A comparative molecular simulation study of CO₂/N₂ and CH₄/N₂ separation in zeolites and metal-organic frameworks

Bei Liu and Berend Smit

Supporting Information

The force field parameters for zeolites and MOFs used in this work are given in Tables 1-5.

Table 1. Partial charges and LJ potential parameters for adsorbate-adsorbate and adsorbate-zeolites interactions. σ_{ij} (Å) value is in the Upper Left Corner and ϵ_{ij}/k_B (K) is in the Lower Right Corner of Each Field.

	Ozeo	Sizeo	C _{co2}	O _{co2}	Ν	Dummy(N ₂)
charge	-1.025	2.05	0.6512	-0.3256	-0.40484	0.80968
	Ozeo	CH ₄	(C _{co2}	O _{co2}	Ν
CH ₄	3.47	3.72	3.24	4	3.38	3.52
	115	158.5		66.77	112.96	75.96
C _{co2}	2.7815	3.24	2.7	6	2.89	3.04
	50.2	66.77		28.129	47.59	32.0
O _{co2}	2.9195	3.38	2.8	9	3.033	3.18
	84.93	112.90	6	47.59	80.507	54.13
Ν	3.062	3.52	3.04	4	3.18	3.32
	58.25	75.96		32.0	54.13	36.4

Table 2 . Partial charges and LJ potential parameters for adsorbate-adsorbate andadsorbate-Cu-BTC interactions.

	Cu	0	C _{Carboxyl}	C ¹ Benzene	C ² Benzene	Н	C _{co2}	O _{co2}	Ν	Dummy(N ₂)
charge	1.098	-0.665	0.778	-0.092	-0.014	0.109	0.7	-0.35	-0.482	0.964
			CH ₄		C _{co2}		() _{co2}		Ν
atom-ato	om σ (Å))	3.73		2.8 3.		3.05		3.31	
atom-ato	om $\varepsilon/k_{\rm B}$	(K)	148.0		27.0 79.0		9.0	36.0		
		CH ₄			CO ₂				N_2	
Atom		$\sigma({ m \AA})$	ε/k_{μ}	₃ (K)	σ (Å)	ε/k	$z_B(\mathbf{K})$	σ	۲(Å)	$\varepsilon/k_{B}(\mathbf{K})$
Cu		3.11	2.5	2	3.11	2.	52	3	.11	2.52
0		2.96	61.	29	2.96	73	.98	2	.96	63.41
C _{Carbox}	yl	3.75	42.2	27	3.75	44	.91	3	.75	39.63
C ¹ Benze	ne	3.55	35.2	23	3.55	35	.23	3	.55	35.23
C ² Benze	ne	3.55	35.2	23	3.55	35	.23	3	.55	35.23
Η		2.42	15.	10	2.42	15	.10	2	.42	15.10

	Zn	O _{Zn-O-Zn}	Ozn-O- CCarboxyl	C _{Carboxyl}	C ¹ Benzene	C ² Benzene	Н
charge	1.501	-1.846	-0.724	0.667	0.072	-0.132	0.140
	C _{co2}		O _{co2}	Ν		Dummy(N ₂)	
charge	irge 0.7		-0.35	-0.482		0.964	
			CH ₄	C _{co2}	O	202	Ν
atom-ato	om σ _{ij} (Å) 3.7	73	2.8	3.05	3	31
atom-ato	om ε_{ij}/k_B	(K)	148.0	27.0	-	79.0	
	_	CH ₄		CO_2		N_2	
Atom	m	σ (Å)	$\varepsilon/k_{B}(\mathbf{K})$	$\sigma(m \AA)$	$\varepsilon/k_{B}(\mathbf{K})$	σ (Å)	$\varepsilon/k_{B}(\mathbf{K})$
Zn	I	2.46	62.4	2.46	62.4	2.46	62.4
O _{Zn-C})-Zn	3.12	30.19	3.12	30.19	3.12	30.19
O _{Zn-O-}	Carboxyl	3.12	30.19	3.12	30.19	3.12	30.19
C _{Carb}	oxyl	3.43	52.84	3.43	52.84	3.43	52.84
C ¹ _{Ben}	zene	3.43	52.84	3.43	52.84	3.43	52.84
C ² _{Ben}	zene	3.43	52.84	3.43	52.84	3.43	52.84
Н		2.57	22.14	2.57	22.14	2.57	22.14

Table 3 . Partial charges and LJ potential parameters for adsorbate-adsorbate andadsorbate-IRMOF-1 interactions.

Table 4 . Partial charges and LJ potential parameters for adsorbate-adsorbate andadsorbate-IRMOF-11/IRMOF-12 interactions.

