Supporting Information belonging to the Manuscript entitled:

Visible Light Enhanced Selective Reductive Elimination of Methylmanganese Complex from Heterodinuclear Dimethylphenyl(4,4´-di-*tert*-butyl-2,2´-bipyridine)platinum-pentacarbonylmanganese Complex

Sanshiro Komiya, Sei Ezumi, Nobuyuki Komine and Masafumi Hirano

Department of Applied Chemistry, Graduate School of Engineering, Tokyo University of

Agriculture and Technology, 2-24-16 Nakacho, Koganei, Tokyo 184-8588, Japan.

Experimental Details

General. All manipulations were carried out under dry nitrogen or argon atmosphere using standard Schlenk and vacuum line techniques. Solvents were refluxed over and distilled from appropriate drying agents under N₂: benzene, toluene, hexane, and THF from sodium benzophenone ketyl. Deuterated solvents were degassed by three freeze-pump-thaw cycles and then vacuum transferred from appropriate drying agents (C_6D_6 , toluene- d_8 and THF- d_8 from sodium wire, acetone-d₆ from drierite, CD₂Cl₂ from P₂O₅). 2,2'-Bipyridine and 4,4'-di-tert-butyl-2,2'-bipyridine were purchased from commercial suppliers and used as received. PtIMe₂R(bpy) ($R = Me_1^{1} Et_1^{2} Ph^{3}$) and $PtMe_3(NO_3)(bpy)^1$ were prepared according to the analogous literature methods. NMR spectra were recorded on a JEOL LA-300 spectrometer (300.4 MHz for ¹H, 121.6 MHz for ³¹P) and ECX-400 spectrometer (399.8 MHz for ¹H, 161.8 MHz for ³¹P, 100.5 MHz for ¹³C). Chemical shifts were reported in ppm downfield from TMS for ¹H and ¹³C and from 85% H₃PO₄ in D₂O for ³¹P. IR spectra were recorded on a JASCO FT/IR-410 spectrometer using KBr disks. Elemental analyses were carried out with a Perkin-Elmer 2400 series II CHN analyzer. Molar electric conductivity was measured on a TOA Conduct Meter CM 7B. UV-vis spectra were recorded on a SHIMADZU MultiSpec-1500. The irradiation system constructed with Optical Module X (model SX-UI500 MQQ) and a power supply unit (model BA-H500) was obtained from USIO Electronics All of the calculations were performed using the molecular orbital program package Spartan 6.0.

Preparation of triorgano(chrolo)(4,4'-di-tert-butyl-2,2'-bipyridine)platinum

PtIMe₃(^{*t*}**Bu**₂**bpy**). This complex was prepared by the reaction of [PtIMe₃]₄ and ^{*t*}Bu₂bpy according to the analogous literature methods with modifications.¹ Yield: 90% (350.2 mg, 0.5511 mmol). ¹H NMR (CDCl₃, 300 MHz, rt): δ 0.61 (s, ²*J*_{PtH} = 73.6 Hz, 3H, Pt-C*H*₃ trans to I), 1.44 (s, 18H, ^{*t*}Bu), 1.51 (s, ²*J*_{PtH} = 70.0 Hz, 6H, Pt-C*H*₃ trans to N), 7.58 (dd, ³*J*_{HH} = 6 Hz, ⁴*J*_{HH} = 2 Hz, 2H, ^{*t*}Bu₂bpy-H⁵), 8.11 (d, ⁴*J*_{HH} = 2 Hz, 2H, ^{*t*}Bu₂bpy-H³), 8.87 (d, ³*J*_{PtH} = 13 Hz, ³*J*_{HH} = 6 Hz, 2H, ^{*t*}Bu₂bpy-H⁶). **PtIMe**₂**R**(^{*t*}**Bu**₂**bpy**) (**R** = **Et**, ^{*i*}**Pr**, **Np**, ^{*n*}**Hex**, **Ph**, **C**₆**H**₄**OMe**-*p*). These complexes were prepared

according to the analogous literature methods with modifications.²

PtIMe₂Et(^{*t***}Bu₂bpy**). This complex was prepared analogously to by the reaction of PtMe₂(^{*t*}Bu₂bpy) (87.3 mg, 0.177 mmol) with EtI (200 µl, 2.49 mmol). Yield: 98% (112.9 mg, 0.174 mmol). ¹H NMR (acetone- d_6 , 400 MHz, rt): δ 0.03 (t, ³ J_{PtH} = 66.9 Hz, ³ J_{HH} = 7.8 Hz, 3H, Pt-CH₂CH₃), 1.33 (q, ² J_{PtH} = 71.9 Hz, ³ J_{HH} = 7.8 Hz, 2H, Pt-CH₂CH₃), 1.36 (s, ² J_{PtH} = 71.0 Hz, 6H, Pt-CH₃), 1.48 (s, 18H, ^{*t*}Bu), 7.85 (dd, ³ J_{HH} = 6 Hz, ⁴ J_{HH} = 2 Hz, 2H, ^{*t*}Bu₂bpy-H⁵), 8.71 (s, ⁴ J_{HH} = 2 Hz, 2H, ^{*t*}Bu₂bpy-H³), 8.86 (d, ³ J_{PtH} = 14 Hz, ³ J_{HH} = 6 Hz, 2H, ^{*t*}Bu₂bpy-H⁶).

PtIMe₂^{*i*}**Pr**(^{*t*}**Bu**₂**bpy**). This complex was prepared by the reaction of PtMe₂(^{*t*}Bu₂bpy) (104.5 mg, 0.2117 mmol) with ^{*i*}PrI (25.0 µl, 0.250 mmol). Yield: 101% (141.7 mg, 0.2136 mmol). ¹H NMR (C₆D₆, rt, 300 MHz): δ 0.43 (d, 6H, ³*J*_{PtH} = 59.2 Hz, ³*J*_{HH} = 7 Hz, Pt-CH(CH₃)₂), 0.94 (s, 18H, ^{*t*}Bu), 1.91 (septet, 1H, ²*J*_{PtH} = 57.1 Hz, ³*J*_{HH} = 7 Hz, Pt-CH(CH₃)₂), 2.12 (s, 6H, ²*J*_{PtH} = 71.5 Hz, Pt-CH₃), 6.75 (dd, 2H, ³*J*_{HH} = 6 Hz, ⁴*J*_{HH} = 2 Hz, ^{*t*}Bu₂bpy-H⁵), 7.79 (d, 2H, ⁴*J*_{HH} = 2 Hz, ^{*t*}Bu₂bpy-H³), 8.75 (d, 2H, ³*J*_{PtH} = 12 Hz, ³*J*_{HH} = 6 Hz, ^{*t*}Bu₂bpy-H⁶).

PtIMe₂Np(t **Bu**₂**bpy**). This complex was prepared by the reaction of PtMe₂(t Bu₂bpy) (124.8 mg, 0.2529 mmol) with NpI (35.0 µl, 0.264 mmol) as pale-yellow powder in 98% (171.2 mg, 0.2475 mmol). ¹H NMR (acetone-*d*₆, rt, 400 MHz): δ 0.43 (brs, 9H, Pt-CH₂C(CH₃)₃), 1.45 (s, 6H, ${}^{2}J_{PtH} =$ 70.5 Hz, Pt-CH₃), 1.48 (s, 18H, t Bu), 1.59 (s, 2H, ${}^{2}J_{PtH} =$ 72.3 Hz, Pt-CH₂C(CH₃)₃), 7.86 (dd, 2H, ${}^{3}J_{HH} = 6$ Hz, ${}^{4}J_{HH} = 2$ Hz, t Bu₂bpy-H⁵), 8.68 (d, 2H, ${}^{4}J_{HH} = 2$ Hz, t Bu₂bpy-H³), 8.96 (d, 2H, ${}^{3}J_{PtH} =$ 14 Hz, ${}^{3}J_{HH} = 6$ Hz, t Bu₂bpy-H⁶).

PtIMe₂^{*n*}**Hex**(^{*t*}**Bu**₂**bpy**). This complex was prepared by the reaction of PtMe₂(^{*t*}Bu₂bpy) (91.0 mg, 0.184 mmol) with ^{*n*}HexI (100 µl, 0.679 mmol) as pale-yellow powder in 97% (125.3 mg, 0.1776 mmol). ¹H NMR (acetone-*d*₆, 400 MHz, rt): δ 0.46 (m, 2H, Pt-CH₂CH₂(CH₂)₃CH₃), 0.69 (t, ³*J*_{HH} = 7 Hz, 3H, Pt-(CH₂)₅CH₃), 0.85-1.05 (overlapped, 6H, Pt-(CH₂)₂CH₂CH₂CH₂CH₃), 1.3 (overlapped, 2H, Pt-CH₂(CH₂)₄CH₃), 1.38 (s, ²*J*_{PtH} = 70.6 Hz, 6H, Pt-CH₃), 1.48 (s, 18H, ^{*t*}Bu), 7.84 (dd, 2H, ³*J*_{HH} = 6 Hz, ⁴*J*_{HH} = 2 Hz, ^{*t*}Bu₂bpy-H⁵), 8.70 (d, 2H, ⁴*J*_{HH} = 2 Hz, ^{*t*}Bu₂bpy-H³), 8.87 (d, 2H, ³*J*_{PtH} = 14 Hz, ³*J*_{HH} = 6 Hz, ^{*t*}Bu₂bpy-H⁶).

PtIMe₂Ph(^{*t***}Bu₂bpy).** This complex was prepared analogously by the reaction of PtMePh(^{*t*}Bu₂bpy) (202.4 mg, 0.3643 mmol) with MeI (500 µl, 8.03 mmol) in 93% (235.8 mg, 0.3380 mmol). ¹H NMR (CDCl₃, 400 MHz, rt): δ 1.02 (s, ²*J*_{PtH} = 71.9 Hz, 3H, Pt-C*H*₃ trans to I), 1.42 (s, 9H, ^{*t*}Bu), 1.46 (s, 9H, ^{*t*}Bu), 1.77 (s, ²*J*_{PtH} = 70.1 Hz, 3H, Pt-C*H*₃ trans to N), 7.0-7.2 (m, 3H, H_{*m*, *p*} of Ph), 7.47 (dd, ³*J*_{HH} = 6 Hz, ⁴*J*_{HH} = 2 Hz, 1H, ^{*t*}Bu₂bpy-H⁵), 7.64 (dd, ³*J*_{HH} = 6 Hz, ⁴*J*_{HH} = 2 Hz, 1H, ^{*t*}Bu₂bpy-H⁵), 7.7 (br, 2H, H_o of Ph), 8.13 (d, ⁴*J*_{HH} = 2 Hz, 1H, ^{*t*}Bu₂bpy-H³), 8.15 (d, ⁴*J*_{HH} = 2 Hz, 1H, ^{*t*}Bu₂bpy-H³), 8.79 (d, ³*J*_{PtH} = 12 Hz, ³*J*_{HH} = 6 Hz, 1H, ^{*t*}Bu₂bpy-H⁶), 8.93 (d, ³*J*_{PtH} = 14 Hz, ³*J*_{HH} = 6 Hz, 1H, ^{*t*}Bu₂bpy-H⁶).

