm{mmol}, 57 \%$ yield, 2 steps) along with 7 ($67.2 \mathrm{mg}, 0.167 \mathrm{mmol}, 13 \%$ yield, 2 steps).

Compound 6: colorless oil
$[\alpha]_{\mathrm{D}}{ }^{20}=+14.81\left(c 1.83, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 0.06(3 \mathrm{H}, \mathrm{s}), 0.07(3 \mathrm{H}, \mathrm{s}), 0.84(9 \mathrm{H}, \mathrm{s}), 1.13(3 \mathrm{H}$, $\mathrm{m}), 1.14(3 \mathrm{H}, \mathrm{s}), 1.15(3 \mathrm{H}, \mathrm{s}), 1.17(3 \mathrm{H}, \mathrm{s}), 1.39-1.92(7 \mathrm{H}, \mathrm{m}), 2.04(1 \mathrm{H}, \mathrm{ddd}, J=7.4,8.0,11.8 \mathrm{~Hz}), 3.28(1 \mathrm{H}$, dd, $J=2.2,11.3 \mathrm{~Hz}$), $3.64(1 \mathrm{H}, \mathrm{td}, J=1.4,5.5 \mathrm{~Hz}), 3.70(1 \mathrm{H}, \mathrm{t}, J=8.0 \mathrm{~Hz}), 5.22(1 \mathrm{H}, \mathrm{ddd}, J=1.4,2.2,10.7 \mathrm{~Hz})$, $5.30(1 \mathrm{H}$, ddd, $J=1.4,2.2,17.6 \mathrm{~Hz}), 5.89(1 \mathrm{H}$, ddd, $J=5.5,10.7,17.6 \mathrm{~Hz}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ -1.90 (q), 18.36 (s), 21.13 (q), 22.70 (q), 24.87 (t), 25.29 (q), 26.10 (q), 27.04 (t), 27.76 (q), 35.22 (t), 38.86 (t), 69.95 (s), 74.74 (s), 83.19 (d), 84.34 (s), 84.97 (d), 87.45 (d), 116.86 (t), 134.95 (d). CIMS m/z $399[\mathrm{M}+\mathrm{H}]^{+}$(2), 397 (15), 381 (80), 341 (51), 267 (100), 248 (85), 173 (34), 89 (57). HRCIMS calcd 399.2931 for $\mathrm{C}_{22} \mathrm{H}_{43} \mathrm{O}_{4} \mathrm{Si}$, found $399.2912[\mathrm{M}+\mathrm{H}]^{+}$. IR (neat, cm^{-1}): 3394, 1407, 919.

Compound 7: colorless oil
$[\alpha]_{\mathrm{D}}{ }^{20}=+8.06\left(c 1.00, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 0.08(3 \mathrm{H}, \mathrm{s}), 0.08(3 \mathrm{H}, \mathrm{s}), 0.85(9 \mathrm{H}, \mathrm{s}), 1.14(3 \mathrm{H}$, $\mathrm{m}), 1.16(6 \mathrm{H}, \mathrm{s}), 1.17(3 \mathrm{H}, \mathrm{s}), 1.39-2.13(8 \mathrm{H}, \mathrm{m}), 3.72(1 \mathrm{H}, \mathrm{t}, J=8.0 \mathrm{~Hz}), 3.94(1 \mathrm{H}, \mathrm{dd}, J=5.4,10.2 \mathrm{~Hz}), 4.05$ $(1 \mathrm{H}, \mathrm{brd}, J=6.3 \mathrm{~Hz}), 5.21(1 \mathrm{H}, \mathrm{brd}, J=10.6 \mathrm{~Hz}), 5.36(1 \mathrm{H}, \mathrm{ddd}, J=1.4,2.2,16.9 \mathrm{~Hz}), 5.81(1 \mathrm{H}, \mathrm{ddd}, J=6.3$, $10.6,16.9 \mathrm{~Hz}$). ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta-2.14$ (q), 18.14 (s), 23.79 (q), 24.29 (q), 25.18 (q), 25.87 (q), 26.93 (t), 27.47 (q), 27.69 (t), 31.00 (t), 33.45 (t), 74.46 (s$), 78.07$ (d), 84.33 (s$), 85.41$ (s$), 87.36$ (d), 87.61 (d), 117.17 (t), 136.30 (d). CIMS m/z 397 [M-H] ${ }^{+}$(5), 383 (40), 341 (100), 257 (95), 173 (80). HRCIMS calcd 397.2774 for $\mathrm{C}_{22} \mathrm{H}_{41} \mathrm{O}_{4} \mathrm{Si}$, found $397.2760[\mathrm{M}-\mathrm{H}]^{+}$. IR (neat, cm^{-1}): $3547,1041,918$.

To a stirred solution of $6(289 \mathrm{mg}, 0.725 \mathrm{mmol})$ and 2,6-lutidine $(0.85 \mathrm{~mL}, 7.3 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ was added tert-butyldimethylsilyl trifluoromethanesulfonate ($0.67 \mathrm{~mL}, 2.9 \mathrm{mmol}$) at $-78{ }^{\circ} \mathrm{C}$. The reaction mixture was allowed to warm to $-50^{\circ} \mathrm{C}$. After stirring for 2days, the reaction was quenched by addition of saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ and the mixture was diluted with diethyl ether. The phases were separated and the aqueous phase was extracted with diethyl ether. The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated to give a colorless oil (378 mg). The residue was purified by column chromatography (hexane/EtOAc, 30:1) to give 8 ($345 \mathrm{mg}, 0.673 \mathrm{mmol}, 93 \%$ yield) as a colorless oil.
$[\alpha]_{\mathrm{D}}{ }^{20}=+20.76\left(c 1.27, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 0.07(3 \mathrm{H}, \mathrm{s}), 0.08(6 \mathrm{H}, \mathrm{s}), 0.09(3 \mathrm{H}, \mathrm{s}), 0.85(9 \mathrm{H}$, s), $0.86(9 \mathrm{H}, \mathrm{s}), 1.10(3 \mathrm{H}, \mathrm{s}), 1.14(3 \mathrm{H}, \mathrm{s}), 1.15(3 \mathrm{H}, \mathrm{s}), 1.17(3 \mathrm{H}, \mathrm{s}), 1.43(1 \mathrm{H}, \mathrm{m}), 1.55-1.73(4 \mathrm{H}, \mathrm{m}), 1.78-1.93$ $(3 \mathrm{H}, \mathrm{m}), 2.06(1 \mathrm{H}, \mathrm{td}, J=7.7,12.4 \mathrm{~Hz}), 3.28(1 \mathrm{H}, \mathrm{dd}, J=2.2,11.5 \mathrm{~Hz}), 3.65(1 \mathrm{H}, \mathrm{td}, J=1.6,3.8 \mathrm{~Hz}), 3.72(1 \mathrm{H}$, dd, $J=6.9,7.7 \mathrm{~Hz}), 5.12(1 \mathrm{H}$, ddd, $J=1.6,2.5,11.0 \mathrm{~Hz}), 5.30(1 \mathrm{H}, \mathrm{ddd}, J=1.6,2.5,17.6 \mathrm{~Hz}), 6.00(1 \mathrm{H}$, ddd, J $=3.8,11.0,17.6 \mathrm{~Hz}$). ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta-2.09$ (q), -1.95 (q), -1.75 (q), 18.07 (s), 18.17 (s), 21.00 (q), 22.54 (q), 24.67 (t), 25.08 (q), $25.80(\mathrm{q}), 25.90(\mathrm{q}), 26.86(\mathrm{t}), 27.56(\mathrm{q}), 34.96(\mathrm{t}), 39.98(\mathrm{t}), 72.60(\mathrm{~s}), 74.58$ (s), 82.84 (d), 83.85 (d), 84.25 (s), 87.22 (d), 114.49 (t), 135.28 (d). CIMS m/z 513 [M] ${ }^{+}, 455$ (27), 257 (100), 173 (100), 73 (51). HRCIMS calcd 512.3717 for $\mathrm{C}_{28} \mathrm{H}_{56} \mathrm{O}_{4} \mathrm{Si}_{2}$, found 512.3718 [M] . IR (neat, cm^{-1}): 919.

Synthesis of Segment B

To a stirred solution of $9(1.37 \mathrm{~g}, 4.36 \mathrm{mmol})$ in pyridine $(10 \mathrm{~mL})$ was added acetic anhydride ($2.1 \mathrm{~mL}, 22.2$ mmol) at rt . After stirring for 6 h , the mixture was concentrated under reduced pressure. The residue was purified by column chromatography (hexane/EtOAc, 2:1) to give 9 a ($1.51 \mathrm{~g}, 4.24 \mathrm{mmol}, 97 \%$ yield) as a colorless oil. $[\alpha]_{\mathrm{D}}{ }^{20}=-0.31\left(c 1.09, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 1.11(3 \mathrm{H}, \mathrm{s}), 1.19(6 \mathrm{H}, \mathrm{s}), 1.55-2.20(8 \mathrm{H}, \mathrm{m})$, $1.70(3 \mathrm{H}, \mathrm{s}), 2.06(3 \mathrm{H}, \mathrm{s}), 2.07(3 \mathrm{H}, \mathrm{s}), 3.71(1 \mathrm{H}, \mathrm{t}, J=7.3 \mathrm{~Hz}), 4.59(2 \mathrm{H}, \mathrm{d}, J=7.0 \mathrm{~Hz}), 4.91(1 \mathrm{H}, \mathrm{dd}, J=2.6$, 9.9 Hz), $5.35(1 \mathrm{H}, \mathrm{t},, J=7.0 \mathrm{~Hz}) .{ }^{13} \mathrm{C}$ NMR ($50 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 16.37$ (q), 20.89 (q), 20.99 (q), 22.74 (q), 23.97 (q), 25.95 (t), 27.32 (q), 27.73 (t), 34.69 (t), 35.74 (t), 61.19 (t), 70.32 (s), 77.36 (d), 83.89 (s), 86.94 (d), 118.63 (d), 141.38 (s), 170.72 (s), 171.14 (s). CIMS m/z $357[\mathrm{M}+\mathrm{H}]^{+}, 279$ (100). HRCIMS calcd 357.2277 for $\mathrm{C}_{19} \mathrm{H}_{33} \mathrm{O}_{6}$, found $357.2294[\mathrm{M}+\mathrm{H} 1]^{+}$. IR (neat, cm^{-1}): 3513, 1734.

