Supporting Information

New Chiral Derivatizing Agents: Convenient Determination of Absolute Configurations of Free Amino Acids by ${ }^{1} \mathrm{H}-\mathrm{NMR}$

Michio Kurosu, and Kai Li
Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, 1682 Campus Delivery, Fort Collins, CO 80523-1682
michio.kurosu@ColoState.edu

General Procedures and Methods: All glassware was oven dried, assembled hot and cooled under a stream of nitrogen before use. Reactions with air sensitive materials were carried out by standard syringe techniques. Commercially available reagents were used as received without further purification. Thin layer chromatography was performed using 0.25 mm silica gel 60 plates visualizing at 254 nm , or developed with anisaldehyde or ninhydrin solutions by heating with a hot-air gun. Specified products were purified by flash column chromatography using silica gel 60 . IR absorptions were run on NaCl plates. ${ }^{1} \mathrm{H}$ NMR spectral data were recorded on 300 or 400 MHz NMR spectrometer. The residual solvent signal was utilized as an internal reference CDCl_{3} (7.26). ${ }^{13} \mathrm{C}$ NMR spectral data were recorded at $75,100 \mathrm{MHz}$ instruments. The residual solvent signal was utilized as an internal reference CDCl_{3} (77.23). For all NMR spectra, δ values are given in ppm and J values in Hz .

X-ray structure and NOESY correlations of the acetate of 1

Chem3D representation of the
X-ray crystal structure of theacetate of 1

The NOE correlations observed for theacetate of 1 in the NOESY experiment.

Experimental Procedures

Methyl 2,3,4-tri- O-4-methoxybenzoyl-6-O-trityl- α-D-glucoside

To a stirred solution of methyl α-D-glucoside $(7.8 \mathrm{~g}, 40 \mathrm{mmol})$ in dry pyridine (64 mL) was added trityl chloride ($12.2 \mathrm{~g}, 44 \mathrm{mmol}$) and DMAP ($488 \mathrm{mg}, 4 \mathrm{mmol}$). The reaction mixture was stirred at $60{ }^{\circ} \mathrm{C}$ for 10 h . The reaction mixture was cooled to $0^{\circ} \mathrm{C}$, and 4 -methoxylbenzoyl chloride ($27.4 \mathrm{~g}, 160 \mathrm{mmol}$) was added. After 12 h at rt , all volatiles were removed by evap. in vacuo. The partition between EtOAc and water was conducted. The EtOAc phase was washed with 1 N HCl and brine. The combined organic phase was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and evap. in vacuo. Purification by silica gel chromatography (hexanes/EtOAc $=3 / 1$) gave the desired product $(27.8 \mathrm{~g}, 83 \%)$. $[\alpha]^{20}{ }_{\mathrm{D}}=+19.7\left(c 1.5\right.$ in $\left.\mathrm{CHCl}_{3}\right)$; IR (film) $1725,1606,1257,1168 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.94(\mathrm{~g}, J=9.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.81(\mathrm{~d}, J=9.2 \mathrm{~Hz}$, $2 \mathrm{H}), 7.69(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.42-7.40(\mathrm{~m}, 6 \mathrm{H}), 7.20-7.08(\mathrm{~m}, 9 \mathrm{H}), 6.85(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.77(\mathrm{~d}, J=$ $8.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.75(\mathrm{~g}, J=9.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.00(\mathrm{t}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.45(\mathrm{t}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.26-5.20(\mathrm{~m}, 2 \mathrm{H})$, $4.14(\mathrm{~m}, 1 \mathrm{H}), 3.83(\mathrm{~s}, 3 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H}), 3.52(\mathrm{~s}, 3 \mathrm{H}), 3.27(\mathrm{~m}, 2 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR (100 MHz , $\mathrm{CDCl} 3) \delta 165.9,165.7,164.9,163.8,163.6,163.5,143.9,132.2,132.0,128.8,127.9,127.1,122.0,121.9$, $121.8,113.8,113.6,113.6,97.186 .9,72.3,70.6,69.5,62.9,55.6,55.5$; HRMS (ESI) Calcd. for $\mathrm{C}_{50} \mathrm{H}_{46} \mathrm{NaO}_{12}(\mathrm{M}+\mathrm{Na})^{+}: 861.2887$; found: 861.2883.