PtIMe₂(**C**₆**H**₄**OMe**-*p*)(^{*t*}**Bu**₂**bpy**). This complex was prepared analogously by the reaction of PtMe(C₆H₄OMe-*p*)(^{*t*}Bu₂bpy) (155.1 mg, 0.2648 mmol) with MeI (500 µl, 8.03 mmol) as paleyellow powder in 98% (188.0 mg, 0.2584 mmol). ¹H NMR (acetone-*d*₆, 400 MHz, rt): δ 0.93 (s, ²*J*_{PtH} = 71.4 Hz, 3H, Pt-C*H*₃ trans to I), 1.46 (s, 9H, ^{*t*}Bu), 1.50 (s, 9H, ^{*t*}Bu), 1.66 (s, ²*J*_{PtH} = 70.5 Hz, 3H, Pt-C*H*₃ trans to N), 3.76 (s, 3H, C₆H₄OC*H*₃-*p*), 6.68 (dd, ³*J*_{HH} = 7.3 Hz, ⁴*J*_{HH} = 1.4 Hz, 2H, H_m of Ar), 7.55 (br, 2H, H_o of Ar), 7.76 (dd, ³*J*_{HH} = 6 Hz, ⁴*J*_{HH} = 2 Hz, 1H, ^{*t*}Bu₂bpy-H^{5'}), 7.91 (dd, ³*J*_{HH} = 6 Hz, ⁴*J*_{HH} = 2 Hz, 1H, ^{*t*}Bu₂bpy-H^{6'}), 8.74 (d, ⁴*J*_{HH} = 2 Hz, 1H, ^{*t*}Bu₂bpy-H^{3'}), 8.76 (d, ⁴*J*_{HH} = 2 Hz, 1H, ^{*t*}Bu₂bpy-H³), 8.95 (d, ³*J*_{PtH} = 14 Hz, ³*J*_{HH} = 6 Hz, 1H, ^{*t*}Bu₂bpy-H^{6'}).

Preparation of triorgano(nitorato)(4,4´-di-tert-butyl-2,2´-bipyridine)platinum.

These complexes were prepared according to the analogous literature methods with modifications.¹

Pt(**NO**₃)**Me**₂**Et**(**bpy**). This complex was prepared analogously by the reaction of PtIMe₂Et(bpy) (73.8 mg, 0.137 mmol) with AgNO₃ (73.8 mg, 0.137 mmol) as white powder in 98% (63.7 mg, 0.135 mmol). *cis* isomer: ¹H NMR (CDCl₃, 400 MHz, r.t.): δ 0.44 (s, ²*J*_{PtH} = 80.1 Hz, 3H, Pt-*CH*₃ trans to NO₃), 0.96 (t, ³*J*_{PtH} = 43.1 Hz, ³*J*_{HH} = 7.8 Hz, 3H, Pt-*CH*₂*CH*₃), 1.29 (s, ²*J*_{PtH} = 66.9 Hz, 3H, Pt-*CH*₃ trans to N), 1.8-2.1 (m, 2H, Pt-*CH*₂CH₃), 7.66 (t, ³*J*_{HH} = 6 Hz, 2H, bpy-H^{5.5'}), 8.08 (t, ³*J*_{HH} = 8 Hz, 2H, bpy-H^{4.4'}), 8.19 (d, ³*J*_{HH} = 8 Hz, 2H, bpy-H^{3.3'}), 8.94 (d, ³*J*_{PtH} = 67.8 Hz, ³*J*_{HH} = 7.8 Hz, 3H, Pt-*CH*₂*CH*₃), 1.25 (s, ²*J*_{PtH} = 68.2 Hz, 6H, Pt-*CH*₃), 1.55 (q, ²*J*_{PtH} = 78.3 Hz, ³*J*_{HH} = 7.8 Hz, 2H, Pt-*CH*₂*CH*₃), 7.66 (t, ³*J*_{HH} = 6 Hz, 2H, bpy-H⁴), 8.19 (d, ³*J*_{HH} = 6 Hz, 2H, bpy-H⁵), 8.08 (t, ³*J*_{HH} = 7.8 Hz, 2H, Pt-*CH*₂*CH*₃), 1.25 (s, ²*J*_{PtH} = 68.2 Hz, 6H, Pt-*CH*₃), 1.55 (q, ²*J*_{PtH} = 78.3 Hz, ³*J*_{HH} = 7.8 Hz, 2H, Pt-*CH*₂*CH*₃), 7.66 (t, ³*J*_{HH} = 6 Hz, 2H, bpy-H⁵), 8.08 (t, ³*J*_{HH} = 8 Hz, 2H, bpy-H⁴), 8.19 (d, ³*J*_{HH} = 8 Hz, 2H, bpy-H⁵).

Pt(**NO**₃)**Me**₂**Ph**(**bpy**). This complex was prepared analogously by the reaction of PtIMe₂Ph(bpy) (32.5 mg, 0.0555 mmol) with AgNO₃ (23.3 mg, 0.137 mmol) as white powder in 96% (27.8 mg, 0.0534 mmol) (*cis/trans* = 2/1). *cis* isomer: ¹H NMR (acetone-*d*₆, 400 MHz, r.t.): δ 0.92 (s, ²*J*_{PtH} = 78.8 Hz, 3H, Pt-*CH*₃ trans to NO₃), 1.42 (s, ³*J*_{PtH} = 66.8 Hz, 3H, Pt-*CH*₃ trans to N), 7.03-7.20 (m, 3H, H_{*m*,*p*} of Ph), 7.37 (br, 2H, H_{*o*} of Ph), 7.79 (m, 1H, bpy-H⁵), 7.97 (m, 1H, bpy-H^{5'}), 8.33 (m, 1H, bpy-H⁴), 8.41 (m, 1H, bpy-H^{4'}), 8.6 (m, 1H, bpy-H³), 8.74 (d, ³*J*_{HH} = 9 Hz, 1H, bpy-H⁶), 8.76 (d, ³*J*_{HH} = 9 Hz, 1H, bpy-H^{3'}), 9.07 (d, ³*J*_{HH} = 6 Hz, 1H, bpy-H^{6'}). *trans* isomer: ¹H NMR (acetone-*d*₆, 400 MHz, r.t.): δ 1.50 (s, ²*J*_{PtH} = 63.2 Hz, 6H, Pt-*CH*₃ (cis isomer)), 6.64-6.86 (m, 5H, Pt-*Ph*), 7.97 (m, 2H, bpy-H⁵), 8.33 (m, 2H, bpy-H⁴), 8.6 (m, 2H, bpy-H³), 9.29 (d, ³*J*_{HH} = 5 Hz, 2H, bpy-H⁶).

Pt(**NO**₃)**Me**₃(^{*t*}**Bu**₂**bpy**). This complex was prepared analogously by the reaction of PtIMe₃(^{*t*}**Bu**₂**bpy**) (348.8 mg, 0.5489 mmol) with AgNO₃ (189.9 mg, 1.118 mmol) as white powder in 103% (322.8 mg, 0.5657 mmol). Anal. Calcd. for C₂₁H₃₃N₃O₃Pt: C, 44.20; H, 5.83; N, 7.36. Found: C, 44.30; H, 5.77; N, 6.86. ¹H NMR (CDCl₃, 300 MHz, rt): δ 0.53 (s, ²*J*_{PtH} = 79.6 Hz, 3H, Pt-C*H*₃ trans to NO₃), 1.25 (s, ²*J*_{PtH} = 66.7 Hz, 6H, Pt-C*H*₃ trans to N), 1.44 (s, 18H, ^{*t*}Bu), 7.62 (dd,

 ${}^{3}J_{\text{HH}} = 6 \text{ Hz}, {}^{4}J_{\text{HH}} = 2 \text{ Hz}, 2\text{H}, {}^{t}\text{Bu}_{2}\text{bpy-H}^{5}), 8.10 \text{ (d, } {}^{4}J_{\text{HH}} = 2 \text{ Hz}, 2\text{H}, {}^{t}\text{Bu}_{2}\text{bpy-H}^{3}), 8.81 \text{ (d, } {}^{3}J_{\text{PtH}} = 13 \text{ Hz}, {}^{3}J_{\text{HH}} = 6 \text{ Hz}, 2\text{H}, {}^{t}\text{Bu}_{2}\text{bpy-H}^{6}).$

Pt(NO₃)Me₂Et(¹Bu₂bpy). This complex was prepared analogously by the reaction of PtIMe₂Et(¹Bu₂bpy) (95.4 mg, 0.147 mmol)with AgNO₃ (66.5 mg, 0.391 mmol) as white powder in 103% (322.8 mg, 0.5657 mmol). (*cis / trans* = 1 / 4). Anal. Calcd. for C₂₂H₃₅N₃O₃Pt: C, 45.20; H, 6.03; N, 7.19. Found: C, 45.18; H, 6.42; N, 6.86. *Cis* isomer: ¹H NMR (acetone-*d*₆, 400 MHz, rt): δ 0.05 (t, ²*J*_{PtH} = 66.0 Hz, ³*J*_{HH} = 7.8 Hz, 3H, Pt-CH₂CH₃), 1.14 (s, ²*J*_{PtH} = 68.2 Hz, 6H, Pt-CH₃), 1.48 (s, 18H, ^{*t*}Bu), 1.5 (overlapped, Pt-CH₂CH₃), 7.89 (d, ³*J*_{HH} = 6 Hz, 2H, ^{*t*}Bu₂bpy-H⁵), 8.72 (s, 2H, ^{*t*}Bu₂bpy-H³), 8.87 (d, ³*J*_{PtH} = 13 Hz, ³*J*_{HH} = 79.7 Hz, 3H, Pt-CH₃ trans to NO₃), 0.93 (t, ³*J*_{HH} = 7.3 Hz, 3H, Pt-CH₂CH₃), 1.18 (s, 3H, Pt-CH₃ trans to N), 1.48 (s, 18H, ^{*t*}Bu), 7.89 (d, ³*J*_{HH} = 6 Hz, 2H, ^{*t*}Bu₂bpy-H⁵), 8.72 (s, 2H, ^{*t*}Bu₂bpy-H³), 8.87 (d, ³*J*_{PtH} = 13 Hz, ³*J*_{PtH} = 6 Hz, 2H, ^{*t*}Bu₂bpy-H⁶).