To a stirred solution of $9 \mathrm{a}(1.158 \mathrm{~g}, 3.25 \mathrm{mmol})$ in 7.5 mL of MeOH and 2.5 mL of $\mathrm{H}_{2} \mathrm{O}$ was added lithium hydroxide monohydrate ($150 \mathrm{mg}, 3.57 \mathrm{mmol}$) at rt. After stirring for 20 min , the reaction was quenched by addition of saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ and the mixture was diluted with ethyl acetate. The phases were separated and the aqueous phase was extracted with ethyl acetate. The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and
concentrated under reduced pressure. The residue was purified by column chromatography (hexane/EtOAc, 1:1) to give $9 \mathbf{b}(906 \mathrm{mg}, 2.88 \mathrm{mmol}, 89 \%$ yield) as a colorless oil.
$[\alpha]_{\mathrm{D}}{ }^{18}=+2.08\left(c 1.16, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR $\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 1.11(3 \mathrm{H}, \mathrm{s}), 1.19(6 \mathrm{H}, \mathrm{s}), 1.56-2.04(8 \mathrm{H}, \mathrm{m})$, $1.67(3 \mathrm{H}, \mathrm{s}), 2.07(3 \mathrm{H}, \mathrm{s}), 3.71(1 \mathrm{H}, \mathrm{t}, J=7.2 \mathrm{~Hz}), 4.14(2 \mathrm{H}, \mathrm{d}, J=7.0 \mathrm{~Hz}), 4.91(1 \mathrm{H}, \mathrm{dd}, J=2.6,10.2 \mathrm{~Hz}), 5.40$ $(1 \mathrm{H}, \mathrm{t}, J=7.0 \mathrm{~Hz}) .{ }^{13} \mathrm{C}$ NMR ($50 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 16.10(\mathrm{q}), 21.20(\mathrm{q}), 22.95(\mathrm{q}), 24.02(\mathrm{q}), 26.10(\mathrm{t}), 27.46(\mathrm{q})$, 27.72 (t), $34.69(\mathrm{t}), 35.80(\mathrm{t}), 59.29(\mathrm{t}), 70.44(\mathrm{~s}), 77.25(\mathrm{~d}), 84.00(\mathrm{~s}), 87.05(\mathrm{~d}), 124.21(\mathrm{~d}), 138.54(\mathrm{~s}), 170.91$ (s): CIMS m/z $315[\mathrm{M}+\mathrm{H}]^{+}, 279$ (100), HRCIMS calcd 315.2172 for $\mathrm{C}_{17} \mathrm{H}_{31} \mathrm{O}_{5}$, found $315.2154[\mathrm{M}+\mathrm{H}]^{+}$. IR (neat, cm^{-1}): $3415,1735$.

To a stirred solution of $\mathbf{9 b}(1.158 \mathrm{~g}, 3.37 \mathrm{mmol})$ in hexane $(20 \mathrm{~mL})$ was added manganese dioxide ($6 \mathrm{~g}, 69$ mmol) at rt . After stirring for 17 h , the reaction mixture was directly subjected to column chromatography (hexane to hexane/EtOAc, 1:1) to give 9c ($840 \mathrm{mg}, 2.69 \mathrm{mmol}, 80 \%$ yield) as a colorless oil along with starting material $9 \mathbf{b}(83.3 \mathrm{mg}, 0.265 \mathrm{mmol}, 7 \%$ yield $)$.
$[\alpha]_{\mathrm{D}}{ }^{21}=+2.11\left(c 1.04, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR $\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.12,(3 \mathrm{H}, \mathrm{s}), 1.20(6 \mathrm{H}, \mathrm{s}), 1.64-2.28(8 \mathrm{H}, \mathrm{m})$, $2.08(3 \mathrm{H}, \mathrm{s}), 2.18(3 \mathrm{H}, \mathrm{d}, J=1.2 \mathrm{~Hz}), 3.73(1 \mathrm{H}, \mathrm{t}, J=7.6 \mathrm{~Hz}), 4.92(1 \mathrm{H}, \mathrm{dd}, J=3.0,10.0 \mathrm{~Hz}), 5.89(1 \mathrm{H}, \mathrm{brd}, J=$ $7.7 \mathrm{~Hz}), 10.00(1 \mathrm{H}, \mathrm{d}, J=7.7 \mathrm{~Hz}){ }^{13} \mathrm{C}$ NMR ($50 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 17.61$ (q), 20.91 (q), 22.47 (q), 23.96 (q),
 170.72 (s), 191.19 (d). CIMS $m / z 313[M+H]^{+}, 295$ (100), HRCIMS calcd 313.2015 for $\mathrm{C}_{17} \mathrm{H}_{29} \mathrm{O}_{5}$, found $313.2010[\mathrm{M}+\mathrm{H}]^{+}$. IR (neat, cm^{-1}): 3480, 1735, 1671, 1375, 1236.

9c

10

To a stirred mixture of 9c ($354 \mathrm{mg}, 1.13 \mathrm{mmol}$), 2-methyl-2-butene ($0.6 \mathrm{~mL}, 5.66 \mathrm{mmol}$) and sodium dihydrogenphosphate dihydrate ($870 \mathrm{mg}, 5.58 \mathrm{mmol}$) in 10 mL of $t-\mathrm{BuOH}$ and 4 mL of $\mathrm{H}_{2} \mathrm{O}$ was added sodium chlorite (purity $80 \%, 520 \mathrm{mg}, 4.6 \mathrm{mmol}$) at rt . After stirring for 1 h , the reaction was quenched by addition of aqueous sodium hydrogensulfite. The mixture was diluted with additional aqueous sodium hydrogensulfite and ethyl acetate. The phases were separated and the aqueous phase was extracted with ethyl acetate. The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated. The residue was purified by column chromatography (hexane/EtOAc, 1:2) to give $\mathbf{1 0}(371 \mathrm{mg}, 1.129 \mathrm{mmol}, 100 \%$ yield) as a colorless oil.
$[\alpha]_{D}{ }^{18}=+3.19\left(c 0.966, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.12(3 \mathrm{H}, \mathrm{s}), 1.20(3 \mathrm{H}, \mathrm{s}), 1.20(3 \mathrm{H}, \mathrm{s})$, $1.62-2.21(8 \mathrm{H}, \mathrm{m}), 2.08(3 \mathrm{H}, \mathrm{s}), 2.17(4 \mathrm{H}, \mathrm{d}, J=1.2 \mathrm{~Hz}), 3.73(1 \mathrm{H}, \mathrm{t}, J=7.2 \mathrm{~Hz}), 4.92(1 \mathrm{H}, \mathrm{dd}, J=2.6,10.0$ $\mathrm{Hz}), 5.70(1 \mathrm{H}, \mathrm{d}, J=1.2 \mathrm{~Hz}) .{ }^{13} \mathrm{C}$ NMR ($50 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 19.07$ (q), $21.00(\mathrm{q}), 22.64(\mathrm{q}), 23.97(\mathrm{q}), 25.99(\mathrm{t})$, $27.36(\mathrm{q}), 27.59(\mathrm{t}), 34.90(\mathrm{t}), 37.51$ (t), $70.52(\mathrm{~s}), 77.28$ (d), $83.88(\mathrm{~s}), 87.03(\mathrm{~d}), 115.37$ (d), 161.82 (s), 170.90 (s), 171.49 (s). CIMS $m / z 329[M+H]^{+}, 311$ (100). HRCIMS calcd 329.1964 for $\mathrm{C}_{17} \mathrm{H}_{29} \mathrm{O}_{6}$, found 329.1960 $[\mathrm{M}+\mathrm{H}]^{+}$. IR (neat, $\left.\mathrm{cm}^{-1}\right): 3468,1724,1645,1238$.

To a stirred solution of $\mathbf{1 0}(640 \mathrm{mg}, 1.95 \mathrm{mmol})$ in $\mathrm{CHCl}_{3}(20 \mathrm{~mL})$ and $\mathrm{MeOH}(0.5 \mathrm{~mL})$ added pyridinium tribromide (purity $90 \%, 1.39 \mathrm{~g}, 3.91 \mathrm{mmol}$) at rt. After stirring for 2 h , the reaction was quenched by addition of aqueous sodium hydrogensulfite. The mixture was diluted with additional aqueous sodium hydrogensulfite and ethyl acetate. The phases were separated and the aqueous phase was extracted with ethyl acetate. The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated. The residue was roughly purified by flash column chromatography (hexane/EtOAc, $1: 2$) to give crude $\mathbf{1 0 a}(802 \mathrm{mg})$ as a pale yellow colorless oil, which was used for the next reaction without further purification. To a stirred solution of the crude 10a in DMF (10 mL) was added $\mathrm{Et}_{3} \mathrm{~N}(0.34 \mathrm{~mL}, 2.44 \mathrm{mmol})$. The mixture was divided into two test tubes suitable for microwave reactor (Discover ${ }^{\circledR}$ CEM corporation). Each test tube was sealed and exposed to the microwave irradiation (200 watt, $100{ }^{\circ} \mathrm{C}, 8 \mathrm{~min}$.). Each solution was combined and diluted with aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ and ethyl acetate. The phases were separated and the aqueous phase was extracted with ethyl acetate. The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated. The residue was purified by column chromatography (hexane/EtOAc, 2:1) to give $\mathbf{1 1}$ ($511 \mathrm{mg}, 1.41 \mathrm{mmol}, 72 \%$ yield) as a colorless oil, which consists of $20: 1$ mixture of E and Z geometric isomer. Stereochemistry of $\mathbf{1 1}$ was determined by NOE experiment.
$[\alpha]_{\mathrm{D}}{ }^{23}=+6.60\left(c 0.89, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\$ 1.11,(3 \mathrm{H}, \mathrm{s}), 1.20(6 \mathrm{H}, \mathrm{s}), 1.60(1 \mathrm{H}, \mathrm{dtd}, J=5.2$, $10.7,14.0 \mathrm{~Hz}), 1.66(1 \mathrm{H}, \mathrm{td}, J=4.9,11.8 \mathrm{~Hz}), 1.79(3 \mathrm{H}, \mathrm{d}, J=1.3 \mathrm{~Hz}), 1.80-1.86(3 \mathrm{H}, \mathrm{m}), 1.95(1 \mathrm{H}, \mathrm{ddd}, 8.2$, $8.8,10.7 \mathrm{~Hz}), 2.10(3 \mathrm{H}, \mathrm{s}), 2.17-2.27(2 \mathrm{H}, \mathrm{m}), 3.72(1 \mathrm{H}, \mathrm{t}, J=8.2 \mathrm{~Hz}), 4.92(1 \mathrm{H}, \mathrm{dd}, J=2.7,10.7 \mathrm{~Hz}) 5.87$ $(1 \mathrm{H}, \mathrm{d}, J=1.3 \mathrm{~Hz})$. selected minor signals for a Z isomer, $3.71(1 \mathrm{H}, \mathrm{t}), 4.89(1 \mathrm{H}, \mathrm{dd}), 5.93(1 \mathrm{H}, \mathrm{m}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 21.13$ (q), 22.04 (q), $22.88(\mathrm{q}), 24.02(\mathrm{q}), 26.03(\mathrm{t}), 27.08(\mathrm{t}), 27.45(\mathrm{q}), 31.02(\mathrm{t}), 34.82(\mathrm{t})$, 70.37 (s), 77.50 (d), 83.93 (s), 87.03 (d), 101.21 (d), 140.85 (s), 170.75 (s). CIMS m/z $365[\mathrm{M}+3 \mathrm{H}]^{+}, 363$ $[\mathrm{M}+\mathrm{H}]^{+}, 347$ (100), 345 (98). HRCIMS calcd 363.1171 for $\mathrm{C}_{16} \mathrm{H}_{28} \mathrm{O}_{4} \mathrm{Br}$, found $363.1185[\mathrm{M}+\mathrm{H}]^{+}$. IR (neat, $\left.\mathrm{cm}^{-1}\right): 3509,1738$.

