Vanadium Octacyanoniobate-based magnet with a Curie Temperature of 138 K

Wataru Kosaka, Kenta Imoto, Yoshihide Tsunobuchi, and Shin-ichi Ohkoshi*

Department of Chemistry, School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan e-mail: ohkoshi@chem.s.u-tokyo.ac.jp

SUPPORTING INFORMATION

EPR spectrum:

Figure S1. EPR spectrum measured at 300 K.

$\chi_{\rm M}T$ -T plots:

The $\chi_{\rm M}T$ value at 300 K is 6.2 K cm³ mol⁻¹, which is much larger than the expected spin-only value of 2.5 K cm³ mol⁻¹ for one Nb^{IV} ($S_{\rm Nb} = 1/2$), 1.24 V^{III} ($S_{\rm V}^{\rm III} = 1$), and 0.54 V^{II} ($S_{\rm V}^{\rm II} = 3/2$) with g value of 2.0. This is because $T_{\rm C}$ value of this compound is high and the contribution of the magnetic ordering remains even at room temperature. In addition, a minimum in the $\chi_{\rm M}T$ -T plots, which is characteristic in ferrimagnet, was not observed below 300 K. The minimum $\chi_{\rm M}T$ will be located above 300 K.

Figure S2. $\chi_{\rm M}T$ -T plots in an external magnetic field of 5000 Oe.

Estimation of superexchange constant based on molecular-field theory:

The values of the superexchange interaction constants $(J_{ij}, \hat{H} = -J_{ij}S_i \cdot S_j)$ between the i site and the nearest neighbor j site in $V^{II}_{x}V^{III}_{y}[Nb^{IV}(CN)_{8}]$ are related to the T_{C} value via the following equation:

$$T_{\rm C} = \frac{\left\{ S_{\rm Nb} \left(S_{\rm Nb} + 1 \right) \left[\left| J_{\rm v^{II}Nb} \right|^2 Z_{\rm Nbv^{II}} Z_{\rm v^{II}Nb} S_{\rm v^{II}} \left(S_{\rm v^{II}} + 1 \right) + \left| J_{\rm v^{III}Nb} \right|^2 Z_{\rm Nbv^{III}} Z_{\rm v^{III}Nb} S_{\rm v^{III}} \left(S_{\rm v^{III}} + 1 \right) \right] \right\}^{0.5}}{3k_{\rm B}}$$
(1)

where S_i is the spin quantum number ($S_{Nb} = 1/2$, $S_{V^{II}} = 3/2$, and $S_{V^{III}} = 1$), Z_{ij} is the number of the nearest neighbor j site around i site, and k_B is the Boltzmann constant. In the case of $K_{0.10}V^{II}_{0.54}V^{III}_{1.24}[Nb^{IV}(CN)_8]\cdot(SO_4)_{0.45}\cdot6.8H_2O$, Z_{ij} is as follows: $Z_{V^{II}_{Nb}} = Z_{V^{III}_{Nb}} = 4$, $Z_{NbV^{II}} = 8\times(x/2)$, $Z_{NbV^{III}} = 8\times(y/2)$, x = 0.54, y = 1.24. In addition to the present compound, we used $V^{II}_{0.20}V^{III}_{1.20}[Nb^{IV}(CN)_8]\cdot9.4H_2O$ ($T_C = 98$ K) to calculate $J_{V^{II}_{Nb}}$ and $J_{V^{III}_{Nb}}$. This another compound was prepared by mixing an aqueous solution of $K_4[Nb(CN)_8]\cdot2H_2O$ with that of VCl_2 . Calcd. $V_13.2$; $V_13.3$; $V_13.3$; $V_23.3$; $V_13.3$; $V_23.3$; $V_33.3$; V_3

In contrast, the $J_{v^{II}Cr^{III}}$ value in a Prussian blue analog, $KV^{II}[Cr^{III}(CN)_6] \cdot 2H_2O \cdot 0.1(KOSO_2CF_3)$, reported by Holmes^{S2} is related to the T_C value via the following equation:^{S1}

$$T_{\rm C} = \frac{\left| J_{\rm v^{II}Cr^{III}} \right| \left\{ Z_{\rm Cr^{III}v^{II}} Z_{\rm v^{II}Cr^{III}} S_{\rm v^{II}} \left(S_{\rm v^{II}} + 1 \right) S_{\rm Cr^{III}} \left(S_{\rm Cr^{III}} + 1 \right) \right\}^{0.5}}{3k_{\rm p}}$$
(2)

where $Z_{\text{Cr}^{\text{III}}\text{V}^{\text{II}}} = Z_{\text{V}^{\text{II}}\text{Cr}} = 6$, $S_{\text{Cr}^{\text{III}}} = 3/2$, $S_{\text{V}^{\text{II}}} = 3/2$, and $T_{\text{C}} = 376$ K. From equation (2), $J_{\text{V}^{\text{II}}\text{Cr}^{\text{III}}}$ is estimated to be -35 cm⁻¹.

- S1) Ohkoshi, S.; Iyoda, T.; Fujishima, A.; Hashimoto, K. Phys. Rev. B 1997, 56, 11642.
- S2) Holmes, S. M.; Girolami, G. S. J. Am. Chem. Soc. 1999, 121, 5593.