Pt(**NO**₃)**Me**₂^{*i*}**Pr**(^{*t*}**Bu**₂**bpy**). This complex was prepared analogously by the reaction of PtIMe^{*i*}Pr₂(^{*t*}Bu₂bpy) (123.0 mg, 0.1854 mmol) with AgNO₃ (143.6 mg, 0.8454 mmol) as white powder in 108% (120.1 mg, 0.201 mmol). ¹H NMR (acetone-*d*₆, rt, 400 MHz): δ 0.27 (d, ³*J*_{PtH} = 60.4 Hz, ³*J*_{HH} = 7 Hz, 6H, Pt-CH(CH₃)₂), 1.19 (s, ²*J*_{PtH} = 69.2 Hz, 6H, Pt-CH₃), 1.48 (s, 18H, ^{*t*}Bu), 2.13 (septet, ³*J*_{HH} = 7 Hz, 1H, Pt-CH(CH₃)₂), 7.88 (dd, ³*J*_{HH} = 6 Hz, ⁴*J*_{HH} = 2 Hz, 2H, ^{*t*}Bu₂bpy-H⁵), 8.71 (d, ⁴*J*_{HH} = 2 Hz, 2H, ^{*t*}Bu₂bpy-H³), 8.92 (d, ³*J*_{PtH} = 12 Hz, ³*J*_{HH} = 6 Hz, 2H, ^{*t*}Bu₂bpy-H⁶).

Pt(**NO**₃)**Me**₂**Np**(^{*t*}**Bu**₂**bpy**). This complex was prepared analogously by the reaction of PtIMe₂Np(^{*t*}Bu₂bpy) (253.1 mg, 0.3660 mmol) with AgNO₃ (135.2 mg, 0.7959 mmol) as white powder in 92% (211.4 mg, 0.3373 mmol). Anal. Calcd. for C₂₅H₄₁N₃O₃Pt: C, 47.91; H, 6.59; N, 6.71. Found: C, 47.92; H, 6.55; N, 6.73. *Cis* isomer: ¹H NMR (C₆D₆, 400 MHz, rt): δ 0.64 (s, ²J_{PtH} = 67.8 Hz, 3H, Pt-CH₃ trans to NO₃), 0.98 (s, 9H, ^{*t*}Bu), 1.02 (s, 9H, ^{*t*}Bu), 1.59 (s, 9H, Pt-CH₂C(CH₃)₃), 1.86 (s, ²J_{PtH} = 66.8 Hz, 3H, Pt-CH₃ trans to N), 2.1-2.4 (m, 2H, Pt-CH₂C(CH₃)₃), 6.75 (d, ³J_{HH} = 4 Hz, 1H, ^{*t*}Bu₂bpy-H⁵), 6.76 (d, ³J_{HH} = 4 Hz, 1H, ^{*t*}Bu₂bpy-H⁵), 8.21 (s, 1H, ^{*t*}Bu₂bpy-H³), 8.25 (s, 1H, ^{*t*}Bu₂bpy-H³), 8.51 (d, ³J_{PtH} = 11 Hz, ³J_{HH} = 6 Hz, 1H, ^{*t*}Bu₂bpy-H⁶), 8.81 (d, ³J_{PtH} =

11 Hz, ${}^{3}J_{HH} = 6$ Hz, 1H, ${}^{t}Bu_{2}bpy-H^{6}$). *Trans* isomer: ¹H NMR (C₆D₆, 400 MHz, rt): δ 0.58 (brs, 9H, Pt-CH₂C(CH₃)₃), 0.98 (s, 18H, {}^{t}Bu), 1.77 (s, {}^{2}J_{PtH} = 67.8 Hz, 6H, Pt-CH₃), 1.98 (s, {}^{2}J_{PtH} = 78.8 Hz, 2H, Pt-CH₂C(CH₃)₃), 6.86 (d, {}^{3}J_{HH} = 5 Hz, 2H, ${}^{t}Bu_{2}bpy-H^{5}$), 8.15 (d, {}^{4}J_{HH} = 1 Hz, 2H, ${}^{t}Bu_{2}bpy-H^{3}$), 8.63 (d, {}^{3}J_{PtH} = 12 Hz, ${}^{3}J_{HH} = 6$ Hz, 2H, ${}^{t}Bu_{2}bpy-H^{6}$).

Pt(**NO**₃)**Me**₂(^{*n*}**Hex**)(^{*t*}**Bu**₂**bpy**). This complex was prepared analogously by the reaction of PtIMe₂^{*n*}Hex(^{*t*}Bu₂bpy) (120.5 mg, 0.1708 mmol) with AgNO₃ (68.4 mg, 0.403 mmol) as white powder in 91% (100.0 mg, 0.1561 mmol). Anal. Calcd. for C₂₅H₄₁N₃O₃Pt: C, 47.91; H, 6.59; N, 6.71. Found: C, 47.92; H, 6.55; N, 6.73. *T*rans isomer: ¹H NMR (acetone-*d*₆, 400 MHz, rt): δ 0.49 (br, 2H, Pt-CH₂CH₂(CH₂)₃CH₃), 0.67 (t, ³*J*_{HH} = 7 Hz, 3H, Pt-(CH₂)₅CH₃), other ^{*n*}Hex protons were not determined, 1.00 (s, 18H, ^{*t*}Bu), 1.74 (s, ²*J*_{PtH} = 67.3 Hz, 6H, Pt-CH₃), 6.87 (brs, 2H, ^{*t*}Bu₂bpy-H⁵), 8.12 (brs, 2H, ^{*t*}Bu₂bpy-H³), 8.63 (brd, 2H, ³*J*_{HH} = 6 Hz, ^{*t*}Bu₂bpy-H⁶). *Cis* isomer: ¹H NMR (acetone-*d*₆, 400 MHz, rt): δ 1.00 (s, 18H, ^{*t*}Bu), 6.80 (br, 2H, ^{*t*}Bu₂bpy-H⁵), 8.07 (br, 2H, ^{*t*}Bu₂bpy-H³), 8.58 (brd, 1H, ³*J*_{HH} = 5 Hz, ^{*t*}Bu₂bpy-H⁶).

Pt(**NO**₃)**Me**₂**Ph**(^{*t*}**Bu**₂**bpy**). This complex was prepared analogously by the reaction of PtIMe₂^{*n*}Hex(^{*t*}**Bu**₂bpy) (106.1 mg, 0.1521 mmol) with AgNO₃ (67.2 mg, 0.396 mmol) as white powder in 93% (89.6 mg, 0.142 mmol) (*cis/trans* = 2/1). Anal. Calcd. for C₂₆H₃₅N₃O₃Pt: C, 49.36; H, 5.58; N, 6.64. Found: C, 48.98; H, 5.63; N, 6.64. *cis* isomer: ¹H NMR (acetone-*d*₆, 400 MHz, rt): δ 0.88 (s, ²*J*_{PtH} = 78.8 Hz, 3H, Pt-*CH*₃ *trans* to NO₃), 1.39 (s, ²*J*_{PtH} = 66.8 Hz, 3H, Pt-*CH*₃ *trans* to N), 1.45 (s, 9H, ^{*t*}Bu), 1.50 (s, 9H, ^{*t*}Bu), 7.05-7.18 (m, 3H, H_{*m*, *p*} of Ph), 7.02-7.70 (br, 2H, H_{*o*} of Ph), 7.79 (dd, ³*J*_{HH} = 6 Hz, ⁴*J*_{HH} = 2 Hz, 1H, ^{*t*}Bu₂bpy-H^{5'}), 8.48 (d, ³*J*_{PtH} = 12 Hz, ³*J*_{HH} = 6 Hz 1H, ^{*t*}Bu₂bpy-H⁶), 8.76 (d, ⁴*J*_{HH} = 1 Hz, 1H, ^{*t*}Bu₂bpy-H³), 8.78 (d, ⁴*J*_{HH} = 2 Hz, 1H, ^{*t*}Bu₂bpy-H^{3'}), 8.93 (d, ³*J*_{PtH} = 13 Hz, ³*J*_{HH} = 6 Hz, 1H, ^{*t*}Bu₂bpy-H^{6'}). *trans* isomer: ¹H NMR (acetone-*d*₆, 400 MHz, rt): δ 1.45 (s, 18H, ^{*t*}Bu), 1.46 (s, ²*J*_{PtH} = 66.9 Hz, 6H, Pt-*CH*₃ *trans* to N), 6.65-6.88 (m, 5H Pt-*Ph*), 7.96 (dd, ³*J*_{HH} = 6 Hz, ⁴*J*_{HH} = 2 Hz, 1H, ^{*t*}Bu₂bpy-H^{5'}), 8.62 (d, ⁴*J*_{HH} = 2 Hz, ^{*t*}Bu₂bpy-H³), 9.16 (d, ³*J*_{PtH} = 11 Hz, ³*J*_{HH} = 6 Hz, ^{*t*}Bu₂bpy-H⁶).

Pt(**NO**₃)**Me**₂(**C**₆**H**₄**OMe**-*p*)(^{*t*}**Bu**₂**bpy**). This complex was prepared analogously by the reaction of PtIMe₂(**C**₆**H**₄OMe-*p*)(^{*t*}**Bu**₂bpy) (152.0 mg, 0.2089 mmol) with AgNO₃ (91.0 mg, 0.536 mmol) as yellow-white powder in 95% (132.1 mg, 0.1993 mmol) (*cis/trans* = 2/1). Anal. Calcd. for C₂₇H₃₇N₃O₄Pt: C, 48.94; H, 5.63; N, 6.34. Found: C, 48.88; H, 5.73; N, 6.28. *Cis* isomer: ¹H NMR (acetone-*d*₆, 400 MHz, r.t.): δ 0.86 (s, ²*J*_{PtH} = 78.8 Hz, 3H, Pt-*CH*₃ trans to NO₃), 1.37 (s, ²*J*_{PtH} = 66.0 Hz, 3H, Pt-*CH*₃ trans to N), 1.45 (s, 9H, ¹Bu), 1.49 (s, 9H, ¹Bu), 3.79 (s, 3H, OMe), 6.79 (m, 2H, H^m of Ar), 7.23 (br, 2H, H^o of Ar), 7.79 (dd, ³*J*_{HH} = 6 Hz, ⁴*J*_{HH} = 2 Hz, 1H, ^{*t*}Bu₂bpy-H⁵), 7.95 (dd, ³*J*_{HH} = 6 Hz, ⁴*J*_{HH} = 2 Hz, 1H, ¹Bu₂bpy-H⁵), 8.48 (d, ³*J*_{PtH} = 12 Hz, ³*J*_{HH} = 6 Hz, 1H, ^{*t*}Bu₂bpy-H⁶). *Trans* isomer: ¹H NMR (acetone-*d*₆, 400 MHz, r.t.): δ 1.44 (s, ²*J*_{PtH} = 66.9 Hz, 6H, Pt-*CH*₃), 1.45 (s, 18H, ¹Bu), 3.56 (s, 3H, OMe), 6.35 (m, 2H, H^m of Ar), 6.64 (m, 2H, H^o of Ar), 7.95 (dd, ³*J*_{HH} = 6 Hz, ⁴*J*_{HH} = 2 Hz, 14, ¹Bu₂bpy-H⁵), 8.63 (d, ⁴*J*_{HH} = 2 Hz, 2H, ¹Bu₂bpy-H³), 9.13 (d, ³*J*_{PtH} = 11 Hz, ³*J*_{HH} = 6 Hz, ⁴*J*_{HH} = 2 Hz, 2H, ⁴*J*_{HH} = 2 Hz, 14, ⁴*J*_{HH} = 2 Hz, 2H, ⁴*J*_{HH} = 2 H