Synthesis of Pseudodehydrothyrsiferol

Hydrobration:
9-BBN ($7.28 \mathrm{~mL}, 3.64 \mathrm{mmol}, 0.5 \mathrm{~mol} \mathrm{~L}^{-1}$ THF solution), $\mathbf{8}(595 \mathrm{mg}, 1.159 \mathrm{mmol})$ and THF (10 mL) was placed in a flask equipped with reflux condenser. The flask was put into the Microwave reactor (Discover ${ }^{\circledR}$ CEM
corporation) and exposed to the microwave irradiation for 15 min . (200 watt, $70{ }^{\circ} \mathrm{C}$, open system in Ar atmosphere) to give 8a.
Suzuki-Miyaura coupling:
[1, 1^{\prime}-Bis(diphenylphosphino)ferrocene]dichloropalladium(II) ($190 \mathrm{mg}, 0.23 \mathrm{mmol}$, dichloromethane adduct) and tri-potassium phosphate trihydrate $(1.55 \mathrm{~g}, 2.82 \mathrm{mmol})$ was placed in a flask equipped with reflux condenser. The solution of borane 8a described above and $\mathbf{1 1}$ in DMF (5 mL) was added to the flask via cannula. The mixture was refluxed for 12 h . After the reaction mixture is passed through Celite to remove solid material, the filtrate was evaporated. The residue was purified by column chromatography (hexane/EtOAc, 7:1) to give 12 (762 mg , $0.956 \mathrm{mmol}, 82 \%$ yield) as a colorless oil.
$[\alpha]_{\mathrm{D}}{ }^{20}=+15.25\left(c 1.02, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 0.07(6 \mathrm{H}, \mathrm{s}), 0.07(6 \mathrm{H}, \mathrm{s}), 0.84(9 \mathrm{H}, \mathrm{s}), 0.85(9 \mathrm{H}$, s), $1.11(6 \mathrm{H}, \mathrm{s}), 1.12(3 \mathrm{H}, \mathrm{s}), 1.15(3 \mathrm{H}, \mathrm{s}), 1.17(3 \mathrm{H}, \mathrm{s}), 1.18(3 \mathrm{H}, \mathrm{s}), 1.19(3 \mathrm{H}, \mathrm{s}), 1.35-2.05(20 \mathrm{H}, \mathrm{m}), 2.07(3 \mathrm{H}$, s), $2.99(1 \mathrm{H}, \mathrm{d}, J=8.8 \mathrm{~Hz}), 3.14(1 \mathrm{H}, \mathrm{dd}, J=1.2,9.1 \mathrm{~Hz}), 3.66(1 \mathrm{H}, \mathrm{t}, J=6.7 \mathrm{~Hz}), 3.70(1 \mathrm{H}, \mathrm{t}, J=7.4 \mathrm{~Hz}), 4.93$ $(1 \mathrm{H}, \mathrm{dd}, J=2.2,9.9 \mathrm{~Hz}), 5.16(1 \mathrm{H}, \mathrm{t}, J=7.7 \mathrm{~Hz}) .{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta-2.10(\mathrm{q}),-1.94(\mathrm{q}),-1.79(\mathrm{q})$, 18.03 (s), 18.13 (q), 20.64 (q), 21.16 (q), 22.13 (q), $23.22(\mathrm{q}), 23.41$ (q), 24.08 (q), 24.64 (t$), 24.75(\mathrm{t}), 24.87(\mathrm{q})$, 25.77 (q), 25.86 (q), 26.07 (t), 26.67 (t), 27.57 (q), 27.77 (q), $28.33(t), 28.38(\mathrm{t}), 29.15(\mathrm{t}), 34.49(\mathrm{t}), 35.49(\mathrm{t})$, 40.27 (t), 70.28 (s), 72.44 (s), 74.46 (s), 78.04 (d), 82.98 (d), 84.06 (s), 84.10 (s), 84.41 (d), 87.04 (d), 87.09 (d), 126.19 (d), 134.11 (s), 170.58 (s). FABMS m/z $820[\mathrm{M}+\mathrm{Na}]^{+}$(15), 257 (12), 173 (30), 73 (100). HRFABMS calcd 819.5602 for $\mathrm{C}_{44} \mathrm{H}_{84} \mathrm{O}_{8} \mathrm{Si}_{2} \mathrm{Na}$, found $819.5593[\mathrm{M}+\mathrm{Na}]^{+}$. IR (neat, cm^{-1}) 3580, 1742.

To a stirred solution of $\mathbf{1 2}(162 \mathrm{mg}, 0.203 \mathrm{mmol})$ and 2,6-lutidine $(120 \mu \mathrm{~L}, 1.03 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{~mL})$ was added tert-butyldimethylsilyl trifluoromethanesulfonate ($120 \mu \mathrm{~L}, 0.52 \mathrm{mmol}$) at $-78{ }^{\circ} \mathrm{C}$. The reaction mixture was allowed to warm to $-10^{\circ} \mathrm{C}$. After stirring for 2 days, the reaction was quenched by addition of saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ and the mixture was diluted with ethyl acetate. The phases were separated and the aqueous phase was extracted with ethyl acetate. The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated to give a colorless oil (275 mg), The residue was purified by column chromatography (hexane/EtOAc, 20:1) to give 12a ($184 \mathrm{mg}, 0.202 \mathrm{mmol}, 100 \%$ yield) as a colorless oil.
$[\alpha]_{\mathrm{D}}{ }^{21}=+9.85\left(c 1.02, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 0.05(6 \mathrm{H}, \mathrm{s}), 0.06(12 \mathrm{H}, \mathrm{s}), 0.83(9 \mathrm{H}, \mathrm{s}), 0.83$ $(18 \mathrm{H}, \mathrm{s}), 1.09(3 \mathrm{H}, \mathrm{s}), 1.10(3 \mathrm{H}, \mathrm{s}), 1.13(6 \mathrm{H}, \mathrm{s}), 1.14(3 \mathrm{H}, \mathrm{s}), 1.15(3 \mathrm{H}, \mathrm{s}), 1.15(3 \mathrm{H}, \mathrm{s}), 1.35-2.20(20 \mathrm{H}, \mathrm{m}), 2.05$ $(3 \mathrm{H}, \mathrm{s}), 2.97(1 \mathrm{H}, \mathrm{d}, J=9.1 \mathrm{~Hz}), 3.13(1 \mathrm{H}, \mathrm{dd}, J=1.6,11.3 \mathrm{~Hz}), 3.62(1 \mathrm{H}, \mathrm{t}, J=6.3 \mathrm{~Hz}), 3.65(1 \mathrm{H}, \mathrm{t}, J=7.7 \mathrm{~Hz})$, $4.88(1 \mathrm{H}, \mathrm{dd}, J=2.7,10.2 \mathrm{~Hz}), 5.14(1 \mathrm{H}, \mathrm{t}, J=6.6 \mathrm{~Hz}) .{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta-2.05(\mathrm{q}),-1.91(\mathrm{q})$, -1.75 (q), 18.06 (s), 18.16 (s), 20.67 (q), 21.25 (q), 22.13 (q), 22.85 (q), 23.45 (q), 24.67 (t), 24.76 (t), 24.94 (q), $25.81(\mathrm{q}), 25.90(\mathrm{q}), 26.40(\mathrm{t}), 26.7(\mathrm{t}), 27.74(\mathrm{q}), 27.74(\mathrm{q}), 28.38(\mathrm{t}), 28.49(\mathrm{t}), 29.20(\mathrm{t}), 34.58(\mathrm{t}), 35.57(\mathrm{t})$, 40.32 (t), 72.48 (s), 74.27 (s), 74.50 (s), 78.06 (s), 82.99 (d), 83.98 (s), 84.12 (s), 84.46 (d), 87.09 (d), 87.57 (d), 126.00 (d), 134.37 (s), 170.66 (s). FABMS m/z $934[\mathrm{M}+\mathrm{Na}]^{+} 455$ (10), 257 (15), 173 (30), 73 (100). HRFABMS calcd 933.6467 for $\mathrm{C}_{50} \mathrm{H}_{98} \mathrm{O}_{8} \mathrm{Si}_{3} \mathrm{Na}$, found $933.6466[\mathrm{M}+\mathrm{Na}]^{+}$. IR (neat, cm^{-1}) 1742.

To a stirred solution of $\mathbf{1 2 a}(169 \mathrm{mg}, 0.185 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ was added m-chloroperbenzoic acid (purity $75 \%, 52 \mathrm{mg}, 0.226 \mathrm{mmol}$) at $0^{\circ} \mathrm{C}$. After stirring for 30 min at rt . the reaction was quenched by addition of aqueous sodium sulfite and the mixture was diluted with hexane. The phases were separated and the aqueous phase was extracted with hexane. The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated. The residue was purified by column chromatography (hexane/EtOAc, $15: 1$) to give $13(166 \mathrm{mg}, 0.179 \mathrm{mmol}, 97 \%$
yield) as a colorless oil. 13 was a $2: 1$ mixture of inseparable diastreomers. The ratio was determined by the ${ }^{1} \mathrm{H}$ NMR spectrum.
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): Selected signals. $\delta 1.089$ (minor isomer's peak), 1.097 (major isomer's peak) (3 H , s), 1.271 (major isomer's peak), 1.280 (minor isomer's peak), ($3 \mathrm{H}, \mathrm{s}$), 2.040 (minor isomer's peak), 2.047 (major isomer's peak), ($3 \mathrm{H}, \mathrm{s}$). FABMS $m / z 950[\mathrm{M}+\mathrm{Na}]^{+}, 796$ (1), 678 (1), 603 (5), 471 (7), 323 (7), 275 (12), 173 (30), 73 (100). HRFABMS calcd 949.6417 for $\mathrm{C}_{50} \mathrm{H}_{98} \mathrm{O}_{9} \mathrm{Si}_{3} \mathrm{Na}$, found $949.6393[\mathrm{M}+\mathrm{Na}]^{+}$. IR (neat, cm^{-1}) 1742.

To a stirred solution of $\mathbf{1 3}(164 \mathrm{mg}, 0.177 \mathrm{mmol})$ in toluene $(30 \mathrm{~mL})$ was added aluminum isopropoxide $(360 \mathrm{mg}$, 1.77 mmol). After refluxing for 18 h , the reaction mixture was allowed to rt and was diluted with saturated aqueous potassium sodium tartrate and ethyl acetate. After the mixture was vigorously stirring for 2 h , the phases were separated and the aqueous phase was extracted with ethyl acetate. The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated. The residue was purified by column chromatography (hexane/EtOAc, 9:1) to give 14a $(64.6 \mathrm{mg}, 0.073 \mathrm{mmol}, 41 \%$ yield) and $\mathbf{1 4 b}(35.8 \mathrm{mg}, 0.040 \mathrm{mmol}, 23 \%$ yield) and as a colorless oil. Stereochemistry at C14 was determined by Kusumi method after converting 15a to (R)- and (S)- MTPA esters as described as follows.