Methyl 2,3,4-tri-O-4-methoxybenzoyl glucoside

To a stirred solution of methyl 2,3,4-tri- O-4-methoxybenzoyl-6- O-trityl- α-D-glucoside ($8.5 \mathrm{~g}, 10 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(100 \mathrm{~mL})$ was added trifluoroacetic acid (80% in water, 10 mL) at rt . After 1 h at rt , all volatiles were removed by evap. in vacuo. The partition between CHCl_{3} and water was conducted. The CHCl_{3} phase washed with sat. aq. NaHCO_{3}, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and evap. in vacuo. Purification by silica gel chromatography (hexanes/EtOAc $=5 / 1$) gave the desired product $(5.4 \mathrm{~g}, 95 \%) .[\alpha]^{20}{ }_{\mathrm{D}}=+23.8$ (c 1.7 in CHCl_{3}); IR (film) $3519,1722,1606,1258 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.93(\mathrm{~m}, 4 \mathrm{H}), 7.84(\mathrm{~d}, J=$ $8.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.86(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.85(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.76(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.16(\mathrm{~m}, 1 \mathrm{H}), 5.40$ $(\mathrm{t}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.24(\mathrm{~s}, 1 \mathrm{H}), 5.22(\mathrm{~m}, 1 \mathrm{H}), 3.99(\mathrm{~m}, 1 \mathrm{H}), 3.83(\mathrm{~s}, 3 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 3.79(\mathrm{~m}, 1 \mathrm{H}), 3.76$ $(\mathrm{s}, 3 \mathrm{H}), 3.74-3.70(\mathrm{~m}, 1 \mathrm{H}), 3.45(\mathrm{~s}, 3 \mathrm{H}), 2.34($ broad, 1 H$) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 166.5,165.8$, $165.7,164.1,163.8,163.6,132.4,132.2,131.9,121.8,121.6,121.0,114.0,113.9,113.7,97.4,72.0,70.0$, $69.9,69.6,61.2,55.8,55.65,55.59,55.52$; HRMS (ESI) Calcd. for $\mathrm{C}_{31} \mathrm{H}_{32} \mathrm{NaO}_{12}(\mathrm{M}+\mathrm{Na})^{+}: 619.1791$; found: 619.1794.

(2,6-dichloro-4-methoxyphenyl)(2,4-dichlorophenyl)methanone

Anhydrous $\mathrm{AlCl}_{3}(4.5 \mathrm{~g}, 33.9 \mathrm{mmol})$ was placed in a round bottom flask and $\mathrm{PhNO}_{2}(150 \mathrm{~mL})$ was added. At $-78{ }^{\circ} \mathrm{C}$, 2,4-dichlorobenzoyl chloride ($4.7 \mathrm{~mL}, 33.9 \mathrm{mmol}$) and 3,5-dichloroanisole ($5.0 \mathrm{~g}, 28.2 \mathrm{mmol}$) were added. The reaction mixture was kept at the same temperature for 1 h and warmed to rt over 24 h . The
reaction mixture was diluted with $\mathrm{Et}_{2} \mathrm{O}(50 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ and quenched with $1 \mathrm{~N} \mathrm{NaOH}(\sim 30 \mathrm{~mL})$. The reaction mixture was stirred vigorously until a white precipitate had been formed. The precipitates were filtered and washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50,30$, and 20 mL$)$. The combined organic solvents were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered, and concentrated under vacuum at $\sim 10 \mathrm{mmHg}$. Purification by silica gel chromatography (hexanes $/ \mathrm{CHCl}_{3}=4 / 1$,) to provide (2,6-dichloro-4-methoxyphenyl)(2,4-dichlorophenyl)methanone (8.3 g , 85%). IR (film): $16191584,1553,1400,1309 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.68$ (d, $J=8.2 \mathrm{~Hz}$, $1 \mathrm{H}), 7.54(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.37(\mathrm{dd}, J=8.1,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.95(\mathrm{~s}, 2 \mathrm{H}), 3.87(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (75 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 197.6,163.8,142.0,138.3,137.7,136.4,130.3,129.9,127.8,122.9,118.4,117.9,114.6$, 56.1;; HRMS (ESI) Calcd. for $\mathrm{C}_{14} \mathrm{H}_{8} \mathrm{Cl}_{4} \mathrm{NaO}_{2}(\mathrm{M}+\mathrm{Na})^{+}: 370.9176$, found: 370.9177 .