	Zn	O _{Zn-O-Z}	O _{Zn-O-Zn} O _{Zn-O}		H_1	H_2	
charge	1.576	-1.924	-0	.799	0.107	0.027	
	C _{Carboxyl}	C ¹ Benzene	C ² Benzene	C ³ Benzene	C ⁴ Benzene	C ⁵ Benzene	
charge	0.878	-0.045	-0.166	0.036	0.045	-0.036	
	C _{co2}	O _{co2}		Ν	Dummy(N ₂)		
charge	0.7	-0.35		-0.482		0.964	
		CH ₄	C _{co2}		O _{co2}	Ν	
atom-atom σ_{ij}	(Å) 3.7	73	2.8)5 3	.31	
atom-atom ϵ_{ij}	/k _B (K)	148.0	27.0		79.0	36.0	
	CH ₄		CO ₂		N ₂		
Atom	$\sigma({ m \AA})$	$\varepsilon/k_{B}(\mathbf{K})$	σ (Å)	$\varepsilon/k_{B}(\mathbf{K})$	$\sigma({ m \AA})$	$\varepsilon/k_{B}(\mathbf{K})$	
Zn	2.46	62.4	2.46	62.4	2.46	62.4	
O _{Zn-O-Zn}	3.12	30.19	3.12	30.19	3.12	30.19	
Ozn-O- CCarboxyl	3.12	30.19	3.12	30.19	3.12	30.19	
C _{Carboxyl}	3.43	52.84	3.43	52.84	3.43	52.84	
C ¹ Benzene	3.43	52.84	3.43	52.84	3.43	52.84	
C ² Benzene	3.43	52.84	3.43	52.84	3.43	52.84	
C ³ Benzene	3.43	52.84	3.43	52.84	3.43	52.84	
C ⁴ Benzene	3.43	52.84	3.43	52.84	3.43	52.84	
C ⁵ Benzene	3.43	52.84	3.43	52.84	3.43	52.84	
\mathbf{H}_{1}	2.57	22.14	2.57	22.14	2.57	22.14	
H_2	2.57	22.14	2.57	22.14	2.57	22.14	

Table 5. Partial charges and LJ potential parameters for adsorbate-adsorbate andadsorbate-IRMOF-13/IRMOF-14 interactions.

	Zn O _{Zn-O-}		n Ozn-O-CCarboxyl		H_1	H_2	
charge	1.563	-1.950) -0.	799	0.187	0.127	
	C _{Carboxyl}	C ¹ Benzene	C ² Benzene	C ³ Benzene	C ⁴ Benzene	C ⁵ Benzene	
charge	0.805	0.114	-0.307	0.176	-0.204	0.004	
	C _{co2}	O _{co2}		Ν	Dum	Dummy(N ₂)	
charge	0.7	-0.35	-	0.482	0.9	0.964	
		CH ₄	C _{co2}		O _{co2}	Ν	
atom-atom σ_{ij}	(Å) 3.7	73	2.8)5 3	.31	
atom-atom ϵ_{ij}	/k _B (K)	148.0	27.0		79.0	36.0	
	CH ₄		CO ₂		N_2		
Atom	$\sigma({ m \AA})$	$\varepsilon/k_{B}(\mathbf{K})$	σ (Å)	$\varepsilon/k_B(\mathbf{K})$	$\sigma({ m \AA})$	$\varepsilon/k_{B}(\mathbf{K})$	
Zn	2.46	62.4	2.46	62.4	2.46	62.4	
O _{Zn-O-Zn}	3.12	30.19	3.12	30.19	3.12	30.19	
Ozn-O- CCarboxyl	3.12	30.19	3.12	30.19	3.12	30.19	
C _{Carboxyl}	3.43	52.84	3.43	52.84	3.43	52.84	
C ¹ Benzene	3.43	52.84	3.43	52.84	3.43	52.84	
C ² Benzene	3.43	52.84	3.43	52.84	3.43	52.84	
C ³ Benzene	3.43	52.84	3.43	52.84	3.43	52.84	
C ⁴ Benzene	3.43	52.84	3.43	52.84	3.43	52.84	
C ⁵ Benzene	3.43	52.84	3.43	52.84	3.43	52.84	
\mathbf{H}_{1}	2.57	22.14	2.57	22.14	2.57	22.14	
H_2	2.57	22.14	2.57	22.14	2.57	22.14	

Figures 1a-1h show the effect of electrostatic interactions on the adsorption isotherms of CO_2/N_2 mixture and the adsorption selectivities for CO_2 from equimolar binary mixture simulations of CO_2/N_2 in a) LTA, b) DDR, c) MIL-47 (V), d) IRMOF-1, e) IRMOF-11, f) IRMOF-12, g) IRMOF-13, and h) IRMOF-14. In these figures, case 1 denotes the simulations by switching off all the electrostatic interactions involved by CO_2 and N_2 molecules; case 2 denotes the simulations by witching off only the electrostatic interactions of CO_2 -adsorbents and N_2 -adsorbents; case 3 denotes the simulations where the results with all the electrostatic interactions are considered.

Pressure (MPa)

Figure 1. Effect of the electrostatic interactions on 1) the adsorption isotherms of CO₂/N₂ mixture and 2) the adsorption selectivities for CO₂ from equimolar binary mixture simulations of CO₂/N₂ in a) LTA, b) DDR, c) MIL-47 (V), d) IRMOF-1, e) IRMOF-11, f) IRMOF-12, g) IRMOF-13, and h) IRMOF-14.

Figures 2a-2h show the effect of electrostatic interactions on the adsorption isotherms of CH_4/N_2 mixture and the adsorption selectivities for CH_4 from equimolar binary mixture simulations of CH_4/N_2 in a) LTA, b) DDR, c) MIL-47 (V), d) IRMOF-1, e) IRMOF-11, f) IRMOF-12, g) IRMOF-13, and h) IRMOF-14. Cases 1, 2, and 3 are same as the ones in Figure 1.

Figure 2. Effect of the electrostatic interactions on 1) the adsorption isotherms of CH₄/N₂ mixture and 2) the adsorption selectivities for CH₄ from equimolar binary mixture simulations of CH₄/N₂ in a) LTA, b) DDR, c) MIL-47 (V), d) IRMOF-1, e) IRMOF-11, f) IRMOF-12, g) IRMOF-13, and h) IRMOF-14.