Supporting Information

New Chiral Derivatizing Agents: Convenient Determination of Absolute Configurations of Free Amino Acids by ¹H-NMR

Michio Kurosu, and Kai Li

Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, 1682 Campus Delivery, Fort Collins, CO 80523-1682

michio.kurosu@ColoState.edu

General Procedures and Methods: All glassware was oven dried, assembled hot and cooled under a stream of nitrogen before use. Reactions with air sensitive materials were carried out by standard syringe techniques. Commercially available reagents were used as received without further purification. Thin layer chromatography was performed using 0.25 mm silica gel 60 plates visualizing at 254 nm, or developed with anisaldehyde or ninhydrin solutions by heating with a hot-air gun. Specified products were purified by flash column chromatography using silica gel 60. IR absorptions were run on NaCl plates. ¹H NMR spectral data were recorded on 300 or 400 MHz NMR spectrometer. The residual solvent signal was utilized as an internal reference CDCl₃ (7.26). ¹³C NMR spectral data were recorded at 75, 100 MHz instruments. The residual solvent signal was utilized as an internal solvent signal was utilized as an internal reference CDCl₃ (77.23). For all NMR spectra, δ values are given in ppm and *J* values in Hz.

X-ray structure and NOESY correlations of the acetate of 1

Chem3D representation of the X-ray crystal structure of theacetate of **1**

The NOE correlations observed for theacetate of 1 in the NOESY experiment.

Experimental Procedures

Methyl 2,3,4-tri-O-4-methoxybenzoyl-6-O-trityl-a-D-glucoside

To a stirred solution of methyl α-D-glucoside (7.8 g, 40 mmol) in dry pyridine (64 mL) was added trityl chloride (12.2 g, 44 mmol) and DMAP (488 mg, 4 mmol). The reaction mixture was stirred at 60 °C for 10 h. The reaction mixture was cooled to 0 °C, and 4-methoxylbenzoyl chloride (27.4g, 160 mmol) was added. After 12 h at rt, all volatiles were removed by evap. *in vacuo*. The partition between EtOAc and water was conducted. The EtOAc phase was washed with 1 N HCl and brine. The combined organic phase was dried over Na₂SO₄, and evap. *in vacuo*. Purification by silica gel chromatography (hexanes/EtOAc = 3/1) gave the desired product (27.8 g, 83%). $[\alpha]^{20}_{D} = +19.7$ (*c* 1.5 in CHCl₃); IR (film) 1725, 1606, 1257, 1168 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.94 (g, *J* = 9.2 Hz, 2H), 7.81 (d, *J* = 9.2 Hz, 2H), 7.69 (d, *J* = 8.8 Hz, 2H), 7.42-7.40 (m, 6H), 7.20-7.08 (m, 9H), 6.85 (d, *J* = 8.8 Hz, 2H), 6.77 (d, *J* = 8.8 Hz, 2H), 6.75 (g, *J* = 9.2 Hz, 2H), 6.00 (t, *J* = 9.6 Hz, 1H), 5.45 (t, *J* = 10.0Hz, 1H), 5.26-5.20 (m, 2H), 4.14 (m, 1H), 3.83 (s, 3H), 3.82 (s, 3H), 3.76 (s, 3H), 3.52 (s, 3H), 3.27 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 165.9, 165.7, 164.9, 163.8, 163.6, 163.5, 143.9, 132.2, 132.0, 128.8, 127.9, 127.1, 122.0, 121.9, 121.8, 113.8, 113.6, 113.6, 97.186.9, 72.3, 70.6, 69.5, 62.9, 55.6, 55.5; HRMS (ESI) Calcd. for C₅₀H₄₆NaO₁₂ (M+Na)⁺: 861.2887; found: 861.2883.