(2,6-dichloro-4-methoxyphenyl)(2,4-dichlorophenyl)methanol (rac-1) ${ }^{1}$

(2,6-Dichloro-4-methoxyphenyl)(2,4-dichlorophenyl)methanone ($1.0 \mathrm{~g}, 2.8 \mathrm{mmol}$) was dissolved in MeOH $(15 \mathrm{~mL})$ and cooled to $0{ }^{\circ} \mathrm{C} . \mathrm{NaBH}_{4}(318 \mathrm{mg}, 8.4 \mathrm{mmol})$ was added. The reaction mixture was quenched by aq. $\mathrm{NH}_{4} \mathrm{Cl}(15 \mathrm{~mL})$ and extracted with $\operatorname{EtOAc}(100,30$, and 20 mL$)$. The combined extracts were washed with brine (15 mL), dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and concentrated in vacuo. Purification by silica gel chromatography (hexanes/EtOAc = 5:1) gave rac-1 $\left.(980 \mathrm{mg}, 97 \%) .{ }^{1} \mathrm{H} \mathrm{NMR} \mathrm{(300} \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.69(\mathrm{~d}, J=8.4 \mathrm{~Hz}$, $1 \mathrm{H}), 7.38(\mathrm{~d}, J=3.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.31(\mathrm{dd}, J=8.2,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.91(\mathrm{~s}, 2 \mathrm{H}), 6.61(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.85(\mathrm{~s}$, $3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 159.6,137.8,136.3,133.9,133.0,130.5,129.6,129.6,128.0,126.6$, $115.4,115.4,70.2,55.9$; IR (film): 3482, 1438, 1410, $1325 \mathrm{~cm}^{-1}$; HRMS (ESI) Calcd. for $\mathrm{C}_{14} \mathrm{H}_{10} \mathrm{Cl}_{4} \mathrm{NaO}_{2}$ $(\mathrm{M}+\mathrm{Na})^{+}: 372.9333$, found: 372.9332 .

Resolution of rac-1

3

4

To a stirred suspension of methyl 2,3,4-tri- O-4-methoxybenzoyl- α-D-glucoside ($5.9 \mathrm{~g}, 10 \mathrm{mmol}$), KBr $(170 \mathrm{mg})$ and $\mathrm{NBu}_{4} \mathrm{Cl}(210 \mathrm{mg})$ in the mixture of $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{~mL})$ and sat. aq. $\mathrm{NaHCO}_{3}(30 \mathrm{~mL})$, was added the mixture of NaClO (30% aqueous, 30 mL), NaHCO_{3} (sat. aqueous, 15 mL), and brine (30 mL) during 30 min . at $0^{\circ} \mathrm{C}$. After 2 h at $0^{\circ} \mathrm{C}$, the reaction mixture was acidified with $\mathrm{HCl}(2 \mathrm{~N})$ to pH 4.0 . The water phase was extracted with $\mathrm{CHCl}_{3}\left(50 \mathrm{~mL} \times 2\right.$). The combined CHCl_{3} phase was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and evap. in vacuo. Purification by passing through short silica gel pad (hexanes/EtOAc $=5 / 1$ to $0 / 1$) gave the acid as white solid $(5.5 \mathrm{~g})$.