PtMeAr(^{*t*}**Bu**₂**bpy**) (**Ar** = **Ph**, **C**₆**H**₅**OMe-p**). Thes complexes was prepared analogously by the reaction of PtMeAr(cod) with ^{*t*}Bu₂bpy. Yield: 72% (244.0 mg, 0.4392 mmol). Anal. Calcd. for C₂₅H₃₂N₂Pt: C, 54.04; H, 5.81; N, 5.04. Found: C, 53.66; H, 5.87; N, 4.88. ¹H NMR (CDCl₃, 400 MHz, rt): δ 1.14 (s, ³*J*_{PtH} = 85.2 Hz, 3H, Pt-C*H*₃), 1.37 (s, 9H, ^{*t*}Bu), 1.42 (s, 9H, ^{*t*}Bu), 6.95 (tt, ³*J*_{HH} = 7 Hz, ⁴*J*_{HH} = 1 Hz, 1H, H_p of Ph), 7.10 (t, ³*J*_{HH} = 7 Hz, 2H, H_m of Ph), 7.34 (dd, ³*J*_{HH} = 6 Hz, ⁴*J*_{HH} = 2 Hz, 1H, ^{*t*}Bu₂bpy-H⁵), 7.49 (dd, ³*J*_{PtH} = 65.0 Hz, ³*J*_{HH} = 8 Hz, ⁴*J*_{HH} = 1 Hz, 2H, H_o of Ph), 7.52 (dd, ³*J*_{HH} = 6 Hz, ⁴*J*_{HH} = 2 Hz, 1H, ^{*t*}Bu₂bpy-H⁵), 7.91 (d, ⁴*J*_{HH} = 1 Hz, 1H, ^{*t*}Bu₂bpy-H³), 7.95 (d, ⁴*J*_{HH} = 1 Hz, 1H, ^{*t*}Bu₂bpy-H³), 8.58 (d, ³*J*_{PtH} = 21.0 Hz, ³*J*_{HH} = 6 Hz, 1H, ^{*t*}Bu₂bpy-H⁶), 9.07 (d, ³*J*_{PtH} = 18.7 Hz, ³*J*_{HH} = 6 Hz, 1H, ^{*t*}Bu₂bpy-H⁶).

PtMe(C₆H₄OMe-*p*)(^{*t*}Bu₂bpy)

Yield: 76% (209.1 mg, 0.3570 mmol). Anal. Calcd. for $C_{26}H_{34}N_2OPt$: C, 53.32; H, 5.85; N, 4.78. Found: C, 53.62; H, 5.75; N, 4.71. ¹H NMR (C₆D₆, 400 MHz, r.t.): δ 0.91 (s, 9H, ^{*t*}Bu), 0.96 (s, 9H, ^{*t*}Bu), 2.05 (s, ² J_{PtH} = 86.6 Hz, 3H, Pt-CH₃), 3.66 (s, 3H, OCH₃), 6.32 (dd, ³ J_{HH} = 6 Hz, ⁴ J_{HH} = 2 Hz, 1H, ^{*t*}Bu₂bpy-H⁵ trans to Ar), 6.60 (dd, ³ J_{HH} = 6 Hz, ⁴ J_{HH} = 2 Hz, 1H, ^{*t*}Bu₂bpy-H⁵ trans to Me), 7.25 (d, ³ J_{HH} = 8 Hz, 2H, H_m of Ar), 7.42 (d, ⁴ J_{HH} = 1 Hz, 1H, ^{*t*}Bu₂bpy-H³ trans to Ar), 7.47 (d, ⁴ J_{HH} = 1 Hz, 1H, ^{*t*}Bu₂bpy-H³ trans to Ar), 8.83 (d, ³ J_{PtH} = 30.7 Hz, ³ J_{HH} = 6 Hz, 1H, ^{*t*}Bu₂bpy-H⁶ trans to Ar), 9.07 (d, ³ J_{PtH} = 31.1 Hz, ³ J_{HH} = 6 Hz, 1H, ^{*t*}Bu₂bpy-H⁶ trans to Me).

Preparation of (2,2'-bipyridine) or (4,4'-di-*tert*-butyl-2,2'-bipyridine)triorganoplatinummanganesepentacarbonyl complexes. A typical procedure for (bpy)Me₃Pt–Mn(CO)₅ (1a) is given. To a THF solution of PtMe₃NO₃(bpy) (100.6 mg, 0.2195 mmol 198.2 mg, 0.308 mmol), a THF solution of Na[Mn(CO)₅] (73.8 mg, 0.339 mmol) was added at -30°C and the mixture stirred for 6 h. The resulting solution was evaporated to dryness and the resulting red-purple solids extracted with toluene. After the filtered solution was concentrated under reduced pressure, the solution was cooled to -20 °C to give dark-red prisms. Yield: 54% (70.0 mg, 0.118 mmol). Anal. Calcd. for C₁₈H₁₇N₂O₅MnPt: C, 36.56; H, 2.90; N, 4.74. Found: C, 36.49; H, 2.99; N, 4.73. m.p., 125 °C (dec.). Molar Electric Conductivity Λ : 0.513 S cm² mol⁻¹ (THF, rt), 17 S cm² mol⁻¹ (in acetone at r.t.). UV-vis. (THF): 299, 309, 325 (sh), 533 nm. IR (v_{CO}, KBr): 2031, 1957, 1935, 1909, 1887 cm⁻¹. ¹ ¹ H NMR (C₆D₆, 300 MHz, rt): δ 0.50 (s, ²J_{PtH} = 67.3 Hz, 3H, Pt-CH₃ trans to Mn), 1.78 (s, ²J_{PtH} = 70.6 Hz, 6H, Pt-CH₃ trans to N), 6.48 (t, ³J_{HH} = 6 Hz, 2H, bpy-H⁵), 6.76 (t, ³J_{HH} = 8 Hz, 2H, bpy-H⁴), 7.08 (d, ³J_{HH} = 8 Hz, 2H, bpy-H³), 8.75 (d, ³J_{PtH} = 13 Hz, ³J_{HH} = 6 Hz, 2H, bpy-H⁶).

(**bpy**)**Me₂EtPt–Mn(CO)₅ (1b**). Complex **1b** was prepared analogously to **1a** by the reaction of PtMe₂Et(NO₃)(bpy) (30.4 mg, 0.0664 mmol) with Na[Mn(CO)₅] (36.1 mg, 0.166 mmol) as purple powder in 91% (35.3 mg, 0.0583 mmol) from benzene/hexane. Anal. Calcd. for C₁₉H₁₉N₂O₅MnPt: C, 37.7; H, 3.16; N, 4.63. Found: C, 37.70; H, 3.16; N, 4.63. UV-vis. (in THF): 299, 310, 327 (sh), 543 nm. IR (v_{CO}, KBr): 2028, 1949, 1935, 1908, 1888 cm⁻¹. ¹H NMR (C₆D₆, 400 MHz, rt): δ -0.01 (t, ³*J*_{PtH} = 71.9 Hz, ³*J*_{HH} = 7.3 Hz, 3H, Pt-CH₂CH₃), 1.18 (q, ²*J*_{PtH} = 67.3 Hz, ³*J*_{HH} = 7.3 Hz, 3H, Pt-CH₂CH₃), 1.18 (q, ²*J*_{PtH} = 67.3 Hz, ³*J*_{HH} = 7.3 Hz, 3H, Pt-CH₂CH₃), 1.18 (q, ²*J*_{PtH} = 67.3 Hz, ³*J*_{HH} = 7.3 Hz, 3H, Pt-CH₂CH₃), 1.18 (q, ²*J*_{PtH} = 67.3 Hz, ³*J*_{HH} = 7.3 Hz, 3H, Pt-CH₂CH₃), 1.18 (q, ²*J*_{PtH} = 67.3 Hz, ³*J*_{HH} = 7.3 Hz, 3H, Pt-CH₂CH₃), 1.18 (q, ²*J*_{PtH} = 67.3 Hz, ³*J*_{HH} = 7.3 Hz, 3H, Pt-CH₂CH₃), 1.18 (q, ²*J*_{PtH} = 67.3 Hz, ³*J*_{HH} = 7.3 Hz, 3H, Pt-CH₂CH₃), 1.18 (q, ²*J*_{PtH} = 67.3 Hz, ³*J*_{HH} = 7.3 Hz, 3H, Pt-CH₂CH₃), 1.18 (q, ²*J*_{PtH} = 67.3 Hz, ³*J*_{HH} = 7.3 Hz, 3H, Pt-CH₂CH₃), 1.18 (q, ²*J*_{PtH} = 67.3 Hz, ³*J*_{HH} = 7.3 Hz, 3H, Pt-CH₂CH₃), 1.18 (q, ²*J*_{PtH} = 67.3 Hz, ³*J*_{HH} = 7.3 Hz, 3H, Pt-CH₂CH₃), 1.18 (q, ²*J*_{PtH} = 67.3 Hz, ³*J*_{HH} = 7.3 Hz, 3H, Pt-CH₂CH₃), 1.18 (q, ²*J*_{PtH} = 67.3 Hz, ³*J*_{HH} = 7.3 Hz, 3H, Pt-CH₂CH₃), 1.18 (q, ²*J*_{PtH} = 67.3 Hz, ³*J*_{HH} = 7.3 Hz, 3H, Pt-CH₂CH₃), 1.18 (q, ²*J*_{PtH} = 67.3 Hz, ³*J*_{HH} = 7.3 Hz, 3H, Pt-CH₂CH₃), 1.18 (q, ²*J*_{PtH} = 67.3 Hz, ³*J*_{HH} = 7.3 Hz, 3H, Pt-CH₂CH₃), 1.18 (q, ²*J*_{PtH} = 67.3 Hz, ³*J*_{HH} = 7.3 Hz, 3H, Pt-CH₂CH₃), 1.18 (q, ²*J*_{PtH} = 67.3 Hz, ³*J*_{HH} = 7.3 Hz, 3H, Pt-CH₂CH₃), 1.18 (q, ²*J*_{PtH} = 67.3 Hz, ³*J*_{HH} = 7.3 Hz, 3H, Pt-CH₂CH₃), 1.18 (q, ²*J*_{PtH} = 67.3 Hz, ³*J*_{HH} = 7.3 Hz, ³*J*_{HH} = 7.3 Hz, ³*J*_{HH} = 7.