Methyl 2,3,4-tri-O-4-methoxybenzoyl glucoside

To a stirred solution of methyl 2,3,4-tri-*O*-4-methoxybenzoyl-6-*O*-trityl- α -D-glucoside (8.5 g, 10 mmol) in CH₂Cl₂ (100 mL) was added trifluoroacetic acid (80% in water, 10 mL) at rt. After 1 h at rt, all volatiles were removed by evap. *in vacuo*. The partition between CHCl₃ and water was conducted. The CHCl₃ phase washed with sat. aq. NaHCO₃, dried over Na₂SO₄, and evap. *in vacuo*. Purification by silica gel chromatography (hexanes/EtOAc = 5/1) gave the desired product (5.4 g, 95%). [α]²⁰_D = +23.8 (*c* 1.7 in CHCl₃); IR (film) 3519, 1722, 1606, 1258 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.93 (m, 4H), 7.84 (d, *J* = 8.8 Hz, 2H), 6.86 (d, *J* = 9.2 Hz, 2H), 6.85 (d, *J* = 8.8 Hz, 2H), 6.76 (d, *J* = 8.8 Hz, 2H), 6.16 (m, 1H), 5.40 (t, *J* = 10.0Hz, 1H), 5.24 (s, 1H), 5.22 (m, 1H), 3.99 (m, 1H), 3.83 (s, 3H), 3.81 (s, 3H), 3.79 (m, 1H), 3.76 (s, 3H), 3.74-3.70 (m, 1H), 3.45 (s, 3H), 2.34 (broad, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 166.5, 165.8, 165.7, 164.1, 163.8, 163.6, 132.4, 132.2, 131.9, 121.8, 121.6, 121.0, 114.0, 113.9, 113.7, 97.4, 72.0, 70.0, 69.9, 69.6, 61.2, 55.8, 55.65, 55.59, 55.52; HRMS (ESI) Calcd. for C₃₁H₃₂NaO₁₂ (M+Na)⁺: 619.1791; found: 619.1794.

(2,6-dichloro-4-methoxyphenyl)(2,4-dichlorophenyl)methanone

Anhydrous AlCl₃ (4.5 g, 33.9 mmol) was placed in a round bottom flask and PhNO₂ (150 mL) was added. At -78 °C, 2,4-dichlorobenzoyl chloride (4.7 mL, 33.9 mmol) and 3,5-dichloroanisole (5.0 g, 28.2 mmol) were added. The reaction mixture was kept at the same temperature for 1 h and warmed to rt over 24 h. The

reaction mixture was diluted with Et₂O (50 mL) at 0 °C and quenched with 1 N NaOH (~30 mL). The reaction mixture was stirred vigorously until a white precipitate had been formed. The precipitates were filtered and washed with CH₂Cl₂ (50, 30, and 20 mL). The combined organic solvents were dried (Na₂SO₄), filtered, and concentrated under vacuum at ~10 mmHg. Purification by silica gel chromatography (hexanes/CHCl₃ = 4/1,) to provide (2,6-dichloro-4-methoxyphenyl)(2,4-dichlorophenyl)methanone (8.3 g, 85 %). IR (film): 1619 1584, 1553, 1400, 1309 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 7.68 (d, *J* = 8.2 Hz, 1H), 7.54 (d, *J* = 2.1 Hz, 1H), 7.37 (dd, *J* = 8.1, 2.1 Hz, 1H), 6.95 (s, 2H), 3.87 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 197.6, 163.8, 142.0, 138.3, 137.7, 136.4, 130.3, 129.9, 127.8, 122.9, 118.4, 117.9, 114.6, 56.1;; HRMS (ESI) Calcd. for C₁₄H₈Cl₄NaO₂ (M + Na)⁺: 370.9176, found: 370.9177.