14a

$[\alpha]_{\mathrm{D}}{ }^{20}=+8.48\left(c 0.59, \mathrm{CHCl}_{3}\right),{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 0.07(6 \mathrm{H}, \mathrm{s}), 0.07(6 \mathrm{H}, \mathrm{s}), 0.08(6 \mathrm{H}, \mathrm{s}), 0.84(9 \mathrm{H}$, s), $0.85(9 \mathrm{H}, \mathrm{s}) 0.85(9 \mathrm{H}, \mathrm{s}), 1.10(3 \mathrm{H}, \mathrm{s}), 1.12(3 \mathrm{H}, \mathrm{s}), 1.14(3 \mathrm{H}, \mathrm{s}), 1.14(3 \mathrm{H}, \mathrm{s}), 1.16(3 \mathrm{H}, \mathrm{s}), 1.19(6 \mathrm{H}, \mathrm{s})$, $1.36-1.48(4 \mathrm{H}, \mathrm{m}), 1.58-1.78(6 \mathrm{H}, \mathrm{m}), 1.79-1.88(6 \mathrm{H}, \mathrm{m}), 1.90-2.30(4 \mathrm{H}, \mathrm{m}), 3.07(1 \mathrm{H}, \mathrm{d}, J=9.5 \mathrm{~Hz}), 3.23(1 \mathrm{H}$, $\mathrm{dd}, J=2.2,11.0 \mathrm{~Hz}), 3.53(1 \mathrm{H}, \mathrm{dd}, J=1.8,10.4 \mathrm{~Hz}), 3.66(1 \mathrm{H}, \mathrm{t}, J=7.3 \mathrm{~Hz}), 3.68(1 \mathrm{H}, \mathrm{t}, J=7.1 \mathrm{~Hz}), 4.13(1 \mathrm{H}$, $\mathrm{m}), 4.87(1 \mathrm{H}$, brs $), 5.06\left(1 \mathrm{H}\right.$, brs) ${ }^{13}{ }^{13} \mathrm{CNR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta-2.05(\mathrm{q}),-1.95(\mathrm{q}),-1.78(\mathrm{q}), 18.05$ (s), 18.17 (s), 20.61 (q), 22.33 (q), $24.00(\mathrm{q}), 24.83(\mathrm{t}), 25.05(\mathrm{q}), 25.27(\mathrm{q}), 25.79(\mathrm{q}), 25.90(\mathrm{q}), 26.66(\mathrm{t}), 26.81(\mathrm{t}), 27.60$ $(\mathrm{q}), 27.78(\mathrm{q}), 28.72(\mathrm{t}), 29.97(\mathrm{t}), 31.21(\mathrm{t}), 33.13(\mathrm{t}), 35.28(\mathrm{t}), 40.19(\mathrm{t}), 72.49(\mathrm{~s}), 74.21(\mathrm{~s}), 74.24(\mathrm{~d}), 74.40(\mathrm{~s})$, 76.17 (d), 83.37 (d), 83.92 (s), 85.40 (d), 85.93 (s$), 87.20$ (d), 88.61 (d), 109.66 (t), 151.43 (s). FABMS m/z 908 $[\mathrm{M}+\mathrm{Na}]^{+}, 754$ (10), 604 (10), 173 (70), 73 (100). HRFABMS calcd 907.6311 for $\mathrm{C}_{48} \mathrm{H}_{96} \mathrm{O}_{8} \mathrm{Si}_{3} \mathrm{Na}$, found 907.6323. IR (neat, cm^{-1}) 3420, 833.

14b

$[\alpha]_{\mathrm{D}}{ }^{20}=+16.22\left(c 0.32, \mathrm{CHCl}_{3}\right),{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 0.07(6 \mathrm{H}, \mathrm{s}), 0.07(6 \mathrm{H}, \mathrm{s}), 0.08(6 \mathrm{H}, \mathrm{s}), 0.84(9 \mathrm{H}$, s), $0.85(9 \mathrm{H}, \mathrm{s}) 0.85(9 \mathrm{H}, \mathrm{s}), 1.10(3 \mathrm{H}, \mathrm{s}), 1.11(3 \mathrm{H}, \mathrm{s}), 1.14(3 \mathrm{H}, \mathrm{s}), 1.16(6 \mathrm{H}, \mathrm{s}), 1.19(6 \mathrm{H}, \mathrm{s}), 1.24-1.52(4 \mathrm{H}, \mathrm{m})$, $1.58-1.70(6 \mathrm{H}, \mathrm{m}), 1.79-1.90(6 \mathrm{H}, \mathrm{m}), 1.92-2.11(3 \mathrm{H}, \mathrm{m}), 2.40(1 \mathrm{H}, \mathrm{m}), 3.10(1 \mathrm{H}, \mathrm{d}, J=9.2 \mathrm{~Hz}), 3.25(1 \mathrm{H}, \mathrm{dd}$, $J=2.2,12.0 \mathrm{~Hz}), 3.51(1 \mathrm{H}, \mathrm{dd}, J=1.7,10.4 \mathrm{~Hz}), 3.67(1 \mathrm{H}, \mathrm{t}, J=7.7 \mathrm{~Hz}), 3.68(1 \mathrm{H}, \mathrm{t}, J=8.4 \mathrm{~Hz}), 4.04(1 \mathrm{H}, \mathrm{dd}$, $4.0,8.0 \mathrm{~Hz}), 4.83\left(1 \mathrm{H}\right.$, brs), $5.07\left(1 \mathrm{H}\right.$, brs). ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta-2.04$ (q), -1.95 (q), -1.79 (q), 18.04 (s), 18.18 (s), 20.61 (q), 22.65 (q), 23.97 (q), $25.00(\mathrm{t}), 25.00(\mathrm{q}), 25.29$ (q), 25.78 (q), 25.91 (q), 26.64 (t), 26.81 $(\mathrm{t}), 27.59(\mathrm{q}), 27.95(\mathrm{q}), 28.83(\mathrm{t}), 30.25(\mathrm{t}), 31.26(\mathrm{t}), 33.85(\mathrm{t}), 34.69(\mathrm{t}), 40.20(\mathrm{t}), 72.52(\mathrm{~s}), 74.20(\mathrm{~s}), 74.37(\mathrm{~s})$, 75.86 (d), 76.69 (d), 83.19 (d), 84.23 (s), 85.36 (d), 85.94 (s), 87.35 (d), 88.59 (d), 109.21 (t), 152.13 (s). FABMS m/z $908[\mathrm{M}+\mathrm{Na}]^{+}, 754$ (10), 604 (10), 173 (30), 73 (100). HRFABMS calcd 907.6311 for $\mathrm{C}_{48} \mathrm{H}_{96} \mathrm{O}_{8} \mathrm{Si}_{3} \mathrm{Na}$, found 949.6337. IR (neat, cm^{-1}) $3380,834$.

To a stirred solution of 14a (2.1 mg, $2.37 \mu \mathrm{~mol})$ in pyridine (0.5 mL) was added $(R)-(-)-\alpha-m e t h o x y-\alpha-(t r i f l u o r o m e t h y l) p h e n y l a c e t y l ~ c h l o r i d e ~((R)-(-)-\mathrm{MTPACl}, 1 \mu \mathrm{~L}, 5.3 \mu \mathrm{~mol})$. After stirring for 24 h , the reaction mixture was diluted with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ and ethyl acetate. The phases were separated and the aqueous phase was extracted with ethyl acetate. The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated. The residue was purified by column chromatography (hexane/EtOAc, 10:1) to give 14a-(S)-MTPA ester ($0.9 \mathrm{mg}, 0.9 \mu \mathrm{~mol}, 38 \%$ yield) as a colorless oil.
${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 0.03(3 \mathrm{H}, \mathrm{s}), 0.05(3 \mathrm{H}, \mathrm{s}), 0.06(3 \mathrm{H}, \mathrm{s}), 0.07(3 \mathrm{H}, \mathrm{s}), 0.08(3 \mathrm{H}, \mathrm{s}), 0.08(3 \mathrm{H}, \mathrm{s})$, $0.80(9 \mathrm{H}, \mathrm{s}) .0 .85(9 \mathrm{H}, \mathrm{s}), 0.86(9 \mathrm{H}, \mathrm{s}), 1.07(3 \mathrm{H}, \mathrm{s}), 1.08(3 \mathrm{H}, \mathrm{s}), 1.09(3 \mathrm{H}, \mathrm{s}), 1.10(1 \mathrm{H}, \mathrm{m}), 1.15(3 \mathrm{H}, \mathrm{s}), 1.15$ $(3 \mathrm{H}, \mathrm{s}), 1.19(3 \mathrm{H}, \mathrm{s}), 1.19(3 \mathrm{H}, \mathrm{s}), 1.24-1.32(2 \mathrm{H}, \mathrm{m}), 1.36-1.44(2 \mathrm{H}, \mathrm{m}), 1.48(1 \mathrm{H}, \mathrm{m}), 1.56-1.64(2 \mathrm{H}, \mathrm{m}), 1.69$ $(1 \mathrm{H}, \mathrm{m}), 1.72(1 \mathrm{H}, \mathrm{m}), 1.78-1.88(6 \mathrm{H}, \mathrm{m}), 1.94(1 \mathrm{H}, \mathrm{m}), 2.02(1 \mathrm{H}, \mathrm{m}), 2.09(1 \mathrm{H}, \mathrm{m}), 2.33(1 \mathrm{H}, \mathrm{m}), 2.96(1 \mathrm{H}, \mathrm{d}$, $J=9.1 \mathrm{~Hz}), 3.16(1 \mathrm{H}, \mathrm{dd}, J=1.9,11.3 \mathrm{~Hz}), 3.46(1 \mathrm{H}, \operatorname{brd}, J=9.3 \mathrm{~Hz}), 3.51(3 \mathrm{H}, \mathrm{s}), 3.63(1 \mathrm{H}, \mathrm{t}, J=6.9 \mathrm{~Hz}), 3.67$ $(1 \mathrm{H}, \mathrm{t}, J=6.3 \mathrm{~Hz}), 4.98(1 \mathrm{H}, \mathrm{brs}), 5.11(1 \mathrm{H}, \mathrm{s}), 5.51(1 \mathrm{H}, \mathrm{t}, J=5.8 \mathrm{~Hz}), 7.38(3 \mathrm{H}, \mathrm{m}), 7.49(2 \mathrm{H}, \mathrm{m})$.

To a stirred solution of $\mathbf{1 4 a}(1.8 \mathrm{mg}, \quad 2.0 \mu \mathrm{~mol})$ in pyridine (0.5 mL$)$ was added $(S)-(+)$ - α-methoxy- α-(trifluoromethyl)phenylacetyl chloride ((S)-(+)-MTPACl, $5 \mu \mathrm{~L}, 26.5 \mu \mathrm{~mol})$. After stirring for 18 h , the reaction mixture was diluted with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ and ethyl acetate. The phases were separated and the aqueous phase was extracted with ethyl acetate. The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated. The residue was purified by column chromatography (hexane/EtOAc, 10:1) to give 14a-(\boldsymbol{R})-MTPA ester ($1.6 \mathrm{mg}, 1.4 \mu \mathrm{~mol}, 73 \%$ yield) as a colorless oil.
${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 0.04(3 \mathrm{H}, \mathrm{s}), 0.06(3 \mathrm{H}, \mathrm{s}), 0.06(3 \mathrm{H}, \mathrm{s}), 0.07(3 \mathrm{H}, \mathrm{s}), 0.08(6 \mathrm{H}, \mathrm{s}), 0.81(9 \mathrm{H}, \mathrm{s})$. $0.84(9 \mathrm{H}, \mathrm{s}), 0.86(9 \mathrm{H}, \mathrm{s}), 1.08(3 \mathrm{H}, \mathrm{s}), 1.09(3 \mathrm{H}, \mathrm{s}), 1.11(3 \mathrm{H}, \mathrm{s}), 1.14(3 \mathrm{H}, \mathrm{s}), 1.15(3 \mathrm{H}, \mathrm{s}), 1.19(3 \mathrm{H}, \mathrm{s}), 1.19$ $(3 \mathrm{H}, \mathrm{s}), 1.21(1 \mathrm{H}, \mathrm{m}), 1.28-1.42(4 \mathrm{H}, \mathrm{m}), 1.48(1 \mathrm{H}, \mathrm{m}), 1.56-1.68(4 \mathrm{H}, \mathrm{m}), 1.75(1 \mathrm{H}, \mathrm{m}), 1.78-1.88(6 \mathrm{H}, \mathrm{m})$, $1.94(1 \mathrm{H}, \mathrm{m}), 1.99(1 \mathrm{H}, \mathrm{m}), 2.27(1 \mathrm{H}, \mathrm{m}), 3.00(1 \mathrm{H}, \mathrm{d}, J=9.1 \mathrm{~Hz}), 3.17(1 \mathrm{H}, \mathrm{dd}, J=1.9,11.5 \mathrm{~Hz}), 3.39(1 \mathrm{H}$, brd, $J=10.1 \mathrm{~Hz}), 3.56(3 \mathrm{H}, \mathrm{s}), 3.63(1 \mathrm{H}, \mathrm{t}, J=6.9 \mathrm{~Hz}), 3.66(1 \mathrm{H}, \mathrm{t}, J=6.3 \mathrm{~Hz}), 4.90(1 \mathrm{H}, \mathrm{s}), 4.98(1 \mathrm{H}, \mathrm{s}), 5.46(1 \mathrm{H}$, $\mathrm{t}, J=5.5 \mathrm{~Hz}), 7.38(3 \mathrm{H}, \mathrm{m}), 7.50(2 \mathrm{H}, \mathrm{m})$.