 CH_2CH_3), 1.66 (s, ${}^{2}J_{PtH}$ = 70.5 Hz, 6H, Pt- CH_3), 6.51 (t, ${}^{3}J_{HH}$ = 6 Hz, 2H, bpy- H^5), 6.78 (t, ${}^{3}J_{HH}$ = 8 Hz, 2H, bpy- H^4), 7.10 (d, ${}^{3}J_{HH}$ = 8 Hz, 2H, bpy- H^3), 8.69 (d, ${}^{3}J_{HH}$ = 6 Hz, 2H, bpy- H^6).

(**bpy**)**Me₂PhPt–Mn(CO)₅ (1c)**. Complex **1c** was prepared analogously to **1a** by the reaction of PtMe₂Ph(NO₃)(bpy) (60.5 mg, 0.116 mmol) with Na[Mn(CO)₅] (42.8 mg, 0.196 mmol) as redpurple powder in 55% (41.4 mg, 0.0634 mmol) from CH₂Cl₂/hexane. Anal. Calcd. for C₂₃H₁₉N₂O₅MnPt: C, 41.83; H, 3.14; N, 4.22. Found: C, 42.28; H, 2.93; N, 4.29. UV-vis (in THF): 300, 309, 326 (sh), 503 nm. IR (v_{CO}, KBr): 2037, 1976, 1927, 1916 cm⁻¹. ¹H NMR (acetone-*d*₆, 300 MHz, -60 °C): δ 1.53 (s, ²*J*_{PtH} = 70.3 Hz, 6H, Pt-*CH*₃), 6.6-6.9 (m, 5H, Pt-*Ph*), 6.48 (t, ³*J*_{HH} = 6 Hz, 2H, bpy-H⁵), 6.76 (t, ³*J*_{HH} = 8 Hz, 2H, bpy-H⁴), 8.68 (d, ³*J*_{HH} = 8 Hz, 2H, bpy-H³), 9.43 (d, ³*J*_{PtH} = 10 Hz, ³*J*_{HH} = 6 Hz, 2H, bpy-H⁶).

(^{*t*}**Bu**₂**bpy**)**Me**₃**Pt**–**Mn**(**CO**)₅ (**2a**). Complex **2a** was prepared analogously to **1a** by the reaction of PtMe₃(NO₃)(^{*t*}Bu₂bpy) (84.8 mg, 0.149 mmol) with Na[Mn(CO)₅] (46.2 mg, 0.212 mmol) as redpurple prisms in 53% (55.5 mg, 0.0789 mmol) from THF/hexane. Anal. Calcd. for C₂₆H₃₃N₂O₅MnPt: C, 44.39; H, 4.73; N, 3.98. Found: C, 44.18; H, 4.86; N, 4.00. UV-vis. (in THF): 299 (ε = 26000 L mol⁻¹ cm⁻¹), 323 (ε = 16000 L mol⁻¹ cm⁻¹, sh), 500 (ε = 3800 L mol⁻¹ cm⁻¹). IR (v_{CO}, KBr): 2033 (s), 1951 (sh), 1909 (vs) cm⁻¹. ¹H NMR (C₆D₆, 400 MHz, rt): δ 0.66 (s, ²*J*_{PtH} = 67.8 Hz, 3H, Pt-C*H*₃ trans to Mn), 0.93 (s, 18H, ^{*t*}Bu), 0.66 (s, ²*J*_{PtH} = 70.5 Hz, 6H, Pt-C*H*₃ trans to N), 6.73 (dd, ³*J*_{HH} = 6 Hz, ⁴*J*_{HH} = 1 Hz, 2H, ^{*t*}Bu₂bpy-H⁵), 7.99 (d, ⁴*J*_{HH} = 2 Hz, 2H, ^{*t*}Bu₂bpy-H³), 8.84 (d, ³*J*_{PtH} = 13 Hz, ³*J*_{HH} = 6 Hz, 2H, ^{*t*}Bu₂bpy-H⁶).

(^{*t*}**Bu**₂**bpy**)**Me**₂**EtPt–Mn**(**CO**)₅ (**2b**). Complex **2b** was prepared analogously to **1a** by the reaction of PtMe₂Et(NO₃)(^{*t*}Bu₂bpy) (59.7 mg, 0.102 mmol) with Na[Mn(CO)₅] (54.6 mg, 0.250 mmol) as purple powder in 32% (23.3 mg, 0.0325 mmol) from benzene/hexane. Yield: 32% (23.3 mg, 0.0325 mmol). UV-vis. (in THF): 296, 308, 323 (sh), 507. IR (v_{CO}, KBr): 2029 (m), 1932 (s, sh), 1907 (vs) cm⁻¹. ¹H NMR (C₆D₆, 400 MHz, rt): δ 0.16 (t, ³*J*_{PtH} = 72.4 Hz, ³*J*_{HH} = 7.8 Hz, 3H, Pt-CH₂CH₃), 0.94 (s, 18H, ^{*t*}Bu), 1.32 (q, ²*J*_{PtH} = 67.8 Hz, ³*J*_{HH} = 7.8 Hz, 3H, Pt-CH₂CH₃), 1.80 (s, ²*J*_{PtH}

= 70.1 Hz, 6H, Pt-CH₃), 6.77 (dd, ${}^{3}J_{HH} = 6$ Hz, ${}^{4}J_{HH} = 1$ Hz, 2H, ${}^{t}Bu_{2}bpy-H^{5}$), 8.05 (s, 2H, ${}^{t}Bu_{2}bpy-H^{3}$), 8.79 (d, ${}^{3}J_{PtH} = 13$ Hz, ${}^{3}J_{HH} = 6$ Hz, 2H, ${}^{t}Bu_{2}bpy-H^{6}$).

(^{*t*}**Bu**₂**bpy**)**Me**₂^{*i*}**PrPt–Mn(CO)**₅ (**2c**). Complex **2c** was prepared analogously to **1a** by the reaction of PtMe₂^{*i*}Pr(NO₃)(^{*t*}Bu₂bpy) (48.6 mg, 0.0812 mmol) with Na[Mn(CO)₅] (30.3 mg, 0.139 mmol) as orange powder in 47% (27.7 mg, 0.0379 mmol) from CH₂Cl₂/hexane. Anal. Calcd. for C₂₈H₃₇N₂O₅MnPt: C, 45.97; H, 5.10; N, 3.83. Found: C, 44.53; H, 4.60; N, 3.92. UV-vis. (in THF): 253, 298, 309, 337, 537. IR (v_{CO}, KBr): 2029 (m), 1945 (m, sh), 1909 (vs) cm⁻¹. ¹H NMR (CD₂Cl₂, 400 MHz, rt): δ 0.12 (d, ³*J*_{PtH} = 68.7 Hz, ³*J*_{HH} = 6.9 Hz, 6H, Pt-CH(CH₃)₂), 1.20 (s, ²*J*_{PtH} = 70.5 Hz, 6H, Pt-CH₃), 1.45 (s, 18H, ^{*t*}Bu), 7.59 (d, ³*J*_{HH} = 5 Hz, 2H, ^{*t*}Bu₂bpy-H⁵), 8.22 (s, 2H, ^{*t*}Bu₂bpy-H³), 8.82 (d, ³*J*_{PtH} = 12 Hz, ³*J*_{HH} = 6 Hz, 2H, ^{*t*}Bu₂bpy-H⁶), The α-methyne protone of ^{*i*}Pr group was not determined.

(^{*t*}**Bu**₂**bpy**)**Me**₂**NpPt–Mn**(**CO**)₅ (**2d**). Complex **2d** was prepared analogously to **1a** by the reaction of PtMe₂Np(NO₃)(^{*t*}Bu₂bpy) (58.3 mg, 0.0930 mmol) with Na[Mn(CO)₅] (28.9 mg, 0.133 mmol) as orange powder in 41% (41.3 mg, 0.0544 mmol).from CH₂Cl₂/hexane. Anal. Calcd. for $C_{30}H_{41}N_2O_5MnPt$: C, 47.43; H, 5.44; N, 3.69. Found: C, 47.47; H, 5.43; N, 3.63. UV-vis. (in THF): 251, 298, 307, 346, 536. IR (v_{CO}, KBr): 2028 (s), 1949 (s, sh), 1909 (vs) cm⁻¹. ¹H NMR (acetone*d*₆, 400 MHz, rt): δ 0.48 (s, 9H, PtCH₂C(CH₃)₃), 1.30 (s, ³*J*_{PtH} = 69.1 Hz, 6H, Pt-CH₃), 1.48 (s, 18H, ^{*t*}Bu), 7.98 (d, ³*J*_{HH} = 5 Hz, 2H, ^{*t*}Bu₂bpy-H⁵), 8.82 (s, 2H, ^{*t*}Bu₂bpy-H³), 9.03 (d, ³*J*_{PtH} = 12 Hz, ³*J*_{HH} = 6 Hz, 2H, ^{*t*}Bu₂bpy-H⁶), The α-methylene protones of Np group was not determined.

(f **Bu**₂**bpy**)**Me**₂^{*n*}**HexPt–Mn**(**CO**)₅ (**2e**). Complex **2e** was prepared analogously to **1a** by the reaction of PtMe₂^{*n*}Hex(NO₃)(t Bu₂bpy) (45.6 mg, 0.712 mmol) with Na[Mn(CO)₅] (21.2 mg, 0.09730mmol) as orange powder in 76% (42.1 mg, 0.0544 mmol) from toluene/hexane. Anal. Calcd. for C₃₁H₄₃N₂O₅MnPt: C, 48.12; H, 5.60; N, 3.62. Found: C, 47.81; H, 5.25; N, 3.64. UV-vis. (in THF): 252, 296, 307, 327 (sh), 525. IR (v_{CO}, KBr): 2029 (s), 1949 (m, sh), 1916 (vs), 1898 (vs) cm⁻¹. ¹H NMR (C₆D₆, 400 MHz, rt): δ 0.48 (quint, ${}^{3}J_{HH} = 8$ Hz, 2H, Pt-CH₂CH₃(CH₂)₃CH₃), 0.66 (t, ${}^{3}J_{HH} = 7$ Hz, 3H, Pt-(CH₂)₅CH₃), 0.8-1.0 (overlapped, Pt-(CH₂)₂CH₂CH₂CH₂CH₃), 0.95 (s, 18H, t Bu), 1.35

(tt, ${}^{2}J_{PtH} = 68$ Hz, ${}^{3}J_{HH} = 8$ Hz, ${}^{4}J_{HH} = 8$ Hz, 2H, Pt-CH₂(CH₂)₄CH₃), 1.84 (s, ${}^{2}J_{PtH} = 70.1$ Hz, 6H, Pt-CH₃), 6.80 (d, ${}^{3}J_{HH} = 5$ Hz, 2H, ${}^{t}Bu_{2}bpy$ -H⁵), 8.09 (s, 2H, ${}^{t}Bu_{2}bpy$ -H³), 8.84 (d, ${}^{3}J_{PtH} = 13$ Hz, ${}^{3}J_{HH} = 6$ Hz, 2H, ${}^{t}Bu_{2}bpy$ -H⁶).