To a stirred solution of acid ($5.5 \mathrm{~g}, 8.9 \mathrm{mmol}$) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(40 \mathrm{~mL})$ was added oxalyl dichloride (2.20 g , 18 mmol) and dry DMF ($64 \mathrm{mg}, 0.9 \mathrm{mmol}$) at $0^{\circ} \mathrm{C}$. The reaction mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 1 h and all volatile components were removed by vacuum evaporation to give the crude acid chloride.
To a stirred solution of the crude acid chloride in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(40 \mathrm{~mL})$ was added alcohol rac-1 ($2.5 \mathrm{~g}, 7.1$ mmol) and DMAP ($2.2 \mathrm{~g}, 18 \mathrm{mmol}$). The reaction mixture was stirred at $0^{\circ} \mathrm{C}$ for 30 min and quenched with $\mathrm{HCl}(1 \mathrm{~N}, 70 \mathrm{~mL})$. The water phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic phase was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and evap. in vacuo. Purification by silica gel chromatography (hexanes/EtOAc $=3 / 2$) gave the two diastereomers (3.1 g and 2.9 g , allover yield upon racemic alcohol $\mathbf{1}$ is 90%). Data for 3: $[\alpha]^{20}{ }_{\mathrm{D}}=+16$ (c 1.8 in CHCl_{3}); IR (film) $1728,1606,1257,1169 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.92(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.83(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.68(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.54(\mathrm{~s}, 1 \mathrm{H})$, $7.22(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.16(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.86-6.83(\mathrm{~m}, 3 \mathrm{H}), 6.81(\mathrm{~s}, 2 \mathrm{H}), 6.78-6.73(\mathrm{~m}, 3 \mathrm{H}), 6.06$ $(\mathrm{t}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.72(\mathrm{t}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.30(\mathrm{~d}, J=3.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.25(\mathrm{dd}, J=10.0,3.6 \mathrm{~Hz}, 1 \mathrm{H})$, $4.73(\mathrm{~d}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.83(\mathrm{~s}, 3 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H}), 3.48(\mathrm{~s}, 3 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR (100 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 166.6,165.7,165.6,164.4,163.9,163.7,163.6,160.0,136.9,134.7,134.1,132.7,132.2$, $132.0,131.99,130.9,129.6,126.4,123.9,121.7,121.5,121.4,115.5,113.8,113.7,113.5,97.7,72.2,71.5$, 70.0, 69.7, 68.9, 56.3, 55.9, 55.6, 55.5; HRMS (ESI) Calcd. for $\mathrm{C}_{45} \mathrm{H}_{38} \mathrm{Cl}_{4} \mathrm{NaO}_{14}(\mathrm{M}+\mathrm{Na})^{+}: 965.0913$; found: 965.0914.
Data for 4: $[\alpha]^{20}{ }_{\mathrm{D}}=-15\left(c 1.5\right.$ in CHCl_{3}); IR (film) $1725,1606,1257,1168 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 7.92,(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.80(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.69(\mathrm{~d}, 9.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.61(\mathrm{~s}, 1 \mathrm{H}), 7.29(\mathrm{~d}, J$ $=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.20(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.16(\mathrm{dd}, J=2.0,8.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.84(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.77-6.72$ $(\mathrm{m}, 4 \mathrm{H}), 6.61(\mathrm{~s}, 2 \mathrm{H}), 6.04(\mathrm{t}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.76(\mathrm{t}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.33(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.23$ (dd, $J=10,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.76(\mathrm{~d}, J=10.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H}), 3.71(\mathrm{~s}, 3 \mathrm{H})$, $3.54(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 166.8,165.7,165.5,164.3,163.9,163.6,163.5,159.8,137.0$, 134.7, 133.7, 133.3, 132.3, 132.0, 131.99, 130.5, 129.9, 126.6, 123.6, 121.7, 121.5, 121.3, 115.2, 113.9, 113.7, 113.4, 97.7, 72.0, 71.5, 70.0, 69.4, 68.8, 56.4, 55.7, 55.6, 55.55; HRMS (ESI) Calcd. for $\mathrm{C}_{45} \mathrm{H}_{38} \mathrm{Cl}_{4} \mathrm{NaO}_{14}(\mathrm{M}+\mathrm{Na})^{+}$: 965.0913; found: 965.0915.
(S)-(2,6-dichloro-4-methoxyphenyl)(2,4-dichlorophenyl)methanol ((S)-1)