Figure 1 Absolute stereochemistry was determined to be S configuration by Kusumi method. Values in the figure refers to $\Delta \delta\{\delta(-\mathrm{MTPA})-\delta(+\mathrm{MTPA})\}$.

A THF solution of tetra-n-butylammonium fluoride (0.6 mL of $1 \mathrm{moll}^{-1}$ solution, 0.6 mmol) was evaporated under argon atmosphere and then 5 mL of DMF was added to the residue. To the stirred $n \mathrm{Bu}_{4} \mathrm{NF}-\mathrm{DMF}$ solution added 14a ($49.3 \mathrm{mg}, 0.0557 \mathrm{mmol}$) in DMF (5 mL) via cannula. After stirring for 18 h at $60{ }^{\circ} \mathrm{C}$, the reaction was quenched by addition of saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ and the mixture was diluted with ethyl acetate. The phases were separated and the aqueous phase was extracted with ethyl acetate. The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated to give a colorless oil (78.1 mg). The residue was purified by column chromatography (EtOAc) to give $15 a(31.3 \mathrm{mg}, 0.0577 \mathrm{mmol}, 100 \%$ yield) as a colorless oil.
$[\alpha]_{\mathrm{D}}{ }^{20}=+3.38\left(c 0.61, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR (300 MHz, $\left.\mathrm{CDCl}_{3}\right): 1.12(3 \mathrm{H}, \mathrm{s}), 1.13(6 \mathrm{H}, \mathrm{s}), 1.15(3 \mathrm{H}, \mathrm{s}), 1.16(3 \mathrm{H}, \mathrm{s})$, $1.18(3 \mathrm{H}, \mathrm{s}), 1.21(3 \mathrm{H}, \mathrm{s}), 1.30-1.49(4 \mathrm{H}, \mathrm{m}), 1.58-1.78(6 \mathrm{H}, \mathrm{m}), 1.79-1.90(6 \mathrm{H}, \mathrm{m}), 2.00-2.32(4 \mathrm{H}, \mathrm{m}), 3.14$ $(1 \mathrm{H}, \mathrm{d}, J=9.6 \mathrm{~Hz}), 3.28(1 \mathrm{H}, \mathrm{dd}, J=1.9,11.3 \mathrm{~Hz}), 3.56(1 \mathrm{H}, \mathrm{dd}, J=1.6,10.4 \mathrm{~Hz}), 3.77(1 \mathrm{H}, \mathrm{t}, J=8.2 \mathrm{~Hz}), 3.80$ $(1 \mathrm{H}, \mathrm{t}, J=6.0 \mathrm{~Hz}), 4.85(1 \mathrm{H}, \mathrm{brs}), 5.06(1 \mathrm{H}, \mathrm{brs}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 19.76$ (q), 23.02 (q), 23.37 (q), $23.42(\mathrm{q}), 23.59(\mathrm{q}), 24.85(\mathrm{t}), 24.93(\mathrm{t}), 26.45(\mathrm{t}), 26.53(\mathrm{t}), 26.96(\mathrm{q}), 27.10(\mathrm{q}), 27.78(\mathrm{t}), 29.50(\mathrm{t}), 31.59(\mathrm{t})$, 32.76 (t), 34.01 (t), 39.30 (t) , 69.32 (s), 70.52 (s$), 70.56$ (s), 74.90 (d), 75.56 (d), 83.30 (d), 83.89 (s$), 84.37$ (d), 85.64 (s), 86.65 (d), 87.12 (d), 109.16 (t), 151.38 (s). CIMS m/z $543[\mathrm{M}+\mathrm{H}]^{+}$(10), 525 (20), 507 (65), 143 (100). HRCIMS calcd 543.3897 for $\mathrm{C}_{30} \mathrm{H}_{55} \mathrm{O}_{8}$, found $543.3915[\mathrm{M}+\mathrm{H}]^{+}$. IR (neat, cm^{-1}): 3388.

A THF solution of tetra- n-butylammonium fluoride $\left(0.35 \mathrm{~mL}\right.$ of $1 \mathrm{moll}^{-1}$ solution, 0.35 mmol$)$ was evaporated under argon atmosphere and then 3 mL of DMF was added to the residue. To the stirred $n \mathrm{Bu}_{4} \mathrm{NF}-\mathrm{DMF}$ solution added 14b ($34.3 \mathrm{mg}, 0.0387 \mathrm{mmol}$) in DMF (7 mL) via cannula. After stirring for 18 h at $60^{\circ} \mathrm{C}$, the reaction was quenched by addition of saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ and the mixture was diluted with ethyl acetate. The phases were separated and the aqueous phase was extracted with ethyl acetate. The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated to give a colorless oil (42.8 mg). The residue was purified by column chromatography (EtOAc) to give $\mathbf{1 5 b}(21.0 \mathrm{mg}, 0.0387 \mathrm{mmol}, 100 \%$ yield) as a colorless oil.
$[\alpha]_{\mathrm{D}}{ }^{20}=+18.83\left(c 0.49, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $1.13(3 \mathrm{H}, \mathrm{s}), 1.13(3 \mathrm{H}, \mathrm{s}), 1.14(3 \mathrm{H}, \mathrm{s}), 1.15(3 \mathrm{H}$, s), $1.17(6 \mathrm{H}, \mathrm{s}), 1.21(3 \mathrm{H}, \mathrm{s}), 1.28-1.52(4 \mathrm{H}, \mathrm{m}), 1.55-1.74(6 \mathrm{H}, \mathrm{m}), 1.76-1.90(5 \mathrm{H}, \mathrm{m}), 2.02-2.32(4 \mathrm{H}, \mathrm{m}), 2.38$, $(1 \mathrm{H}, \mathrm{m}), 2.84(1 \mathrm{H}, \mathrm{brs}), 3.18(1 \mathrm{H}, \mathrm{d}, J=9.1 \mathrm{~Hz}), 3.36(1 \mathrm{H}, \mathrm{dd}, J=1.9,11.0 \mathrm{~Hz}), 3.54(1 \mathrm{H}, \mathrm{dd}, J=1.9,10.4 \mathrm{~Hz})$, $3.58(2 \mathrm{H}, \mathrm{m}), 4.07(1 \mathrm{H}, \mathrm{dd}, J=3.3,8.5 \mathrm{~Hz}), 4.84(1 \mathrm{H}, \mathrm{brs}), 5.09(1 \mathrm{H}, \mathrm{brs}){ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 19.97 (q), 23.55 (q), 23.63 (q), 23.71 (q), 25.35 (t), 25.66 (t), 26.73 (t), 26.90 (t), 27.35 (q), 27.50 (q), 28.51 (t), 30.04 (t), 31.93 (t), 33.56 (t), 33.81 (t$), 39.71$ (t), 69.68 (s$), 70.75$ (s$), 70.84$ (s$), 75.31$ (d), 76.22 (d), 83.35 (d), 84.28 (s), 84.48 (d), 85.96 (s), 87.15 (d), 87.42 (d), 109.33 (t), 151.67 (s). FABMS m/z $565[\mathrm{M}+\mathrm{Na}]^{+}$(40), 73 (100). HRFABMS calcd 565.3716 for $\mathrm{C}_{30} \mathrm{H}_{54} \mathrm{O}_{8} \mathrm{Na}$, found 565.3747 [M+Na] ${ }^{+}$. IR (neat, cm^{-1}), 3386 .

To a stirred solution of $\mathbf{1 5 a}(31.1 \mathrm{mg}, 57.3 \mu \mathrm{~mol})$ in benzene (2 mL) was added CMMP ($570 \mu \mathrm{~L}, 86 \mu \mathrm{~mol}, 0.15$ $\mathrm{moll} \mathrm{L}^{-1}$ benzene solution) in a sealed tube. After stirring for 24 h at $80{ }^{\circ} \mathrm{C}$, the reaction mixture was concentrated. The residue was purified by column chromatography (hexane/EtOAc, 1:2) to give $\mathbf{1}(13.6 \mathrm{mg}, 25.9$ $\mu \mathrm{mol}, 45 \%$ yield) along with its isomer $18 \mathrm{a}(5.9 \mathrm{mg}, 11.3 \mu \mathrm{~mol}, 20 \%$ yield).

1: colorless oil. $[\alpha]_{\mathrm{D}}{ }^{20}-2.65$ (c 1.0, CHCl_{3}, lit., -13.1 , (c $\left.0.13, \mathrm{CHCl}_{3}\right)$). As shown in Table $1,{ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR were identical with those of the natural pseudodehydrothyrsiferol. EIMS m/z 524 [M] (5), 506 (10), 381 (25), 363 (50), 143 (100). HREIMS calcd 524.3713 for $\mathrm{C}_{30} \mathrm{H}_{52} \mathrm{O}_{7}$, found 524.3734 [M] ${ }^{+}$. IR (neat, cm^{-1}): 3427, 1460, 1375, 1097.

18a: colorless oil. $[\alpha]_{\mathrm{D}}{ }^{20}+32.5\left(c 0.59, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 1.11(3 \mathrm{H}, \mathrm{s}), 1.14(3 \mathrm{H}, \mathrm{s}), 1.14(3 \mathrm{H}$, s), $1.15(3 \mathrm{H}, \mathrm{s}), 1.16(3 \mathrm{H}, \mathrm{s}), 1.18(3 \mathrm{H}, \mathrm{s}), 1.20(3 \mathrm{H}, \mathrm{s}), 1.38-1.48(3 \mathrm{H}, \mathrm{m}), 1.56-1.70(7 \mathrm{H}, \mathrm{m}), 1.73(1 \mathrm{H}, \mathrm{m})$, $1.80(4 \mathrm{H}, \mathrm{m}), 1.86(1 \mathrm{H}, \mathrm{td}, J=3.8,8.5 \mathrm{~Hz}), 2.04-2.12$, $(2 \mathrm{H}, \mathrm{m}), 2.30(1 \mathrm{H}, \mathrm{m}), 2.40(1 \mathrm{H}, \mathrm{m}), 3.13(1 \mathrm{H}, \mathrm{dd}, J=$ $1.9,10.5 \mathrm{~Hz}), 3.24(1 \mathrm{H}, \mathrm{dd}, J=2.2,11.5 \mathrm{~Hz}), 3.55(1 \mathrm{H}, \mathrm{dd}, J=2.2,11.8 \mathrm{~Hz}), 3.77(1 \mathrm{H}, \mathrm{dd}, J=6.7,8.5 \mathrm{~Hz})$, $3.80(1 \mathrm{H}, \mathrm{dd}, J=5.5,9.9 \mathrm{~Hz}), 4.23$, ($1 \mathrm{H}, \mathrm{dd}, J=4.1,10.4 \mathrm{~Hz}$, , $4.76(2 \mathrm{H}, \mathrm{brs}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl} 3$): 20.33 (q), 23.11 (q), 23.21 (q), 23.41 (q), 24.09 (t), 24.18 (t), 25.15 (t), 26.59 (t), 26.85 (t), 27.22 (q), 27.63 (q), 28.04 (t , 28.54 (t), 34.38 (t$), 34.81$ (t), 39.69 (t), 69.75 (s$), 70.53$ (s$), 71.17$ (s$), 74.34$ (d), 77.83 (d), 83.30 (d), 83.67 (d), 84.23 (s), 84.26 (s), 86.80 (d), 86.91 (d), 108.51 (t), 146.83 (s). CIMS m/z $525[\mathrm{M}+\mathrm{H}]^{+}$(5), 507 (85), 489 (100). HRCIMS calcd 525.3791 for $\mathrm{C}_{30} \mathrm{H}_{53} \mathrm{O}_{7}$, found $525.3786[\mathrm{M}+\mathrm{H}]^{+}$. IR (neat, cm^{-1}): 3352, 1456, 1065.