(^{*t*}**Bu**₂**bpy**)**Me**₂**PhPt–Mn**(**CO**)₅ (**2f**). Complex **2f** was prepared analogously to **1a** by the reaction of PtMe₂Ph(NO₃)(^{*t*}Bu₂bpy) (54.4 mg, 0.0860 mmol) with Na[Mn(CO)₅] (40.9 mg, 0.188 mmol) as orange powder in 81% (53.6 mg, 0.0700 mmol) from CH₂Cl₂/hexane. Anal. Calcd. for $C_{30}H_{17}N_2O_5MnPt$: C, 48.63; H, 4.61; N, 3.66. Found: C, 48.41; H, 5.14; N, 3.72. UV-vis. (in THF): 298, 308, 327 (sh), 474. IR (v_{CO}, KBr): 2035 (m), 1927 (vs) cm⁻¹. ¹H NMR (C₆D₆, 400 MHz, rt): δ 0.88 (s, 18H, ^{*t*}Bu), 2.18 (s, ²*J*_{PtH} = 70.5 Hz, 6H, Pt-C*H*₃), 6.71 (d, ³*J*_{HH} = 7 Hz, 1H, H_p of Ph), 6.83 (t, ³*J*_{HH} = 7 Hz, 2H, H_m of Ph), 6.90 (dd, ³*J*_{HH} = 6 Hz, ⁴*J*_{HH} = 2 Hz, 2H, ^{*t*}Bu₂bpy-H⁵), 7.01 (d, ³*J*_{PtH} = 53 Hz, ³*J*_{HH} = 7 Hz, 2H, H_o of Ph), 7.72 (d, 2H, ^{*t*}Bu₂bpy-H³), 9.09 (d, ³*J*_{PtH} = 12 Hz, ³*J*_{HH} = 6 Hz, 2H, ^{*t*}Bu₂bpy-H⁶).

(^{*t*}**Bu**₂**bpy**)**Me**₂(*p*-**MeOC**₆**H**₄)**Pt**-**Mn**(**CO**)₅ (**2g**). Complex **2g** was prepared analogously to **1a** by the reaction of PtMe₂(C₆H₄OMe-*p*)(NO₃)(^{*t*}Bu₂bpy) (39.4 mg, 0.0595 mmol) with Na[Mn(CO)₅] (22.9 mg, 0.105 mmol) as orange powder in 43% (20.5 mg, 0.0258 mmol) from toluene/hexane. Yield: 43% (20.5 mg, 0.0258 mmol). IR (v_{CO}, KBr): 2035 (m), 1923 (vs) cm⁻¹. ¹H NMR (C₆D₆, 400 MHz, rt): δ 0.89 (s, 18H, ^{*t*}Bu), 2.19 (s, ²J_{PtH} = 70.5 Hz, 6H, Pt-CH₃), 3.10 (s, 3H, C6H4O*Me*-*p*), 6.47 (d, ³J_{HH} = 8 Hz, 2H, H_m of Ar), 6.86 (d, ³J_{PtH} = 54 Hz, ³J_{HH} = 8 Hz, 2H, H_o of Ar), 6.92 (d, ³J_{HH} = 5 Hz, 2H, ^{*t*}Bu₂bpy-H⁵), 7.76 (s, 2H, ^{*t*}Bu₂bpy-H³), 9.11 (d, ³J_{PtH} = 11 Hz, ³J_{HH} = 6 Hz, 2H, ^{*t*}Bu₂bpy-H⁶).

UV-vis Spectrum of (2,2´-bipyridine) or (4,4´-di-*tert*-butylbipyridine)triorganoplatinummanganesepentacarbonyl complexes.

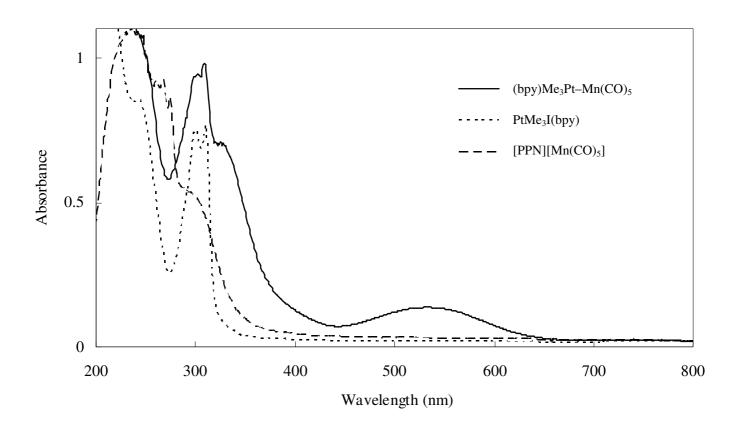


Figure S1. UV-vis. Spectrum of (bpy)Me₃Pt-Mn(CO)₅ (1a), PtIMe₃(bpy) and [PPN][Mn(CO)₅].

Table S1. Wavelength of Maximum Absorption of $(bpy)Me_2RPt-Mn(CO)_5$ and $(^{\prime}Bu_2bpy)Me_2RPt-Mn(CO)_5$ inTHF

Run	Complex	solvent	MLCT band (nm)
1	1 a	THF	523, 325
2	1b	THF	543, 327
3	1c	THF	503, 326
4	2a	THF	500, 323
5	2b	THF	507, 323
6	2c	THF	537, 337
7	2d	THF	536, 346
8	2e	THF	525, 327
9	2f	THF	474, 327
10	2f	benzene	546, 323
11	2f	acetone	446, 320

X-ray Structure Analyses of (bpy)Me₃Pt-Mn(CO)₅ (1a)

The crystallographic data were measured on a Rigaku RASA-7R four-circle diffractometer using MoK α ($\lambda = 0.71069$ Å) radiation with a graphite crystal monochromator at -73 °C. Intensity data were collected using the ω -2 θ technique to a maximum 2 θ of 54.9°. Intensities were corrected for Lorentz and polarization effects. An absorption correction for **1a** was applied with the program PSI SCAN method. The structure of **1a** was solved by Patterson methods⁴ and expanded using Fourier techniques.⁵ All non-hydrogen atoms were refined by full-matrix least-squares techniques with anisotropic displacement parameters based on F^2 with all reflections. All hydrogen atoms were added geometrically and refined by using a riding model. All calculations were performed using the *CrystalStructure* 3.82⁶ crystallographic software package except for refinement, which was performed using SHELXL-97⁷ The crystallographic data and selected bond distances and angles are summarized in Tables S2 and S3, respectively.

Empirical formula	$C_{18}H_{17}N_2O_5PtMn$	
Formula weight	591.37	
Crystal color, habit	dark red, prismatic	
Crystal dimension (mm \times mm \times mm)	0.46×0.13×0.10	
Crystal system	monoclinic	
Space Group	<i>P</i> 2 ₁ /a (No. 14)	
<i>a</i> (Å)	13.574(3)	
b (Å)	10.5780(17)	
c (Å)	13.601(3)	
β(°)	103.415(14)	
$V(\text{\AA}^3)$	1899.6(6)	
Z	4	
D _{calcd} (g cm ⁻³)	2.068	
F ₀₀₀	1128.00	
μ (Mo K α) (cm ⁻¹)	80.226	
Diffractometer	Rigaku AFC7R	
Radiation (Å)	0.71069	
Temperature (°C)	-73 °C	
Scan Type	ω-2θ	
2θ _{max} (°)	54.9	
No. of Reflection Measured	Total: 4523	
	Unique: 4340	
Structure Solution	Patterson Methods (DIRDIF99 PATTY)	
$R_{I}^{a}(I > 2.00\sigma(I))$	0.0292	
wR_2^{b} (All reflections)	0.0816	
Goodness of Fit Indicator	0.936	

 Table S2. Crystallographic data for (bpy)Me₃Pt-Mn(CO)₅ (1a).

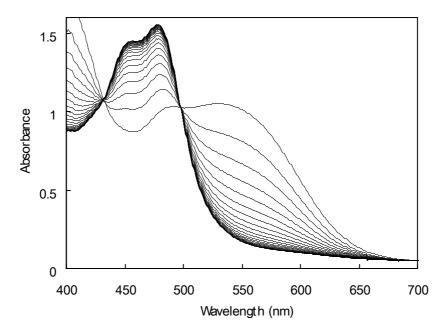
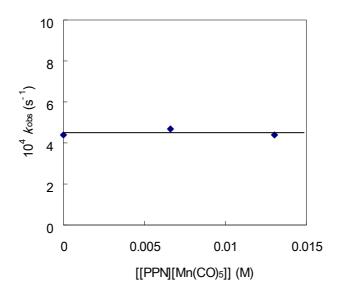
^a $R = \Sigma(||F_{o}| - |F_{c}||) / \Sigma|F_{o}|$. ^b $R_{w} = [\Sigma w(F_{o}^{2} - F_{c}^{2})^{2} / \Sigma w(F_{o}^{2})^{2}]^{0.5}$.

