Supporting Information

Precise Seed-mediated Growth and Size-controlled Synthesis of Palladium Nanoparticles Using A Green Chemistry Approach

Juncheng Liu, ^a Feng He, ^b Tyler M Gunn, ^a Dongye Zhao^b Christopher B. Roberts ^a*

^a Department of Chemical Engineering, Auburn University, Auburn, Alabama 36849, USA.

^b Department of Civil Engineering, Auburn University, Auburn, Alabama 36849, USA.

RECEIVED DATE (to be automatically inserted after your manuscript is accepted if required according to

the journal that you are submitting your paper to)

*Corresponding author: croberts@eng.auburn.edu

Figure S1. Image of the aqueous dispersions of CMC-Pd nanoparticles synthesized at room temperature (on the left) and 95°C (on the right).

Figure S2: TEM images of CMC-Pd nanoparticles synthesized at room temperature using ascorbic acid as reducing agent along with the histogram of these Pd nanoparticles ⁴¹

FigureS3: Effect of the system temperature on size and size distribution of the CMC-Pd nanoparticle synthesized by using ascorbic acid as reducing agent.⁴¹