Figure 2 Numbering of carbons in pseudodehydrothyrsiferol (see Table 1).

Table $1{ }^{1} \mathrm{H}$-NMR data for natural and synthetic 1

	Natural		Synthetic	
position	${ }^{1} \mathrm{H}$ NMR(500 MHz)	${ }^{13} \mathrm{C}$ NMR (125 MHz)	${ }^{1} \mathrm{H}$ NMR (600 MHz)	$\begin{aligned} & { }^{13} \mathrm{C} \mathrm{NMR} \\ & (150 \mathrm{MHz}) \end{aligned}$
1	1.11 (s)	24.0	1.11 (s)	24.0
2		70.6		70.6
3	3.76 (dd, $J=5.8,9.1 \mathrm{~Hz})$	86.7	3.76 (dd, $J=5.4,9.8 \mathrm{~Hz})$	86.7
4	1.84	26.3	1.80	26.3
5	1.66 / 2.04	35.2	1.67 / 2.04	35.2
6		84.0		84.0
7	3.32 (dd, $J=2.6,11.4 \mathrm{~Hz})$	84.0	3.33 (dd, $J=2.7,11.5 \mathrm{~Hz})$	84.0
8	1.51 / 1.66	24.5	1.50 / 1.66	24.5
9	1.57 / 1.81	38.7	1.53 / 1.83	38.8
10		72.8		72.8
11	3.46 (dd, $J=5.6,11.7 \mathrm{~Hz})$	78.9	3.46 (dd, $J=5.8,11.5 \mathrm{~Hz})$	79.0
12	1.65 / 1.84	21.8	1.65 / 1.85	21.9
13	1.85 / 2.08	26.4	1.85 / 2.08	26.4
14	4.29 (dd, $J=4.2,7.1 \mathrm{~Hz})$	72.5	4.29 (dd, $J=4.4,7.1 \mathrm{~Hz})$	72.5
15		151.3		151.3
16	2.20 / 2.46	29.7	2.20 / 2.47	29.5
17	1.48 / 1.64	29.9	1.47 / 1.65	29.9
18	3.53 (dd, $J=1.5,10.8 \mathrm{~Hz})$	76.2	3.53 (dd, $J=1.2,10.4 \mathrm{~Hz})$	76.2
19		86.1		86.1
20	1.58 / 2.10	31.6	1.58 / 2.10	31.6
21	1.83 (2H)	26.5	1.84 (2H)	26.6
22	3.76 (dd, $J=6.5,9.8 \mathrm{~Hz}$)	87.6	3.76 (dd, $J=6.3,8.8 \mathrm{~Hz})$	87.6
23		70.4		70.4
24	1.13 (s)	23.9	1.13 (s)	23.9
25	1.19 (s)	27.5	1.20 (s)	27.5
26	1.14 (s)	22.7	1.14 (s)	22.8
27	1.25 (s)	19.4	1.26 (s)	19.4
28	4.89 / 5.05 (brs/brs)	109.9	4.89 / 5.06 (brs/brs)	109.9
29	1.14 (s)	23.7	1.14 (s)	23.8
30	1.21 (s)	27.7	1.22 (s)	27.7
OH-18	2.38 (s)		2.40 (s)	

To a stirred solution of $\mathbf{1 5 b}(29.8 \mathrm{mg}, 54.9 \mu \mathrm{~mol})$ in benzene (2 mL) was added CMMP ($550 \mu \mathrm{~L}, 83 \mu \mathrm{~mol}, 0.15$ $\mathrm{mold} \mathrm{L}^{-1}$ benzene solution) in a sealed tube. After stirring for 24 h at $80^{\circ} \mathrm{C}$, the reaction mixture was concentrated. The residue was purified by column chromatography (hexane/EtOAc, 2:1) to give $\mathbf{1 8 b}(17.8 \mathrm{mg}$, $33.9 \mu \mathrm{~mol}, 62 \%$ yield) as colorless solid.
mp 137-141 ${ }^{\circ} \mathrm{C},[\alpha]_{\mathrm{D}}{ }^{20}+9.73\left(c 1.43, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $1.11(3 \mathrm{H}, \mathrm{s}), 1.14(3 \mathrm{H}, \mathrm{s}), 1.14(3 \mathrm{H}$, s), $1.15(3 \mathrm{H}, \mathrm{s}), 1.16(3 \mathrm{H}, \mathrm{s}), 1.17(3 \mathrm{H}, \mathrm{s}), 1.20(3 \mathrm{H}, \mathrm{s}), 1.26(1 \mathrm{H}, \mathrm{m}), 1.36-1.52(4 \mathrm{H}, \mathrm{m}), 1.53-1.70(5 \mathrm{H}, \mathrm{m})$, $1.71-1.86(5 \mathrm{H}, \mathrm{m}), 1.98-2.16(3 \mathrm{H}, \mathrm{m}), 2.26,(1 \mathrm{H}, \mathrm{m}), 2.36(1 \mathrm{H}, \mathrm{brs}), 2.44(1 \mathrm{H}, \mathrm{ddd}, J=2.2,4.7,13.7 \mathrm{~Hz}), 3.09$ $(1 \mathrm{H}, \mathrm{dd}, J=1.1,10.4 \mathrm{~Hz}), 3.25(1 \mathrm{H}, \mathrm{dd}, J=2.1,11.5 \mathrm{~Hz}), 3.44(1 \mathrm{H}, \mathrm{dd}, J=1.9,11.5 \mathrm{~Hz}), 3.67(1 \mathrm{H}, \mathrm{brd}, J=8.0$ $\mathrm{Hz}), 3.76(1 \mathrm{H}, \mathrm{t}, J=8.2 \mathrm{~Hz}), 3.91,(1 \mathrm{H}, \mathrm{dd}, J=5.2,10.4 \mathrm{~Hz}), 4.75(1 \mathrm{H}, \mathrm{brs}), 4.76(1 \mathrm{H}, \mathrm{brs}) .{ }^{13} \mathrm{C}$ NMR $(100$ $\mathrm{MHz}, \mathrm{CDCl}_{3}$): 20.43 (q), 22.92 (q), 23.15 (q), 24.01 (q), 24.15 (q), 25.08 (t$), 25.60$ (t$), 26.50(\mathrm{t}), 26.89$ (q), 27.49 (t), 27.71 (q), 28.97 (t), 29.00 (t), 33.16 (t), 33.19 (t), 34.75 (t), $39.29(t), 69.64(\mathrm{~s}), 70.42(\mathrm{~s}), 71.81(\mathrm{~s}), 78.87$ (d), 83.62 (d), 83.95 (d), 84.14 (s), 84.22 (s), 85.26 (d), 86.81 (d), 87.31 (d), 106.31 (t), 147.33 (s). CIMS m/z $524[\mathrm{M}+\mathrm{H}]^{+}(5), 507(25), 489(20), 143$ (100). HRCIMS calcd 524.3713 for $\mathrm{C}_{30} \mathrm{H}_{52} \mathrm{O}_{7}$, found 524.3698 [M] . IR (neat, cm^{-1}): 3441, 1373, 1091.

To a stirred solution of $\mathbf{1 5 a}(31.9 \mathrm{mg}, 58.8 \mu \mathrm{~mol})$ in pyridine (3 mL) was added acetic anhydride $(0.1 \mathrm{~mL}, 0.90$ mmol). After stirring for 36 h at $50^{\circ} \mathrm{C}$, the reaction mixture was concentrated. The residue was purified by column chromatography (hexane/EtOAc, 1:2) to give 15aa ($31.9 \mathrm{mg}, 50.9 \mu \mathrm{~mol}, 87 \%$ yield) as a colorless oil.
$[\alpha]_{\mathrm{D}}{ }^{20}+1.00\left(c 1.0, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $1.11(6 \mathrm{H}, \mathrm{s}), 1.12(3 \mathrm{H}, \mathrm{s}), 1.14(3 \mathrm{H}, \mathrm{s}), 1.15(3 \mathrm{H}, \mathrm{s})$, $1.19(3 \mathrm{H}, \mathrm{s}), 1.19(3 \mathrm{H}, \mathrm{s}) 1.25(1 \mathrm{H}, \mathrm{m}), 1.36-1.74(7 \mathrm{H}, \mathrm{m}), 1.76-1.96(8 \mathrm{H}, \mathrm{m}), 1.96-2.10(3 \mathrm{H}, \mathrm{m})$, , $2.06(3 \mathrm{H}, \mathrm{s})$, $2.08(3 \mathrm{H}, \mathrm{s}), 2.18,(1 \mathrm{H}, \mathrm{brs}), 2.25(1 \mathrm{H}, \mathrm{brs}), 3.03(1 \mathrm{H}, \mathrm{dd}, J=1.8,8.9 \mathrm{~Hz}), 3.22(1 \mathrm{H}, \mathrm{dd}, J=2.3,11.3 \mathrm{~Hz}), 3.72$ $(1 \mathrm{H}, \mathrm{t}, J=6.9 \mathrm{~Hz}), 3.74(1 \mathrm{H}, \mathrm{t}, J=8.0 \mathrm{~Hz}), 4.90(1 \mathrm{H}, \mathrm{brs}), 4.95,(1 \mathrm{H}, \mathrm{dd}, J=2.3,10.2 \mathrm{~Hz}), 5.04(1 \mathrm{H}, \mathrm{brs}), 5.17$, $(1 \mathrm{H}, \mathrm{t}, J=7.5 \mathrm{~Hz}){ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 20.17 (q), 21.18 (q), 21.28 (q), 22.86 (q), 23.00 (q), 23.99 (q), 24.17 (q), 24.67 (t), 25.03 (t), 26.12 (t), 26.50 (t), 27.46 (q), 27.46 (q), $27.82(t), 28.21(t), 30.23(t), 34.85(t)$, 34.95 (t), 39.92 (t), 69.76 (s$), 70.44$ (s$), 70.49$ (s$), 76.73$ (d), 77.45 (d), 83.78 (d), 83.95 (s$), 84.08$ (s$), 84.31$ (d), 86.87 (d), 87.02 (d), 111.01 (t), 146.88 (s), 170.42 (s), 170.88 (s). CIMS m/z $627[\mathrm{M}+\mathrm{H}]^{+}(10), 609$ (60), 549 (100). HRCIMS calcd 627.4108 for $\mathrm{C}_{34} \mathrm{H}_{59} \mathrm{O}_{10}$, found $627.4112[\mathrm{M}+\mathrm{H}]^{+}$. IR (neat, cm^{-1}): 3437, 1738.