(S)-1

To a stirred solution of $\mathrm{NaOH}\left(2 \mathrm{M}\right.$ in $\mathrm{THF} / \mathrm{H}_{2} \mathrm{O}=4 / 1,2 \mathrm{~mL}$) was added glucosyluronate $\mathbf{3}(94 \mathrm{mg}, 0.1$ $\mathrm{mmol})$. After 12 h at rt , the reaction mixture was diluted with EtOAc and quenched with $\mathrm{HCl}(1 \mathrm{~N})$ at $0{ }^{\circ} \mathrm{C}$. The water phase was extracted with EtOAc. The combined organic phase was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and evap. in vacuo. Purification by silica gel chromatography (hexanes/EtOAc $=10 / 1$ to $5 / 1$) gave the alcohol (S) - $\mathbf{1}$ (33 mg, 95%). $[\alpha]^{20}{ }_{\mathrm{D}}=+173\left(c 1.0\right.$ in CHCl_{3}); IR (film) 3337, 1600, 1557, $1468,1066 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.65(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.33(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.25(, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.87(\mathrm{~s}, 2 \mathrm{H})$, $6.55(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 2.77(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 159.7$, 137.8, 136.3, 133.9, 133.1, 130.5, 129.6, 128.0, 126.6, 115.5, 70.3, 56.0; HRMS (ESI) calcd. for $\mathrm{C}_{14} \mathrm{H}_{10} \mathrm{Cl}_{4} \mathrm{NaO}_{2}(\mathrm{M}+\mathrm{Na})^{+}: 372.9333$, found 372.9333.
(R)-(2,6-dichloro-4-methoxyphenyl)(2,4-dichlorophenyl)methanol ((R)-1)

The same procedure as preparing $(S) \mathbf{- 1}$ gave $(R)-\mathbf{1} \cdot[\alpha]^{20}{ }_{\mathrm{D}}=-177\left(c 1.0\right.$ in $\left.\mathrm{CHCl}_{3}\right)$; IR (film) 3337, 1600, $1557,1468,1066 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.65(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.33(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H})$, $7.25(, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.87(\mathrm{~s}, 2 \mathrm{H}), 6.55(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 2.77(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}) $\delta 159.7$, 137.8, 136.3, 133.9, 133.1, 130.5, 129.6, 128.0, 126.6, 115.5, 70.3, 56.0; HRMS (ESI) calcd. for $\mathrm{C}_{14} \mathrm{H}_{10} \mathrm{Cl}_{4} \mathrm{NaO}_{2}(\mathrm{M}+\mathrm{Na})^{+}: 372.9333$, found 372.9332.

Determination of the absolute stereochemistry of (\mathbf{S})-1

1. via the advanced Mosher method. ${ }^{2}$

chemical shift differences between the (R) and (S) - Mosher esters $(\Delta \delta(R-S))$