(2,6-dichloro-4-methoxyphenyl)(2,4-dichlorophenyl)methanol (rac-1)¹

(2,6-Dichloro-4-methoxyphenyl)(2,4-dichlorophenyl)methanone (1.0 g, 2.8 mmol) was dissolved in MeOH (15 mL) and cooled to 0 °C. NaBH₄ (318 mg, 8.4 mmol) was added. The reaction mixture was quenched by aq. NH₄Cl (15 mL) and extracted with EtOAc (100, 30, and 20 mL). The combined extracts were washed with brine (15 mL), dried (Na₂SO₄), and concentrated *in vacuo*. Purification by silica gel chromatography (hexanes/EtOAc = 5:1) gave *rac*-1 (980 mg, 97%). ¹H NMR (300 MHz, CDCl₃) δ 7.69 (d, *J* = 8.4 Hz, 1H), 7.38 (d, *J* = 3.0 Hz, 1H), 7.31 (dd, *J* = 8.2, 3.0 Hz, 1H), 6.91 (s, 2H), 6.61 (d, *J* = 2.1 Hz, 1H), 3.85 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 159.6, 137.8, 136.3, 133.9, 133.0, 130.5, 129.6, 128.0, 126.6, 115.4, 115.4, 70.2, 55.9; IR (film): 3482, 1438, 1410, 1325 cm⁻¹; HRMS (ESI) Calcd. for C₁₄H₁₀Cl₄NaO₂ (M + Na)⁺: 372.9333, found: 372.9332.

Resolution of rac-1

To a stirred suspension of methyl 2,3,4-tri-O-4-methoxybenzoyl- α -D-glucoside (5.9 g, 10 mmol), KBr (170 mg) and NBu₄Cl (210 mg) in the mixture of CH₂Cl₂ (50 mL) and sat. aq. NaHCO₃ (30 mL), was added the mixture of NaClO (30% aqueous, 30mL), NaHCO₃ (sat. aqueous, 15 mL), and brine (30 mL) during 30 min. at 0 °C. After 2 h at 0 °C, the reaction mixture was acidified with HCl (2 N) to pH 4.0. The water phase was extracted with CHCl₃ (50 mL x 2). The combined CHCl₃ phase was dried over Na₂SO₄, and evap. *in vacuo*. Purification by passing through short silica gel pad (hexanes/EtOAc = 5/1 to 0/1) gave the acid as white solid (5.5 g).

To a stirred solution of acid (5.5 g, 8.9 mmol) in dry CH_2Cl_2 (40 mL) was added oxalyl dichloride (2.20 g, 18 mmol) and dry DMF (64 mg, 0.9 mmol) at 0 °C. The reaction mixture was stirred at 0 °C for 1 h and all volatile components were removed by vacuum evaporation to give the crude acid chloride.

To a stirred solution of the crude acid chloride in dry CH₂Cl₂ (40 mL) was added alcohol *rac*-1 (2.5 g, 7.1 mmol) and DMAP (2.2 g, 18 mmol). The reaction mixture was stirred at 0 °C for 30 min and quenched with HCl (1 N, 70 mL). The water phase was extracted with CH₂Cl₂. The combined organic phase was washed with brine, dried over Na₂SO₄, and evap. *in vacuo*. Purification by silica gel chromatography (hexanes/EtOAc = 3/2) gave the two diastereomers (3.1 g and 2.9 g, allover yield upon racemic alcohol 1 is 90%). Data for **3**: $[\alpha]^{20}{}_{D} = +16$ (*c* 1.8 in CHCl₃); IR (film) 1728, 1606, 1257, 1169 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.92 (d, *J* = 9.2 Hz, 2H), 7.83 (d, *J* = 8.8 Hz, 2H), 7.68 (d, *J* = 8.8 Hz, 2H), 7.54 (s, 1H), 7.22 (d, *J* = 8.0 Hz, 1H), 7.16 (d, *J* = 2.0 Hz, 1H), 6.86-6.83 (m, 3H), 6.81 (s, 2H), 6.78-6.73 (m, 3H), 6.06 (t, *J* = 10.0 Hz, 1H), 5.72 (t, *J* = 10.0 Hz, 1H), 5.30 (d, *J* = 3.2 Hz, 1H), 5.25 (dd, *J* = 10.0, 3.6 Hz, 1H), 4.73 (d, *J* = 10.0 Hz, 1H), 3.83 (s, 3H), 3.81 (s, 3H), 3.77 (s, 3H), 3.76 (s, 3H), 3.48 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 166.6, 165.7, 165.6, 164.4, 163.9, 163.7, 163.6, 160.0, 136.9, 134.7, 134.1, 132.7, 132.2, 132.0, 131.99, 130.9, 129.6, 126.4, 123.9, 121.7, 121.5, 121.4, 115.5, 113.8, 113.7, 113.5, 97.7, 72.2, 71.5, 70.0, 69.7, 68.9, 56.3, 55.9, 55.6, 55.5; HRMS (ESI) Calcd. for C₄₅H₃₈Cl₄NaO₁₄ (M+Na)⁺: 965.0913; found: 965.0914.