To a stirred solution of $\mathbf{1 5 b}(24.0 \mathrm{mg}, 44.2 \mu \mathrm{~mol})$ in pyridine (3 mL) was added acetic anhydride $(0.1 \mathrm{~mL}, 0.90$ mmol). After stirring for 36 h at $50^{\circ} \mathrm{C}$, the reaction mixture was concentrated. The residue was purified by column chromatography (hexane/EtOAc, 1:2) to give 15 ba ($27.1 \mathrm{mg}, 43.3 \mu \mathrm{~mol}, 98 \%$ yield) as a colorless oil.
$[\alpha]_{\mathrm{D}}{ }^{20}+10.0\left(c 1.0, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $1.11(3 \mathrm{H}, \mathrm{s}), 1.12(3 \mathrm{H}, \mathrm{s}), 1.14(6 \mathrm{H}, \mathrm{s}), 1.19(3 \mathrm{H}, \mathrm{s})$, $1.20(3 \mathrm{H}, \mathrm{s}), 1.20(3 \mathrm{H}, \mathrm{s}), 1.22(1 \mathrm{H}, \mathrm{m}), 1.32-1.72(6 \mathrm{H}, \mathrm{m}), 1.80-1.99(8 \mathrm{H}, \mathrm{m}), 2.00-2.07,(5 \mathrm{H}, \mathrm{m}), 2.04(3 \mathrm{H}, \mathrm{s})$, $2.08(3 \mathrm{H}, \mathrm{s}), 3.05(1 \mathrm{H}, \mathrm{d}, J=9.3 \mathrm{~Hz}), 3.23(1 \mathrm{H}, \mathrm{dd}, J=2.2,11.3 \mathrm{~Hz}), 3.71(1 \mathrm{H}, \mathrm{t}, J=6.9 \mathrm{~Hz}), 3.77(1 \mathrm{H}, \mathrm{dd}, J=$ $6.2,8.8 \mathrm{~Hz}), 4.94(1 \mathrm{H}, \mathrm{brs}), 4.95,(1 \mathrm{H}, \mathrm{dd}, J=2.2,10.0 \mathrm{~Hz}), 5.06(1 \mathrm{H}, \mathrm{brs}), 5.22(1 \mathrm{H}, \mathrm{t}, J=6.7 \mathrm{~Hz}) .{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 20.08(\mathrm{q}), 21.17(\mathrm{q}), 21.29(\mathrm{q}), 22.77(\mathrm{q}), 23.16(\mathrm{q}), 24.01(\mathrm{q}), 24.41(\mathrm{t}), 25.15(\mathrm{t}), 26.13(\mathrm{t})$, $26.62(\mathrm{t}), 27.29(\mathrm{t}), 27.44(\mathrm{q}), 27.64(\mathrm{t}), 29.730(\mathrm{t}), 34.65(\mathrm{t}), 34.93(\mathrm{t}), 39.83(\mathrm{t}), 69.61(\mathrm{~s}), 70.46(\mathrm{~s}), 70.55(\mathrm{~s})$, 76.61 (d), 77.15 (d), 83.81 (d), 83.94 (s), 83.99 (d), 84.12 (s), 86.93 (d), 87.05 (d), 112.16 (t), 146.29 (s), 170.48 (s), 171.05 (s). CIMS m/z $627[M+H]^{+}$(3), 609 (40), 549 (100). HRCIMS calcd 627.4108 for $\mathrm{C}_{34} \mathrm{H}_{59} \mathrm{O}_{10}$, found $627.4096[\mathrm{M}+\mathrm{H}]^{+}$. IR (neat, cm^{-1}): 3453, 1734.

To a stirred solution of $\mathbf{1 5 a a}(24.1 \mathrm{mg}, 38.4 \mu \mathrm{~mol})$ in $\mathrm{MeOH}(2 \mathrm{~mL})$ was added potassium carbonate ($1 \mathrm{~mL}, 1$ $\mathrm{mmol}, 1 \mathrm{moll} \mathrm{L}^{-1}$ aqueous solution). After stirring for 1 h at rt , the reaction was quenched by addition of saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ and the mixture was diluted with ethyl acetate. The phases were separated and the aqueous phase was extracted with ethyl acetate. The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated to give a colorless oil. The residue was purified by column chromatography (hexane/EtOAc, 1:9) to give $16 \mathbf{a}(13.4 \mathrm{mg}, 22.9 \mu \mathrm{~mol}, 60 \%$ yield) as a colorless oil along with starting material $15 \mathbf{a a}(9.0 \mathrm{mg}, 14.4 \mu \mathrm{~mol}$, 37% yield). The recovered 15aa was subjected to hydrolysis again as same manner above. Combined yield of 16a was 92% ($20.7 \mathrm{mg}, 35.4 \mu \mathrm{~mol}, 92 \%$ yield).
$[\alpha]_{\mathrm{D}}{ }^{20}-1.43\left(c 1.0, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $1.11(6 \mathrm{H}, \mathrm{s}), 1.14(3 \mathrm{H}, \mathrm{s}), 1.16(3 \mathrm{H}, \mathrm{s}), 1.19(3 \mathrm{H}, \mathrm{s})$, $1.19(3 \mathrm{H}, \mathrm{s}), 1.20(3 \mathrm{H}, \mathrm{s}) 1.35(1 \mathrm{H}, \mathrm{m}), 1.46(1 \mathrm{H}, \mathrm{m}), 1.52-1.73(6 \mathrm{H}, \mathrm{m}), 1.75-1.87(8 \mathrm{H}, \mathrm{m}), 1.91-2.12(4 \mathrm{H}, \mathrm{m})$, $2.07(3 \mathrm{H}, \mathrm{s}), 3.11(1 \mathrm{H}, \mathrm{d}, J=9.9 \mathrm{~Hz}), 3.28(1 \mathrm{H}, \mathrm{dd}, J=2.2,11.4 \mathrm{~Hz}), 3.72(1 \mathrm{H}, \mathrm{t}, J=7.3 \mathrm{~Hz}), 3.78(1 \mathrm{H}, \mathrm{t}, J=8.4$ $\mathrm{Hz}), 4.12(1 \mathrm{H}, \mathrm{dd}, J=4.0,7.3 \mathrm{~Hz}), 4.87(1 \mathrm{H}, \mathrm{brs}), 4.97$, $(1 \mathrm{H}, \mathrm{dd}, J=2.2,10.3 \mathrm{~Hz}), 5.09(1 \mathrm{H}$, brs $) .{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 20.18(\mathrm{q}), 21.23(\mathrm{q}), 22.83(\mathrm{q}), 23.10(\mathrm{q}), 23.93(\mathrm{q}), 24.04(\mathrm{q}), 24.41(\mathrm{t}), 25.18(\mathrm{t}), 26.14(\mathrm{t})$, $26.57(\mathrm{t}), 27.16(\mathrm{t}), 27.47(\mathrm{q}), 27.60(\mathrm{q}), 27.80(\mathrm{t}), 30.62(\mathrm{t}), 34.80(\mathrm{t}), 34.91(\mathrm{t}), 39.81(\mathrm{t}), 69.83(\mathrm{~s}), 70.48(\mathrm{~s})$, 70.59 (s), 74.65 (d), 77.35 (d), 83.69 (d), 83.95 ($s), 84.02$ (s), 84.73 (d), 86.86 (d), 86.99 (d), 109.70 (t), 150.69 (s), $171.13(\mathrm{~s})$. CIMS $m / z 585[\mathrm{M}+\mathrm{H}]^{+}$(3), 567 (40), 549 (100). HRCIMS calcd 585.4003 for $\mathrm{C}_{32} \mathrm{H}_{57} \mathrm{O}_{9}$, found $585.4021[\mathrm{M}+\mathrm{H}]^{+}$. IR (neat, cm^{-1}): 3447, 1730.

To a stirred solution of $\mathbf{1 5 b a}(20.8 \mathrm{mg}, 33.2 \mu \mathrm{~mol})$ in $\mathrm{MeOH}(2 \mathrm{~mL})$ was added potassium carbonate ($1 \mathrm{~mL}, 1$ mmol, $1 \mathrm{mollL}^{-1}$ aqueous solution). After stirring for 1 h at rt , the reaction was quenched by addition of saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ and the mixture was diluted with ethyl acetate. The phases were separated and the aqueous phase was extracted with ethyl acetate. The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated to give a colorless oil. The residue was purified by column chromatography (hexane/EtOAc, 1:8) to give $\mathbf{1 6 b}(8.9 \mathrm{mg}, 15.2 \mu \mathrm{~mol}, 46 \%$ yield) as a colorless oil along with starting material $\mathbf{1 5 b a}(9.3 \mathrm{mg}, 14.8 \mu \mathrm{~mol}$, 45% yield). The recovered 15ba was subjected to hydrolysis again as same manner above. Combined yield of 16b was $92 \%(17.0 \mathrm{mg}, 29.1 \mu \mathrm{~mol}, 88 \%$ yield $)$.
$[\alpha]_{\mathrm{D}}{ }^{20}+11.1\left(c 1.0, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 1.11(3 \mathrm{H}, \mathrm{s}), 1.12(3 \mathrm{H}, \mathrm{s}), 1.14(3 \mathrm{H}, \mathrm{s}), 1.17(3 \mathrm{H}, \mathrm{s})$,
$1.18(3 \mathrm{H}, \mathrm{s}), 1.19(6 \mathrm{H}, \mathrm{s}) 1.35(1 \mathrm{H}, \mathrm{m}), 1.42(1 \mathrm{H}, \mathrm{m}), 1.52-1.75(6 \mathrm{H}, \mathrm{m}), 1.75-1.96(9 \mathrm{H}, \mathrm{m}), 2.02-2.18(3 \mathrm{H}, \mathrm{m})$, $2.07(3 \mathrm{H}, \mathrm{s}), 3.16(1 \mathrm{H}, \mathrm{d}, J=9.5 \mathrm{~Hz}), 3.34(1 \mathrm{H}, \mathrm{dd}, J=2.2,11.4 \mathrm{~Hz}), 3.71(1 \mathrm{H}, \mathrm{t}, J=7.0 \mathrm{~Hz}), 3.79(1 \mathrm{H}, \mathrm{dd}, J=$ $5.5,9.5 \mathrm{~Hz}), 4.04(1 \mathrm{H}, \mathrm{dd}, J=4.0,9.5 \mathrm{~Hz}), 4.83(1 \mathrm{H}, \mathrm{brs}), 4.94,(1 \mathrm{H}, \mathrm{dd}, J=4.0,8.1 \mathrm{~Hz}), 5.08(1 \mathrm{H}, \mathrm{brs}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 20.08 (q), 21.24 (q), 22.89 (q), 23.48 (q), 23.64 (q), 24.04 (q), 25.35 (t), 26.01 (t$)$, $26.15(\mathrm{t}), 26.83(\mathrm{t}), 27.47(\mathrm{q}), 27.60(\mathrm{t}), 27.67(\mathrm{q}), 28.05(\mathrm{t}), 33.92(\mathrm{t}), 34.05(\mathrm{t}), 34.85(\mathrm{t}), 39.79(\mathrm{t}), 69.79(\mathrm{~s})$, 70.48 (s), 70.61 (s), 75.91 (d), 77.63 (d), 83.42 (d), 84.03 (s), 84.25 (s), 84.94 (d), 87.02 (d), 87.15 (d), 109.45 (t), 150.90 (s), 171.01 (s). CIMS m/z $585[\mathrm{M}+\mathrm{H}]^{+}$(5), 567 (30), 549 (100). HRCIMS calcd 585.4003 for $\mathrm{C}_{32} \mathrm{H}_{57} \mathrm{O}_{9}$, found $585.3998[\mathrm{M}+\mathrm{H}]^{+}$. IR (neat, cm^{-1}): 3420, 1734.