To a stirred solution of (R) - or (S)-Mosher acid ($2.3 \mathrm{mg}, 0.01 \mathrm{mmol}$) and chiral (2,6-dichloro-4-methoxyphenyl)(2,4-dichlorophenyl)methanol ($2.8 \mathrm{mg}, 0.008 \mathrm{mmol}$) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.3 \mathrm{~mL})$ was added N, N^{\prime}-diisopropylcarbodiimide (DIPC) $(2 \mathrm{mg}, 0.016 \mathrm{mmol})$ and DMAP ($2.7 \mathrm{mg}, 0.024 \mathrm{mmol}$) at rt. After 1 h at rt , the reaction mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and quenched with $\mathrm{HCl}(1 \mathrm{~N})$. The water phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic phase was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and evap. in vacuo. Purification by silica gel TLC (hexanes/EtOAc $=5 / 1$) gave the desired (R) - or (S)-Mosher ester.
(R)-Mosher acid ester: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.77(\mathrm{~s}, 1 \mathrm{H}), 7.50(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H})$, 7.43-7.34 (m, $2 \mathrm{H}), 7.37(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.32(\mathrm{~m}, 1 \mathrm{H}), 7.19(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.11(\mathrm{dd}, J=8.8,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.88$ $(\mathrm{s}, 2 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 3.50(\mathrm{~s}, 3 \mathrm{H})$.
(S)-Mosher acid ester: ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.75(\mathrm{~s}, 1 \mathrm{H}), 7.71-7.40(\mathrm{~m}, 5 \mathrm{H}), 7.34-7.30(\mathrm{~m}, 2 \mathrm{H})$, $7.20(\mathrm{dd}, J=8.8,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.83(\mathrm{~s}, 2 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 3.55(\mathrm{~s}, 3 \mathrm{H})$.
2. via a NOESY experiment of the L-Ala derivative.

To a stirred solution of H-L-Ala-OMe ($1.3 \mathrm{mg}, 0.01 \mathrm{mmol}$) in acetone $/ \mathrm{H}_{2} \mathrm{O}(3 / 1,0.3 \mathrm{~mL})$ was added (S) -(2,6-dichloro-4-methoxyphenyl)-(2,4-dichlorophenyl)methyl- N-succinimidyl carbonate ((S)-5) (10 mg , $0.02 \mathrm{mmol})$ and ${ }^{\mathrm{i}} \mathrm{Pr}_{2} \mathrm{NEt}(5 \mathrm{mg}, 0.04 \mathrm{mmol})$ at rt . After 4 h at rt , the reaction mixture was evaporated in vacuo. The partition between $\mathrm{EtOAc}(1 \mathrm{~mL})$ and HCl (aq. $1 \mathrm{~N}, 1 \mathrm{~mL}$) was conducted. The water phase was extracted with EtOAc (1 mL x 2). The combined organic phase was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and evap. in vacuo. Purification by silica gel TLC plate (hexanes/EtOAc $=5 / 1$) gave the desired carbamate (4.6 mg , 95%).
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.49(\mathrm{~s}, 1 \mathrm{H}), 7.38(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.33(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.21(\mathrm{dd}, J$ $=8.4,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.88(\mathrm{~s}, 2 \mathrm{H}), 5.52(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.38(\mathrm{~m}, 1 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.73(\mathrm{~s}, 3 \mathrm{H}), 1.45(\mathrm{~d}$, $J=6.8 \mathrm{~Hz}, 3 \mathrm{H})$.
(S)-(2,6-dichloro-4-methoxyphenyl)-(2,4-dichlorophenyl)methyl- N-succinimidyl carbonate ((S)-5)

To a stirred solution of (S)-(2,6-dichloro-4-methoxyphenyl)(2,4-dichlorophenyl)methanol (100 mg, 0.28 $\mathrm{mmol})$ and triethylamine ($56 \mathrm{mg}, 0.55 \mathrm{mmol}$) in dry $\mathrm{CH}_{3} \mathrm{CN}(4 \mathrm{~mL})$ was added N, N^{\prime}-disuccinimidyl carbonate ($108 \mathrm{mg}, 0.42 \mathrm{mmol}$) at $0^{\circ} \mathrm{C}$. After 10 h at rt , the reaction mixture was evaporated in vacuo. Purification by silica gel chromatography (hexanes/EtOAc $=5: 1$) gave desired compound $(S)-\mathbf{5}(131 \mathrm{mg}$, $95 \%) .[\alpha]^{20}{ }_{\mathrm{D}}=+71\left(c 0.6\right.$ in $\left.\mathrm{CHCl}_{3}\right)$; IR (film): $3447,1744,1223 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.52$
$(\mathrm{s}, 1 \mathrm{H}), 7.45(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.41(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.28(\mathrm{dd}, J=8.8,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.91(\mathrm{~s}, 2 \mathrm{H}), 3.82$ $(\mathrm{s}, 3 \mathrm{H}), 2.81(\mathrm{~s}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 168.5,160.7,151.1,137.3,135.5,133.9,131.9,130.7$, $130.1,126.9,122.5,115.7,77.7,56.0,25.6$; HRMS (FAB) calcd. for $\mathrm{C}_{19} \mathrm{H}_{14} \mathrm{Cl}_{4} \mathrm{NO}_{6}(\mathrm{M}+\mathrm{H})^{+}: 491.9575$, found 491.9577 .

