Supporting Information

New Nanoscale Insights into the Internal Structure of Tetrakis(4sulfonatophenyl) Porphyrin Nanorods

Benjamin A. Friesen, Krista R. A. Nishida, Jeanne L. McHale, and Ursula Mazur*

Raman. The diacid RR spectrum is compared to that of aggregate in solution and on gold substrate in Figure 1 below. All solutions were 50 μ M in porphyrin concentration. The intensities have been normalized to the strongest peak in each spectrum: (top) RR spectrum of H₂TSPP²⁻ in solution excited at 458 nm, pH 3.48; (middle) RR spectrum of TSPP aggregate in 1.5M HCl solution excited at 488 nm, and (bottom) SERRS spectrum of TSPP aggregates in 1.5M HCl deposited on gold, excited at 488 nm.

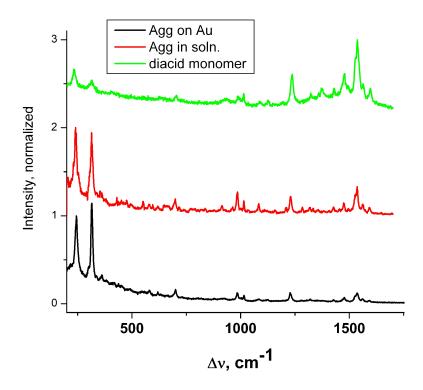


Figure 1

Free Base	Diacid Monomer	Aggregate	Assignments
	234	240 (soln)	oop C _m -\$
212	216	245 (Au)	
312	316	314 (soln)	pyr tilt or swivel
		316 (Au) 360	
~400	~400	380	pyr swivel phenyl
~400	~400	420	phenyl
		436	phenyl
		453	pyr rot
		~490 (br)	phenyl τ (CC), γ (CCH)
		550	$\gamma(C_{\alpha}-C_{m})$
		580	$\gamma(C_{\alpha}-C_{m})$ $\gamma(C_{\alpha}-C_{m})$
623	weak	620	phenyl
733	703	700	$\delta(N-C_{\alpha}-C_m)/\upsilon(C_{\alpha}-N)$
806	705	806	pyr fold
800		820	δ(pyr def)
885		820	
005	~925 (br)	~915 (br)	δ(pyr def) phenyl
965	~923 (01) 993	984	
1003	1015	1015	$\upsilon(\text{pyr breath})$
1003	1013	~1082	$\upsilon(\text{pyr breath})$
1084			$\delta(C_{\beta}-H)$
	1120	~1120	$\delta(C_{\beta}-H)$
1234	1238	1229 (soln)	$\upsilon(C_m-\phi)$
1293		1231 (Au)	v(nym holf ring)
1293	1327	1320	v(pyr half-ring)
1264			v(pyr quarter-ring)
1364	1370	1355,1380 (soln) 1340 (Au)	υ(pyr half-ring)
1440	1428	1340 (Au) 1428	phenyl
1440	1428	1428	$\upsilon(C_{\alpha}-C_m)$
1549	1539	1536, ~1530 sh (soln)	
1572	~1530 (sh)	1530, ~1530 sh (soll) 1538, ~1530 sh (Au)	$\upsilon(C_{\beta}-C_{\beta})$
	1564	1561	$\upsilon(C_{\alpha}-C_m)$
1601	1600	1591	phenyl
1001	1000	1071	Priorit

Table 1. Raman vibrational mode positions ($\Delta \upsilon$ in cm⁻¹) and assignments of different forms of TSPP.

For specific carbon atom labels refer to Figure 1 in the main paper; pyr: pyrrole; oop: out of plane; (Au): TSPP deposited on gold.

STM. Medium resolution 400nm^2 images in Figure 2 depict two different nanorods samples of TSPP aggregates deposited on Au(111) from 5µM porphyrin solutions in 0.75M HCl. Both images were acquired at room temperature employing similar scan parameters: 1.3V and 10 pA. The z heights scale in the images (a) and (d) are 11. 8 nm and 6.19 nm, respectively. Image (a) in Figure 2 reveals that the body of the nanorod has small relatively uniform corrugations that almost appear to run parallel along the long axis of the aggregate. In Figure 2b we observe that a section of the rod was disrupted by the STM probe as evidenced by a band of small fragments spread across that area. As we make the scan size smaller, the quality of our images becomes more variable because in the absence of moisture the rods are less stable and more prone to disintegration with the repeated probing by the STM tip.

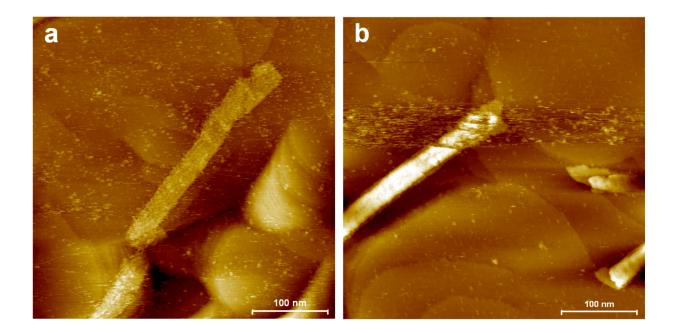


Figure 2.

UV-visible. Electronic absorption spectra of a 50 μ M TSPP solution at different pH is shown are in Figure 3: free-base (black trace), diacid (red trace) and the aggregate (green trace) of TSPP. The 490 nm absorbance is assigned to the J-aggregate transition and the 420 nm band is attributed to the H-aggregate. Spectra were collected using 1mm cuvettes.

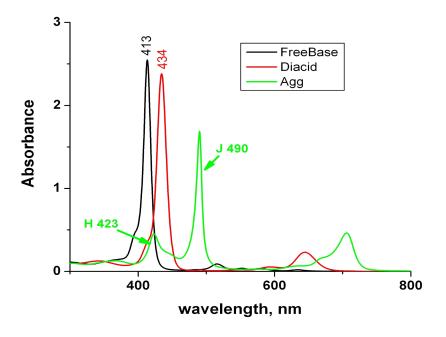


Figure 3.

Figure 4 compares solution electronic absorption spectrum of 5 μ M TSPP in 0.75M HCl (pH 0.125) at room temperature (black trace) and after heating to reflux and cooling to 24 C (red trace).

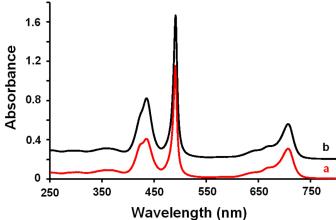


Figure 4.