To a stirred solution of $\mathbf{1 6 a}(19.8 \mathrm{mg}, 33.9 \mu \mathrm{~mol})$ in benzene $(2 \mathrm{~mL})$ was added CMMP $(1.11 \mathrm{~mL}, 169 \mu \mathrm{~mol}, 153$ $\mathrm{mold} \mathrm{L}^{-1}$ benzene solution) in a sealed tube. After stirring for 24 h at $80^{\circ} \mathrm{C}$, the reaction mixture was concentrated. The residue was purified by column chromatography (hexane/EtOAc, 1:1) to give 17a (12.7 mg , $22.4 \mu \mathrm{~mol}, 66 \%$ yield) as a colorless oil.
$[\alpha]_{\mathrm{D}}{ }^{20}-4.84\left(c 0.20, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR (300 MHz, CDCl ${ }_{3}$): $1.11(3 \mathrm{H}, \mathrm{s}), 1.14(6 \mathrm{H}, \mathrm{s}), 1.19(6 \mathrm{H}, \mathrm{s}), 1.19(3 \mathrm{H}, \mathrm{s})$, $1.19(3 \mathrm{H}, \mathrm{s}), 1.40-1.70(8 \mathrm{H}, \mathrm{m}), 1.72-1.90(6 \mathrm{H}, \mathrm{m}), 1.90-2.21(6 \mathrm{H}, \mathrm{m}), 2.08(3 \mathrm{H}, \mathrm{s}), 3.33(1 \mathrm{H}, \mathrm{dd}, J=2.9,11.0$ $\mathrm{Hz}), 3.45(1 \mathrm{H}, \mathrm{dd}, J=5.6,11.4 \mathrm{~Hz}), 3.70(1 \mathrm{H}, \mathrm{t}, J=7.4 \mathrm{~Hz}), 3.75(1 \mathrm{H}, \mathrm{t}, J=8.2 \mathrm{~Hz}), 4.28(1 \mathrm{H}, \mathrm{dd}, J=3.6,7.6$ $\mathrm{Hz}), 4.87(1 \mathrm{H}, \mathrm{brs}), 4.94$, (1 H , dd, $J=2.7,10.0 \mathrm{~Hz}$), $5.05(1 \mathrm{H}, \mathrm{brs}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 19.48 (q), 21.19 (q), $21.85(\mathrm{t}), 22.77(\mathrm{q}), 23.02(\mathrm{q}), 24.05(\mathrm{q}), 24.05(\mathrm{q}), 24.53(\mathrm{t}), 26.12(\mathrm{t}), 26.27(\mathrm{t}), 26.48(\mathrm{t}), 27.53(\mathrm{q}), 28.77$ $(\mathrm{t}), 29.72(\mathrm{t}), 34.77(\mathrm{t}), 35.24(\mathrm{t}), 38.83(\mathrm{t}), 70.40(\mathrm{~s}), 70.68(\mathrm{~s}), 72.53(\mathrm{~d}), 72.72(\mathrm{~s}), 78.93(\mathrm{~d}), 84.03(\mathrm{~s}), 84.03(\mathrm{~s})$, 86.73 (d), 87.03 (d), 110.18 (t), 150.81 (s), 170.79 (s). EIMS m/z $566[\mathrm{M}]^{+}$(5), 548 (5), 507 (5), 143 (100). HREIMS calcd 566.3819 for $\mathrm{C}_{32} \mathrm{H}_{54} \mathrm{O}_{8}$, found 566.3823 [M] ${ }^{+}$. IR (neat, cm^{-1}): 3430, 1734.

To a stirred solution of $\mathbf{1 6 b}(10.9 \mathrm{mg}, 18.7 \mu \mathrm{~mol})$ in benzene $(1.5 \mathrm{~mL})$ was added CMMP ($187 \mu \mathrm{~L}, 28.0 \mu \mathrm{~mol}$, $150 \mathrm{mollL}^{-1}$ benzene solution) in a sealed tube. After stirring for 24 h at $80^{\circ} \mathrm{C}$, the reaction mixture was concentrated. The residue was purified by column chromatography (hexane/EtOAc, 3:2) to give $\mathbf{1 7 b}(1.1 \mathrm{mg}$, $1.94 \mu \mathrm{~mol}, 10 \%$ yield) as a colorless oil along with starting material $\mathbf{1 6 b}(6.0 \mathrm{mg}, 10.3 \mu \mathrm{~mol}, 55 \%$ yield $)$.
$[\alpha]_{\mathrm{D}}{ }^{20}-4.84\left(c 0.41, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $1.11(6 \mathrm{H}, \mathrm{s}), 1.16(3 \mathrm{H}, \mathrm{s}), 1.19(6 \mathrm{H}, \mathrm{s}), 1.20(3 \mathrm{H}, \mathrm{s})$, $1.22(3 \mathrm{H}, \mathrm{s}), 1.44-1.74(8 \mathrm{H}, \mathrm{m}), 1.74-1.86(7 \mathrm{H}, \mathrm{m}), 1.88-2.22(5 \mathrm{H}, \mathrm{m}), 2.08(3 \mathrm{H}, \mathrm{s}), 3.11(1 \mathrm{H}, \mathrm{dd}, J=4.4,11.3$ $\mathrm{Hz}), 3.35(1 \mathrm{H}, \mathrm{dd}, J=3.3,10.7 \mathrm{~Hz}), 3.72(1 \mathrm{H}, \mathrm{t}, J=7.4 \mathrm{~Hz}), 3.75(1 \mathrm{H}, \mathrm{t}, J=8.2 \mathrm{~Hz}), 4.09(1 \mathrm{H}, \mathrm{brd}, J=9.9 \mathrm{~Hz})$, $4.84(1 \mathrm{H}$, brs $), 4.95,(1 \mathrm{H}, \mathrm{dd}, J=2.5,10.2 \mathrm{~Hz}), 5.06(1 \mathrm{H}$, brs $) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $21.20(\mathrm{q}), 22.78(\mathrm{q})$, 23.04 (q), 24.06 (q), 24.12 (q), $24.50(\mathrm{t}), 24.98(\mathrm{t}), 26.08(\mathrm{t}), 26.45(\mathrm{t}), 27.54(\mathrm{q}), 27.58(\mathrm{q}), 28.55(\mathrm{t}), 29.04(\mathrm{t})$,
 84.07 (s), 84.17 (d), 86.72 (d), 87.05 (d), 109.91 (t), 149.60 (s), 170.79 (s). EIMS m/z 566 [M] (2), 548 (10), 507 (10), 143 (100). HREIMS calcd 566.3819 for $\mathrm{C}_{32} \mathrm{H}_{54} \mathrm{O}_{8}$, found 566.3823 [M] ${ }^{+}$. IR (neat, cm^{-1}): 3440,1734 .

To a stirred solution of $\mathbf{1 7 a}(1.5 \mathrm{mg}, 2.6 \mu \mathrm{~mol})$ in $\mathrm{MeOH}(1 \mathrm{~mL})$ was sodium hydroxide $(0.5 \mathrm{~mL}, 0.5 \mathrm{mmol}, 1$ $\mathrm{mol} \mathrm{L}^{-1}$ aqueous solution). After stirring for 6 h at rt , the reaction was quenched by addition of saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ and the mixture was diluted with ethyl acetate. The phases were separated and the aqueous phase was extracted with ethyl acetate. The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated to give a colorless oil. The residue was purified by column chromatography (hexane/EtOAc, 6:1) to give $\mathbf{1}$ ($1.4 \mathrm{mg}, 2.6$ $\mu \mathrm{mol}, 100 \%$ yield) as a colorless oil. Spectral data were identical with those of the synthetic compound form 15a. See page S-12.

To a stirred solution of $\mathbf{1 7 b}(8.2 \mathrm{mg}, 14.5 \mu \mathrm{~mol})$ in $\mathrm{MeOH}(4 \mathrm{~mL})$ was sodium hydroxide $(2 \mathrm{~mL}, 2 \mathrm{mmol}, 1 \mathrm{~mol}$ L^{-1} aqueous solution). After stirring for 9 h at rt , the reaction was quenched by addition of saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ and the mixture was diluted with ethyl acetate. The phases were separated and the aqueous phase was extracted with ethyl acetate. The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated to give a colorless oil. The residue was purified by column chromatography (hexane/EtOAc, 6:1) to give 19 ($6.5 \mathrm{mg}, 12.4$ $\mu \mathrm{mol}, 86 \%$ yield) as a colorless oil.
$[\alpha]_{\mathrm{D}}{ }^{20}+7.64\left(c 0.35, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $1.11(3 \mathrm{H}, \mathrm{s}) 1.13(3 \mathrm{H}, \mathrm{s}), 1.15(3 \mathrm{H}, \mathrm{s}) 1.16(3 \mathrm{H}, \mathrm{s})$, $1.20(3 \mathrm{H}, \mathrm{s}) 1.22(3 \mathrm{H}, \mathrm{s}) 1.24(3 \mathrm{H}, \mathrm{s}), 1.45(1 \mathrm{H}, \mathrm{m}), 1.52-1.63(3 \mathrm{H}, \mathrm{m}), 1.64-1.76(5 \mathrm{H}, \mathrm{m}), 1.78-1.90(5 \mathrm{H}, \mathrm{m})$, $2.02-2.21(3 \mathrm{H}, \mathrm{m}), 2.16-2.22(2 \mathrm{H}, \mathrm{m}), 2.33(1 \mathrm{H}, \mathrm{m}), 2.55(\mathrm{br} \mathrm{s}), 3.13(\mathrm{dd}, \mathrm{J}=4.1,11.5 \mathrm{~Hz}), 3.35(1 \mathrm{H}, \mathrm{m}), 3.54$ $(\mathrm{d}, J=10.4 \mathrm{~Hz}), 3.76(2 \mathrm{H}, \mathrm{m}), 4.16(\mathrm{dd}, J=2.5,11.6 \mathrm{~Hz}), 4.86(1 \mathrm{H}, \mathrm{brs}), 5.08\left(1 \mathrm{H}\right.$, brs). ${ }^{13} \mathrm{C}$ NMR $(100 \mathrm{MHz}$, CDCl_{3}): 14.63 (q), 22.76 (q), 23.64 (q), 23.94 (q), 24.02 (q), 24.47 (t$), 24.93$ (t$), 26.41$ (t), $26.54(\mathrm{t}), 27.51$ (q), $27.70(\mathrm{q}), 28.94(\mathrm{t}), 30.22(\mathrm{t}), 31.05(\mathrm{t}), 31.84(\mathrm{t}), 35.27(\mathrm{t}), 37.71(\mathrm{t}), 70.46(\mathrm{~s}), 70.62(\mathrm{~s}), 72.72(\mathrm{~s}), 72.75(\mathrm{~d})$, 76.13 (d), 80.82 (d), 84.03 (s), 84.15 (d), 85.96 (s), 86.70 (d), 87.52 (d), 110.45 (t), 149.81 (s). EIMS m/z 524 $[\mathrm{M}]^{+}(5), 506(20), 465(20), 447(20), 143(100)$. HREIMS calcd 524.3713 for $\mathrm{C}_{30} \mathrm{H}_{52} \mathrm{O}_{7}$, found 524.3708 [M] ${ }^{+}$. IR (neat, cm^{-1}): 3696, 2971, 1375.

3

3

4

4

4a

5

5

6 (6-endo cyclization)

7 (5-exo cyclization)

7 (5-exo cyclization)

8 (Segment A)
(

8 (Segment A)

9a

9a

$9 b$

9c

$\stackrel{0}{\square}$

10

10

11 (Segment B)

11 (Segment B)

12

12

14a

15a

15a

15b
(

pseudodehydrothyrsiferol (1)

pseudodehydrothyrsiferol (1)

$\stackrel{\rightharpoonup}{0}$
$\stackrel{\rightharpoonup}{0}$
$\stackrel{\rightharpoonup}{0}$

140
130
120
110
100
90
80

standard in observe

pulse sequence: s2pu1

 rotai time $1 \mathrm{~min}, 20 \mathrm{sec}$

15aa

476:68

15ba

15ba

17a

-

Rout ion ix it

fotat time

3 $\mathbf{x} 463$
Pulse Soguence: ${ }^{2 p u 1}$
 Rolax. dolay 0.500 sec

17b

\qquad

都

17b

14-epi-pseudodehydrothyrsiferol (19)