(R)-(2,6-dichloro-4-methoxyphenyl)-(2,4-dichlorophenyl)methyl- N-succinimidyl carbonate ((R)-5)

$(R)-5$, yield: $95 \% .[\alpha]^{20}{ }_{\mathrm{D}}=-71\left(c 0.8\right.$ in $\left.\mathrm{CHCl}_{3}\right)$; IR (film): $3447,1744,1223 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.52(\mathrm{~s}, 1 \mathrm{H}), 7.45(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.41(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.28(\mathrm{dd}, J=2.0,8.8 \mathrm{~Hz}, 1 \mathrm{H})$, $6.91(\mathrm{~s}, 2 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H}), 2.81(\mathrm{~s}, 4 \mathrm{H}){ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 168.5,160.7,151.1,137.3,135.5$, 133.9, 131.9, 130.7, 130.1, 126.9; HRMS (FAB) calcd. for $\mathrm{C}_{19} \mathrm{H}_{14} \mathrm{Cl}_{4} \mathrm{NO}_{6}(\mathrm{M}+\mathrm{H})^{+}: 491.9575$, found 491.9579.

General procedure for carbamate formation:

To a stirred solution of amino acid or amino acid hydrochloride salt $(0.01 \mathrm{mmol})$ in acetone $/ \mathrm{H}_{2} \mathrm{O}(3 / 1,0.3$ mL) was added (S)-(2,6-dichloro-4-methoxyphenyl)-(2,4-dichlorophenyl)methyl- N-succinimidyl carbonate $(S)-5(10 \mathrm{mg}, 0.02 \mathrm{mmol})$ and ${ }^{i} \operatorname{Pr}_{2} \mathrm{NEt}(5 \mathrm{mg}, 0.04 \mathrm{mmol})$ at rt. After 4 h (for α, α-disubstituted amino acids 10 h is needed) at rt , the reaction mixture was evaporated in vacuo. The partition between EtOAc (1 mL) and HCl (aq. $1 \mathrm{~N}, 1 \mathrm{~mL}$) was conducted. The water phase was extracted with EtOAc ($1 \mathrm{~mL} x 2$). The combined organic phase was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and evap. in vacuo. If necessary the crude materials were purified by preparative TLC plate $\left(\mathrm{CHCl}_{3} / \mathrm{MeOH} / \mathrm{HOAc}=100 / 10 / 1\right)$ to give the desired carbamate.

Table 1. The chemical shift of the $-\mathrm{O}(\mathrm{CO}) \mathrm{NH}$ - proton.