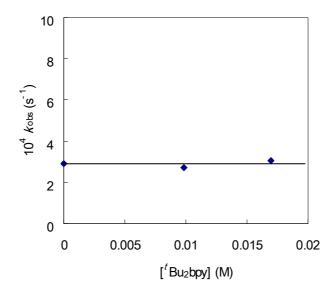
Pr(1)-Mn(1) 3.0337(8) Pr(1)-N(1) 2.156(5) Pr(1)-N(2) 2.166(4) Pr(1)-C(1) 2.076(6) Pr(1)-C(2) 2.057(5) Pr(1)-C(3) 2.055(5) Mn(1)-C(14) 1.845(5) Mn(1)-C(15) 1.813(5) Mn(1)-C(16) 1.828(4) Mn(1)-C(17) 1.832(4) Mn(1)-C(18) 1.797(5) C(14)-O(1) 1.136 (7) C(15)-O(2) 1.153(6) C(16)-O(3) 1.148(6) C(17)-O(4) 1.150(6) C(18)-O(5) 1.153(9) Mn(1)-Pt(1)-N(1) 92.71(12) Mn(1)-Pt(1)-N(2) 89.87(12) Mn(1)-Pt(1)-C(1) 178.28(14) Mn(1)-Pt(1)-N(2) 94.30(18) Mn(1)-Pt(1)-C(1) 178.28(14) Mn(1)-Pt(1)-C(2) 94.30(18) Mn(1)-Pt(1)-C(3) 94.13(18) N(1)-Pt(1)-C(2) 97.79(17) N(1)-Pt(1)-C(3) 173.0(2) N(2)-Pt(1)-C(1) 88.7(2) N(2)-Pt(1)-C(3) 173.0(2) N(2)-Pt(1)-C(3) 87.0(2) C(1)-Pt(1)-C(2) 173.12(18) N(2)-Pt(1)-C(3) 87.0(2) C(1)-Pt(1)-C(3)		6		5 ()5 (
Pr(1)-C(2)2.057(5)Pr(1)-C(3)2.055(5)Mn(1)-C(14)1.845(5)Mn(1)-C(15)1.813(5)Mn(1)-C(16)1.828(4)Mn(1)-C(17)1.832(4)Mn(1)-C(18)1.797(5)C(14)-O(1)1.136 (7)C(15)-O(2)1.153(6)C(16)-O(3)1.148(6)C(17)-O(4)1.150(6)C(18)-O(5)1.153(9)Mn(1)-Pr(1)-N(1)92.71(12)Mn(1)-Pr(1)-R(2)89.87(12)Mn(1)-Pr(1)-C(1)178.28(14)Mn(1)-Pr(1)-C(2)94.30(18)Mn(1)-Pr(1)-C(1)94.13(18)N(1)-Pr(1)-C(2)97.79(17)N(1)-Pr(1)-C(1)86.03(18)N(1)-Pr(1)-C(2)97.79(17)N(1)-Pr(1)-C(2)173.02N(2)-Pr(1)-C(3)88.7(2)N(1)-Pr(1)-C(2)173.12(18)N(2)-Pr(1)-C(3)89.27(19)C(1)-Pr(1)-C(2)85.9(2)P(1)-Mn(1)-C(14)82.0(2)P(1)-Mn(1)-C(15)77.87(18)P(1)-Mn(1)-C(16)85.56(17)P(1)-Mn(1)-C(15)87.5(2)C(14)-Mn(1)-C(16)167.6(2)P(1)-Mn(1)-C(15)87.5(2)C(14)-Mn(1)-C(16)85.5(17)P(1)-Mn(1)-C(16)88.6(2)C(14)-Mn(1)-C(16)98.1(2)C(14)-Mn(1)-C(16)88.6(2)C(14)-Mn(1)-C(16)98.1(2)C(15)-Mn(1)-C(16)89.2(2)C(15)-Mn(1)-C(17)89.8(2)C(16)-Mn(1)-C(16)94.3(2)C(15)-Mn(1)-C(17)89.8(2)C(15)-Mn(1)-C(18)94.3(2)C(17)-Mn(1)-C(18)101.5(2)P(1)-Mn(1)-C(16)94.3(2)C(17)-Mn(1)-C(18)101.5(2)C(16)-Mn(1)-C(16)94.3(2)C(17)-M	Pt(1)-Mn(1)	3.0337(8)	Pt(1)-N(1)	2.156(5)
Mn(1)-C(14) 1.845(5) Mn(1)-C(15) 1.813(5) Mn(1)-C(16) 1.828(4) Mn(1)-C(17) 1.832(4) Mn(1)-C(18) 1.797(5) C(14)-O(1) 1.136 (7) C(15)-O(2) 1.153(6) C(16)-O(3) 1.148(6) C(17)-O(4) 1.150(6) C(18)-O(5) 1.153(9) Mn(1)-Pt(1)-N(1) 92.71(12) Mn(1)-Pt(1)-N(2) 89.87(12) Mn(1)-Pt(1)-C(1) 178.28(14) Mn(1)-Pt(1)-C(2) 94.30(18) Mn(1)-Pt(1)-C(3) 94.13(18) N(1)-Pt(1)-C(2) 97.79(17) N(1)-Pt(1)-C(3) 173.0(2) N(2)-Pt(1)-C(1) 88.7(2) N(1)-Pt(1)-C(2) 173.12(18) N(2)-Pt(1)-C(3) 99.27(19) C(1)-Pt(1)-C(2) 87.0(2) C(1)-Pt(1)-C(3) 87.0(2) P(1)-Pt(1)-C(3) 85.9(2) Pt(1)-Mn(1)-C(14) 82.0(2) Pt(1)-Mn(1)-C(15) 77.87(18) Pt(1)-Mn(1)-C(16) 85.56(17) Pt(1)-Mn(1)-C(15) 87.5(2) C(14)-Mn(1)-C(16) 85.16(17) Pt(1)-Mn(1)-C(15) 87.5(2) C(14)-Mn(1)-C(16) 85.16(17) <tr< td=""><td>Pt(1)-N(2)</td><td>2.166(4)</td><td>Pt(1)-C(1)</td><td>2.076(6)</td></tr<>	Pt(1)-N(2)	2.166(4)	Pt(1)-C(1)	2.076(6)
Mn(1)-C(16) 1.828(4) Mn(1)-C(17) 1.832(4) Mn(1)-C(16) 1.797(5) C(14)-O(1) 1.136 (7) C(15)-O(2) 1.153(6) C(16)-O(3) 1.148(6) C(17)-O(4) 1.150(6) C(18)-O(5) 1.153(9) Mn(1)-Pt(1)-N(1) 92.71(12) Mn(1)-Pt(1)-N(2) 89.87(12) Mn(1)-Pt(1)-C(1) 178.28(14) Mn(1)-Pt(1)-C(2) 94.30(18) Mn(1)-Pt(1)-C(3) 94.13(18) N(1)-Pt(1)-C(2) 97.79(17) N(1)-Pt(1)-C(1) 86.03(18) N(1)-Pt(1)-C(2) 97.79(17) N(1)-Pt(1)-C(3) 173.0(2) N(2)-Pt(1)-C(3) 88.7(2) N(2)-Pt(1)-C(3) 173.0(2) N(2)-Pt(1)-C(3) 87.0(2) C(1)-Pt(1)-C(3) 87.0(2) C(1)-Pt(1)-C(3) 87.0(2) C(1)-Pt(1)-C(3) 85.9(2) Pt(1)-Mn(1)-C(14) 82.0(2) Pt(1)-Mn(1)-C(15) 77.87(18) Pt(1)-Mn(1)-C(16) 85.56(17) Pt(1)-Mn(1)-C(15) 87.5(2) C(14)-Mn(1)-C(16) 167.6(2) C(14)-Mn(1)-C(15) 87.5(2) C(14)-Mn(1)-C(16) 89.8(2)	Pt(1)-C(2)	2.057(5)	Pt(1)-C(3)	2.055(5)
Mn(1)-C(18) 1.797(5) C(14)-O(1) 1.136 (7) C(15)-O(2) 1.153(6) C(16)-O(3) 1.148(6) C(17)-O(4) 1.150(6) C(18)-O(5) 1.153(9) Mn(1)-Pt(1)-N(1) 92.71(12) Mn(1)-Pt(1)-N(2) 89.87(12) Mn(1)-Pt(1)-C(1) 178.28(14) Mn(1)-Pt(1)-C(2) 94.30(18) Mn(1)-Pt(1)-C(3) 94.13(18) N(1)-Pt(1)-C(2) 97.79(17) N(1)-Pt(1)-C(1) 86.03(18) N(1)-Pt(1)-C(2) 97.79(17) N(1)-Pt(1)-C(3) 173.0(2) N(2)-Pt(1)-C(3) 88.7(2) N(2)-Pt(1)-C(3) 173.12(18) N(2)-Pt(1)-C(3) 87.0(2) C(1)-Pt(1)-C(2) 173.12(18) N(2)-Pt(1)-C(3) 87.0(2) C(1)-Pt(1)-C(2) 87.0(2) C(1)-Pt(1)-C(3) 87.0(2) C(1)-Pt(1)-C(3) 85.9(2) Pt(1)-Mn(1)-C(14) 82.0(2) Pt(1)-Mn(1)-C(15) 77.87(18) Pt(1)-Mn(1)-C(16) 178.89(15) C(14)-Mn(1)-C(15) 87.5(2) C(14)-Mn(1)-C(16) 187.6(2) C(14)-Mn(1)-C(15) 87.5(2) C(14)-Mn(1)-C(16) 187.5(2)	Mn(1)-C(14)	1.845(5)	Mn(1)-C(15)	1.813(5)
C(15)-O(2) 1.153(6) C(16)-O(3) 1.148(6) C(17)-O(4) 1.150(6) C(18)-O(5) 1.153(9) Mn(1)-Pt(1)-N(1) 92.71(12) Mn(1)-Pt(1)-N(2) 89.87(12) Mn(1)-Pt(1)-C(1) 178.28(14) Mn(1)-Pt(1)-C(2) 94.30(18) Mn(1)-Pt(1)-C(3) 94.13(18) N(1)-Pt(1)-C(2) 94.30(18) N(1)-Pt(1)-C(1) 86.03(18) N(1)-Pt(1)-C(2) 97.79(17) N(1)-Pt(1)-C(3) 173.0(2) N(2)-Pt(1)-C(1) 88.7(2) N(2)-Pt(1)-C(2) 173.12(18) N(2)-Pt(1)-C(3) 87.0(2) C(1)-Pt(1)-C(2) 87.0(2) C(1)-Pt(1)-C(3) 87.0(2) C(1)-Pt(1)-C(2) 87.0(2) C(1)-Pt(1)-C(3) 87.0(2) C(1)-Pt(1)-C(3) 85.9(2) C(1)-Pt(1)-C(14) 82.0(2) Pt(1)-Mn(1)-C(15) 77.87(18) Pt(1)-Mn(1)-C(18) 178.89(15) Pt(1)-Mn(1)-C(17) 89.6(2) C(14)-Mn(1)-C(18) 187.6(2) C(14)-Mn(1)-C(15) 87.5(2) C(14)-Mn(1)-C(17) 89.8(2) C(15)-Mn(1)-C(18) 191.0(2) C(15)-Mn(1)-C(17) 89.8(2)<	Mn(1)-C(16)	1.828(4)	Mn(1)-C(17)	1.832(4)