Data for **4**: $[\alpha]^{20}_{D} = -15$ (*c* 1.5 in CHCl₃); IR (film) 1725, 1606, 1257, 1168 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.92, (d, *J* = 8.8 Hz, 2H), 7.80 (d, *J* = 8.8 Hz, 2H), 7.69 (d, 9.2 Hz, 2H), 7.61 (s, 1H), 7.29 (d, *J* = 8.4 Hz, 1H), 7.20 (d, *J* = 2.0 Hz, 1H), 7.16 (dd, *J* = 2.0, 8.8 Hz, 1H), 6.84 (d, *J* = 8.8 Hz, 2H), 6.77-6.72 (m, 4H), 6.61 (s, 2H), 6.04 (t, *J* = 10.0 Hz, 1H), 5.76 (t, *J* = 10.0 Hz, 1H), 5.33 (d, *J* = 3.6 Hz, 1H), 5.23 (dd, *J* = 10, 3.6 Hz, 1H), 4.76 (d, *J* = 10.4 Hz, 1H), 3.82 (s, 3H), 3.81 (s, 3H), 3.76 (s, 3H), 3.71 (s, 3H), 3.54 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 166.8, 165.7, 165.5, 164.3, 163.9, 163.6, 163.5, 159.8, 137.0, 134.7, 133.7, 133.3, 132.3, 132.0, 131.99, 130.5, 129.9, 126.6, 123.6, 121.7, 121.5, 121.3, 115.2, 113.9, 113.7, 113.4, 97.7, 72.0, 71.5, 70.0, 69.4, 68.8, 56.4, 55.7, 55.6, 55.55; HRMS (ESI) Calcd. for C₄₅H₃₈Cl₄NaO₁₄ (M+Na)⁺: 965.0913; found: 965.0915.

(S)-(2,6-dichloro-4-methoxyphenyl)(2,4-dichlorophenyl)methanol ((S)-1)

To a stirred solution of NaOH (2M in THF/H₂O = 4/1, 2 mL) was added glucosyluronate **3** (94 mg, 0.1 mmol). After 12 h at rt, the reaction mixture was diluted with EtOAc and quenched with HCl (1 N) at 0 °C. The water phase was extracted with EtOAc. The combined organic phase was dried over Na₂SO₄, and evap. *in vacuo*. Purification by silica gel chromatography (hexanes/EtOAc = 10/1 to 5/1) gave the alcohol (*S*)-**1** (33 mg, 95%). $[\alpha]^{20}_{D}$ = +173 (*c* 1.0 in CHCl₃); IR (film) 3337, 1600, 1557, 1468, 1066 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.65 (d, *J* = 8.4 Hz, 1H), 7.33 (d, *J* = 2.4 Hz, 1H), 7.25 (, *J* = 8.4 Hz, 1H), 6.87 (s, 2H), 6.55 (d, *J* = 7.6 Hz, 1H), 3.80 (s, 3H), 2.77 (d, *J* = 7.6 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 159.7, 137.8, 136.3, 133.9, 133.1, 130.5, 129.6, 128.0, 126.6, 115.5, 70.3, 56.0; HRMS (ESI) calcd. for C₁₄H₁₀Cl₄NaO₂ (M + Na)⁺: 372.9333, found 372.9333.