entry	substrate	$\delta(S), \delta(R)^{\text {a }}$	$\square \Delta \delta(S-R)$
1	6a: $\mathrm{R}_{1}=\mathrm{CH}_{3}, \mathrm{R}_{2}=\mathrm{CH}_{3}, \mathrm{R}_{4}=\mathrm{H}$	5.52, 5.41	+0.11
2	6b: $\mathrm{R}_{1}={ }^{t} \mathrm{Bu}, \mathrm{R}_{2}=\mathrm{CH}_{2} \mathrm{Ph}, \mathrm{R}_{4}=\mathrm{H}$	5.45, 5.38	+0.07
3	$\mathbf{6 c}: \mathrm{R}_{1}=\mathrm{CH}_{3}, \mathrm{R}_{2}=\left(\mathrm{CH}_{2}\right)_{2} \mathrm{CO}_{2} \mathrm{CH}_{3}, \mathrm{R}_{4}=\mathrm{H}$	5.56, 5.54	+0.02
4	6d: L-Ala	5.63, 5.55	+0.08
5	6e: L-His ${ }^{\text {b }}$	6.10, 6.04	+0.06
6	6f: L-Phe	5.57, 5.47	+0.10
7	6g: L-Thr ${ }^{\text {b }}$	5.85, 5.83	+0.02
8	6h: L-Trp ${ }^{\text {b }}$	5.60, 5.50	+0.10
9	6i: L-Tyr ${ }^{\text {b }}$	5.71, 5.53	+0.18
10	6J: L-Lys ${ }^{\text {c }}$	5.51, 5.42	+0.09
11	6k: L-Val	5.48, 5.41	+0.07
12	61: $\mathrm{R}_{1}=\mathrm{H}, \mathrm{R}_{2}={ }^{\text {t }} \mathrm{Bu}, \mathrm{R}_{4}=\mathrm{H}$	5.50, 5.45	+0.05
13	6m: $\mathrm{R}_{1}=\mathrm{H}, \mathrm{R}_{2}=\mathrm{CH}_{2} \mathrm{CN}, \mathrm{R}_{4}=\mathrm{H}$	5.53, 5.49	+0.04
14	6n: $\mathrm{R}_{1}=\mathrm{H}, \mathrm{R}_{2}=\mathrm{CH}_{2} \mathrm{CH}_{3}, \mathrm{R}_{4}=\mathrm{H}$	5.53, 5.42	+0.11
15	60: $\mathrm{R}_{1}=\mathrm{H}, \mathrm{R}_{2}=\mathrm{CH}_{2}$-2-furyl, $\mathrm{R}_{4}=\mathrm{H}$	5.66, 5.61	+0.05
16	6p: $\mathrm{R}_{1}=\mathrm{H}, \mathrm{R}_{2}=\mathrm{CH}_{2}$-cyclohexyl, $\mathrm{R}_{4}=\mathrm{H}$	5.37, 5.28	+0.09
17	7a	5.99, 5.53	+0.46
18	$8 \mathrm{r}: \mathrm{R}_{3}=\mathrm{Ph}$	5.79, 5.68	+0.11
19	8s: $\mathrm{R}_{3}=\mathrm{Me}$	5.11, 5.03	+0.08
20	6t: $\mathrm{R}_{1}=\mathrm{Bn}, \mathrm{R}_{2}=\mathrm{Bn}, \mathrm{R}_{4}=\mathrm{H}$	5.43, 5.36	+0.07
21	6u: $\mathrm{R}_{1}=\mathrm{H}, \mathrm{R}_{2}=\mathrm{CH}_{2}$-2-thienyl, $\mathrm{R}_{4}=\mathrm{H}$	5.56, 5.52	+0.04
22	6v: $\mathrm{R}_{1}=\mathrm{H}, \mathrm{R}_{2}=\mathrm{CHPh}_{2}$	5.22, 5.16	+0.06
23	6w $\mathrm{R}_{1}=\mathrm{H}, \mathrm{R}_{2}={ }^{\text {' }} \mathrm{Pr}, \mathrm{R}_{4}=\mathrm{Me}$	5.53, 5.46	+0.07
24	6x: $\mathrm{R}_{1}=\mathrm{H}, \mathrm{R}_{2}=\mathrm{Ph}, \mathrm{R}_{4}=\mathrm{Me}$	6.35, 6.21	+0.14
25	17y	5.92, 5.78	+0.14

Figure 1. The carbamate formation with $(S)-5$ or $(R)-5$.

Figure 2. The carbamate formation via a $3: 1$ mixture of $(S)-5$ and $(R)-5$.

References

1. Kurosu, M.; Biswas, K.; Narayanasamy, P.; Crick, D. C. Synthesis 2007, 16, 2513.
2. Ohtani, I.; Kusumi, T.; kashman, Y.; Kakisawa, H. J. Am. Chem. Soc. 1991, 113, 4092.