(*R*)-(2,6-dichloro-4-methoxyphenyl)(2,4-dichlorophenyl)methanol ((*R*)-1)

The same procedure as preparing (*S*)-1 gave (*R*)-1. $[\alpha]_{D}^{20}$ = -177 (*c* 1.0 in CHCl₃); IR (film) 3337, 1600, 1557, 1468, 1066 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.65 (d, *J* = 8.4 Hz, 1H), 7.33 (d, *J* = 2.4 Hz, 1H), 7.25 (, *J* = 8.4 Hz, 1H), 6.87 (s, 2H), 6.55 (d, *J* = 7.6 Hz, 1H), 3.80 (s, 3H), 2.77 (d, *J* = 7.6 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 159.7, 137.8, 136.3, 133.9, 133.1, 130.5, 129.6, 128.0, 126.6, 115.5, 70.3, 56.0; HRMS (ESI) calcd. for C₁₄H₁₀Cl₄NaO₂ (M + Na)⁺: 372.9333, found 372.9332.

Determination of the absolute stereochemistry of (S)-1

1. via the advanced Mosher method.²

chemical shift differences between the (*R*) and (*S*)- Mosher esters ($\Delta\delta$ (*R*-*S*))

To a stirred solution of (*R*)- or (*S*)-Mosher acid (2.3 mg, 0.01 mmol) and chiral (2,6-dichloro-4methoxyphenyl)(2,4-dichlorophenyl)methanol (2.8 mg, 0.008 mmol) in dry CH_2Cl_2 (0.3 mL) was added *N*,*N*'-diisopropylcarbodiimide (DIPC) (2 mg, 0.016 mmol) and DMAP (2.7 mg, 0.024 mmol) at rt. After 1 h at rt, the reaction mixture was diluted with CH_2Cl_2 and quenched with HCl (1 N). The water phase was extracted with CH_2Cl_2 . The combined organic phase was dried over Na₂SO₄, and evap. *in vacuo*. Purification by silica gel TLC (hexanes/EtOAc = 5/1) gave the desired (*R*)- or (*S*)-Mosher ester. (*R*)-Mosher acid ester: ¹H NMR (400 MHz, CDCl₃) δ 7.77 (s, 1H), 7.50 (d, *J* = 7.6 Hz, 2H), 7.43-7.34 (m, 2H), 7.37 (d, *J* = 8.0 Hz, 1H), 7.32 (m, 1H), 7.19 (d, *J* = 8.4 Hz, 1H), 7.11 (dd, *J* = 8.8, 0.8 Hz, 1H), 6.88 (s, 2H), 3.81 (s, 3H), 3.50 (s, 3H).

(*S*)-Mosher acid ester: ¹H NMR (400 MHz, CDCl₃) δ 7.75 (s, 1H), 7.71-7.40 (m, 5H), 7.34-7.30 (m, 2H), 7.20 (dd, J = 8.8, 2.4Hz, 1H), 6.83 (s, 2H), 3.81 (s, 3H), 3.55 (s, 3H).

2. via a NOESY experiment of the L-Ala derivative.

To a stirred solution of H-L-Ala-OMe (1.3 mg, 0.01 mmol) in acetone/H₂O (3/1, 0.3 mL) was added (*S*)-(2,6-dichloro-4-methoxyphenyl)-(2,4-dichlorophenyl)methyl-*N*-succinimidyl carbonate ((*S*)-**5**) (10 mg, 0.02 mmol) and ⁱPr₂NEt (5 mg, 0.04 mmol) at rt. After 4 h at rt, the reaction mixture was evaporated *in vacuo*. The partition between EtOAc (1 mL) and HCl (aq. 1 N, 1mL) was conducted. The water phase was extracted with EtOAc (1 mL x 2). The combined organic phase was dried over Na₂SO₄, and evap. *in vacuo*. Purification by silica gel TLC plate (hexanes/EtOAc = 5/1) gave the desired carbamate (4.6 mg, 95%).

¹H NMR (400 MHz, CDCl₃) δ 7.49 (s, 1H), 7.38 (d, J = 1.6 Hz, 1H), 7.33 (d, J = 8.4 Hz, 1H), 7.21 (dd, J = 8.4, 2.0 Hz, 1H), 6.88 (s, 2H), 5.52 (d, J = 7.2 Hz, 1H), 4.38 (m, 1H), 3.80 (s, 3H), 3.73 (s, 3H), 1.45 (d, J = 6.8 Hz, 3H).

(S)-(2,6-dichloro-4-methoxyphenyl)-(2,4-dichlorophenyl)methyl-N-succinimidyl carbonate ((S)-5)

To a stirred solution of (*S*)-(2,6-dichloro-4-methoxyphenyl)(2,4-dichlorophenyl)methanol (100 mg, 0.28 mmol) and triethylamine (56 mg, 0.55 mmol) in dry CH₃CN (4 mL) was added *N*,*N*'-disuccinimidyl carbonate (108 mg, 0.42 mmol) at 0 °C. After 10 h at rt, the reaction mixture was evaporated *in vacuo*. Purification by silica gel chromatography (hexanes/EtOAc = 5:1) gave desired compound (*S*)-**5** (131 mg, 95%). $[\alpha]^{20}_{D} = +71$ (*c* 0.6 in CHCl₃); IR (film): 3447, 1744, 1223 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.52

(s, 1H), 7.45 (d, J = 8.8 Hz, 1H), 7.41 (d, J = 2.0 Hz, 1H), 7.28 (dd, J = 8.8, 2.0 Hz, 1H), 6.91 (s, 2H), 3.82 (s, 3H), 2.81 (s, 4H); ¹³C NMR (100 MHz, CDCl₃) δ 168.5, 160.7, 151.1, 137.3, 135.5, 133.9, 131.9, 130.7, 130.1, 126.9, 122.5, 115.7, 77.7, 56.0, 25.6; HRMS (FAB) calcd. for C₁₉H₁₄Cl₄NO₆ (M + H)⁺: 491.9575, found 491.9577.

(R)-(2,6-dichloro-4-methoxyphenyl)-(2,4-dichlorophenyl)methyl-N-succinimidyl carbonate ((R)-5)

(*R*)-**5**, yield: 95%. $[\alpha]^{20}_{D} = -71$ (*c* 0.8 in CHCl₃); IR (film): 3447, 1744, 1223 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.52 (s, 1H), 7.45 (d, *J* = 8.8 Hz, 1H), 7.41 (d, *J* = 2.0 Hz, 1H), 7.28 (dd, *J* = 2.0, 8.8 Hz, 1H), 6.91 (s, 2H), 3.82 (s, 3H), 2.81 (s, 4H); ¹³C NMR (100 MHz, CDCl₃) δ 168.5, 160.7, 151.1, 137.3, 135.5, 133.9, 131.9, 130.7, 130.1, 126.9; HRMS (FAB) calcd. for C₁₉H₁₄Cl₄NO₆ (M + H)⁺: 491.9575, found 491.9579.

General procedure for carbamate formation:

To a stirred solution of amino acid or amino acid hydrochloride salt (0.01 mmol) in acetone/H₂O (3/1, 0.3 mL) was added (*S*)-(2,6-dichloro-4-methoxyphenyl)-(2,4-dichlorophenyl)methyl-*N*-succinimidyl carbonate (*S*)-**5** (10 mg, 0.02 mmol) and ^{*i*}Pr₂NEt (5 mg, 0.04 mmol) at rt. After 4 h (for α, α -disubstituted amino acids 10 h is needed) at rt, the reaction mixture was evaporated *in vacuo*. The partition between EtOAc (1 mL) and HCl (aq. 1 N, 1mL) was conducted. The water phase was extracted with EtOAc (1 mL x 2). The combined organic phase was dried over Na₂SO₄, and evap. *in vacuo*. If necessary the crude materials were purified by preparative TLC plate (CHCl₃/MeOH/HOAc = 100/10/1) to give the desired carbamate.

Table 1. The chemical shift of the -O(CO)NH- proton.

entry	substrate	δ (<i>S</i>), δ (<i>R</i>) ^a	∆δ (<i>S-R</i>)
1	6a : $R_1 = CH_3$, $R_2 = CH_3$, $R_4 = H$	5.52, 5.41	+0.11
2	6b : $R_1 = {}^tBu, R_2 = CH_2Ph, R_4 = H$	5.45, 5.38	+0.07
3	$\textbf{6c}{:}R_1 = CH_3, \ R_2 = (CH_2)_2 CO_2 CH_3, \ R_4 = H$	5.56, 5.54	+0.02
4	6d : L-Ala	5.63, 5.55	+0.08
5	6e : L-His [♭]	6.10, 6.04	+0.06
6	6f: L-Phe	5.57, 5.47	+0.10
7	6g : L-Thr ^b	5.85, 5.83	+0.02
8	6h ։ L-Trp ^b	5.60, 5.50	+0.10
9	6i: L-Tyr ^b	5.71, 5.53	+0.18
10	6J : L-Lys ^c	5.51, 5.42	+0.09
11	6k : L-Val	5.48, 5.41	+0.07
12	6I : $R_1 = H$, $R_2 = {}^tBu$, $R_4 = H$	5.50, 5.45	+0.05
13	6m : $R_1 = H$, $R_2 = CH_2CN$, $R_4 = H$	5.53, 5.49	+0.04
14	6n : $R_1 = H$, $R_2 = CH_2CH_3$, $R_4 = H$	5.53, 5.42	+0.11
15	6o : $R_1 = H$, $R_2 = CH_2$ -2-furyl, $R_4 = H$	5.66, 5.61	+0.05
16	$\textbf{6p:} \ R_1 = H, \ R_2 = CH_2\text{-}cyclohexyl, \ R_4 = H$	5.37, 5.28	+0.09
17	7a	5.99, 5.53	+0.46
18	8r : R ₃ = Ph	5.79, 5.68	+0.11
19	8s : R ₃ = Me	5.11, 5.03	+0.08
20	6t : $R_1 = Bn$, $R_2 = Bn$, $R_4 = H$	5.43, 5.36	+0.07
21	6u : $R_1 = H$, $R_2 = CH_2$ -2-thienyl, $R_4 = H$	5.56, 5.52	+0.04
22	6v : $R_1 = H$, $R_2 = CHPh_2$	5.22, 5.16	+0.06
23	6w $R_1 = H$, $R_2 = {}^{i}Pr$, $R_4 = Me$	5.53, 5.46	+0.07
24	6x : $R_1 = H$, $R_2 = Ph$, $R_4 = Me$	6.35, 6.21	+0.14
25	17у	5.92, 5.78	+0.14

Figure 1. The carbamate formation with (S)-5 or (R)-5.

OH

5

ö

Ĥ

6

6

ך 5

Figure 2. The carbamate formation via a 3:1 mixture of (S)-5 and (R)-5.

S-14

References

- 1. Kurosu, M.; Biswas, K.; Narayanasamy, P.; Crick, D. C. Synthesis 2007, 16, 2513.
- 2. Ohtani, I.; Kusumi, T.; kashman, Y.; Kakisawa, H. J. Am. Chem. Soc. 1991, 113, 4092.

S-21