C(17)-O(4) 1.150(6) C(18)-O(5) 1.153(9) Mn(1)-Pt(1)-N(1) 92.71(12) Mn(1)-Pt(1)-N(2) 89.87(12) Mn(1)-Pt(1)-C(1) 178.28(14) Mn(1)-Pt(1)-C(2) 94.30(18) Mn(1)-Pt(1)-C(3) 94.13(18) N(1)-Pt(1)-N(2) 76.51(14) N(1)-Pt(1)-C(3) 86.03(18) N(1)-Pt(1)-C(2) 97.79(17) N(1)-Pt(1)-C(3) 173.0(2) N(2)-Pt(1)-C(3) 88.7(2) N(2)-Pt(1)-C(2) 173.12(18) N(2)-Pt(1)-C(3) 87.0(2) C(1)-Pt(1)-C(2) 87.0(2) C(1)-Pt(1)-C(3) 87.0(2) C(1)-Pt(1)-C(3) 85.9(2) C(1)-Pt(1)-C(3) 87.0(2) Pt(1)-Mn(1)-C(15) 77.87(18) Pt(1)-Mn(1)-C(16) 85.56(17) Pt(1)-Mn(1)-C(15) 77.87(18) Pt(1)-Mn(1)-C(16) 178.89(15) C(14)-Mn(1)-C(15) 87.5(2) C(14)-Mn(1)-C(16) 188.9(2) C(14)-Mn(1)-C(15) 87.5(2) C(14)-Mn(1)-C(16) 98.1(2) C(15)-Mn(1)-C(18) 101.0(2) C(15)-Mn(1)-C(17) 89.8(2) C(15)-Mn(1)-C(18) 94.3(2) C(17)-Mn(1)-C(18)	Mn(1)-C(18)	1.797(5)	C(14)-O(1)	1.136 (7)
Mn(1)-Pt(1)-N(1)92.71(12)Mn(1)-Pt(1)-N(2)89.87(12)Mn(1)-Pt(1)-C(1)178.28(14)Mn(1)-Pt(1)-C(2)94.30(18)Mn(1)-Pt(1)-C(3)94.13(18)N(1)-Pt(1)-N(2)76.51(14)N(1)-Pt(1)-C(1)86.03(18)N(1)-Pt(1)-C(2)97.79(17)N(1)-Pt(1)-C(1)86.03(18)N(2)-Pt(1)-C(1)88.7(2)N(1)-Pt(1)-C(3)173.0(2)N(2)-Pt(1)-C(1)88.7(2)N(2)-Pt(1)-C(2)173.12(18)N(2)-Pt(1)-C(3)99.27(19)C(1)-Pt(1)-C(2)87.0(2)C(1)-Pt(1)-C(3)87.0(2)C(2)-Pt(1)-C(3)85.9(2)Pt(1)-Mn(1)-C(14)82.0(2)Pt(1)-Mn(1)-C(15)77.87(18)Pt(1)-Mn(1)-C(16)85.56(17)Pt(1)-Mn(1)-C(17)79.63(17)Pt(1)-Mn(1)-C(18)178.89(15)C(14)-Mn(1)-C(17)88.6(2)C(14)-Mn(1)-C(18)98.1(2)C(14)-Mn(1)-C(17)88.6(2)C(14)-Mn(1)-C(18)98.1(2)C(15)-Mn(1)-C(16)89.2(2)C(15)-Mn(1)-C(17)89.8(2)C(15)-Mn(1)-C(18)101.0(2)C(16)-Mn(1)-C(17)89.8(2)C(16)-Mn(1)-C(18)94.3(2)C(17)-Mn(1)-C(18)101.5(2)Mn(1)-C(14)-O(1)177.8(5)Mn(1)-C(17)-O(4)178.2(5)	C(15)-O(2)	1.153(6)	C(16)-O(3)	1.148(6)
Mn(1)-Pt(1)-C(1)178.28(14)Mn(1)-Pt(1)-C(2)94.30(18)Mn(1)-Pt(1)-C(3)94.13(18)N(1)-Pt(1)-N(2)76.51(14)N(1)-Pt(1)-C(1)86.03(18)N(1)-Pt(1)-C(2)97.79(17)N(1)-Pt(1)-C(3)173.0(2)N(2)-Pt(1)-C(1)88.7(2)N(2)-Pt(1)-C(2)173.12(18)N(2)-Pt(1)-C(3)99.27(19)C(1)-Pt(1)-C(2)87.0(2)C(1)-Pt(1)-C(3)87.0(2)C(2)-Pt(1)-C(3)85.9(2)Pt(1)-Mn(1)-C(14)82.0(2)Pt(1)-Mn(1)-C(15)77.87(18)Pt(1)-Mn(1)-C(16)85.56(17)Pt(1)-Mn(1)-C(15)79.63(17)Pt(1)-Mn(1)-C(16)85.56(17)C(14)-Mn(1)-C(15)87.5(2)C(14)-Mn(1)-C(16)167.6(2)C(14)-Mn(1)-C(15)88.6(2)C(14)-Mn(1)-C(16)98.1(2)C(15)-Mn(1)-C(16)89.2(2)C(15)-Mn(1)-C(17)89.8(2)C(15)-Mn(1)-C(18)101.0(2)C(16)-Mn(1)-C(18)101.5(2)Mn(1)-C(14)-O(1)177.8(5)Mn(1)-C(15)-O(2)177.0(5)Mn(1)-C(16)-O(3)178.1(4)Mn(1)-C(17)-O(4)178.2(5)	C(17)-O(4)	1.150(6)	C(18)-O(5)	1.153(9)
Mn(1)-Pt(1)-C(3)94.13(18)N(1)-Pt(1)-N(2)76.51(14)N(1)-Pt(1)-C(1)86.03(18)N(1)-Pt(1)-C(2)97.79(17)N(1)-Pt(1)-C(3)173.0(2)N(2)-Pt(1)-C(1)88.7(2)N(2)-Pt(1)-C(2)173.12(18)N(2)-Pt(1)-C(3)99.27(19)C(1)-Pt(1)-C(2)87.0(2)C(1)-Pt(1)-C(3)87.0(2)C(2)-Pt(1)-C(3)85.9(2)Pt(1)-Mn(1)-C(14)82.0(2)Pt(1)-Mn(1)-C(15)77.87(18)Pt(1)-Mn(1)-C(16)85.56(17)Pt(1)-Mn(1)-C(15)79.63(17)Pt(1)-Mn(1)-C(18)178.89(15)C(14)-Mn(1)-C(15)87.5(2)C(14)-Mn(1)-C(18)98.1(2)C(14)-Mn(1)-C(15)88.6(2)C(14)-Mn(1)-C(18)98.1(2)C(15)-Mn(1)-C(16)89.2(2)C(15)-Mn(1)-C(17)89.8(2)C(16)-Mn(1)-C(18)101.0(2)C(16)-Mn(1)-C(17)89.8(2)C(16)-Mn(1)-C(18)94.3(2)C(17)-Mn(1)-C(18)101.5(2)Mn(1)-C(14)-O(1)177.8(5)Mn(1)-C(17)-O(4)177.0(5)	Mn(1)-Pt(1)-N(1)	92.71(12)	Mn(1)-Pt(1)-N(2)	89.87(12)
N(1)-Pt(1)-C(1)86.03(18)N(1)-Pt(1)-C(2)97.79(17)N(1)-Pt(1)-C(3)173.0(2)N(2)-Pt(1)-C(1)88.7(2)N(2)-Pt(1)-C(2)173.12(18)N(2)-Pt(1)-C(3)99.27(19)C(1)-Pt(1)-C(2)87.0(2)C(1)-Pt(1)-C(3)87.0(2)C(2)-Pt(1)-C(3)85.9(2)Pt(1)-Mn(1)-C(14)82.0(2)Pt(1)-Mn(1)-C(15)77.87(18)Pt(1)-Mn(1)-C(16)85.56(17)Pt(1)-Mn(1)-C(15)79.63(17)Pt(1)-Mn(1)-C(16)167.6(2)C(14)-Mn(1)-C(15)87.5(2)C(14)-Mn(1)-C(16)167.6(2)C(14)-Mn(1)-C(15)88.6(2)C(14)-Mn(1)-C(18)98.1(2)C(15)-Mn(1)-C(16)89.2(2)C(15)-Mn(1)-C(17)89.8(2)C(15)-Mn(1)-C(18)101.0(2)C(16)-Mn(1)-C(17)89.8(2)C(16)-Mn(1)-C(18)94.3(2)C(17)-Mn(1)-C(18)101.5(2)Mn(1)-C(14)-O(1)177.8(5)Mn(1)-C(15)-O(2)177.0(5)Mn(1)-C(16)-O(3)178.1(4)Mn(1)-C(17)-O(4)178.2(5)	Mn(1)-Pt(1)-C(1)	178.28(14)	Mn(1)-Pt(1)-C(2)	94.30(18)
N(1)-Pt(1)-C(3)173.0(2)N(2)-Pt(1)-C(1)88.7(2)N(2)-Pt(1)-C(2)173.12(18)N(2)-Pt(1)-C(3)99.27(19)C(1)-Pt(1)-C(2)87.0(2)C(1)-Pt(1)-C(3)87.0(2)C(2)-Pt(1)-C(3)85.9(2)Pt(1)-Mn(1)-C(14)82.0(2)Pt(1)-Mn(1)-C(15)77.87(18)Pt(1)-Mn(1)-C(16)85.56(17)Pt(1)-Mn(1)-C(17)79.63(17)Pt(1)-Mn(1)-C(18)178.89(15)C(14)-Mn(1)-C(17)87.5(2)C(14)-Mn(1)-C(18)167.6(2)C(14)-Mn(1)-C(17)88.6(2)C(14)-Mn(1)-C(18)98.1(2)C(15)-Mn(1)-C(16)89.2(2)C(15)-Mn(1)-C(17)89.8(2)C(16)-Mn(1)-C(18)101.0(2)C(16)-Mn(1)-C(17)89.8(2)C(16)-Mn(1)-C(18)94.3(2)C(17)-Mn(1)-C(18)101.5(2)Mn(1)-C(14)-O(1)177.8(5)Mn(1)-C(15)-O(2)177.0(5)Mn(1)-C(16)-O(3)178.1(4)Mn(1)-C(17)-O(4)182.(5)	Mn(1)-Pt(1)-C(3)	94.13(18)	N(1)-Pt(1)-N(2)	76.51(14)
N(2)-Pt(1)-C(2)173.12(18)N(2)-Pt(1)-C(3)99.27(19)C(1)-Pt(1)-C(2)87.0(2)C(1)-Pt(1)-C(3)87.0(2)C(2)-Pt(1)-C(3)85.9(2)Pt(1)-Mn(1)-C(14)82.0(2)Pt(1)-Mn(1)-C(15)77.87(18)Pt(1)-Mn(1)-C(16)85.56(17)Pt(1)-Mn(1)-C(17)79.63(17)Pt(1)-Mn(1)-C(18)178.89(15)C(14)-Mn(1)-C(17)87.5(2)C(14)-Mn(1)-C(16)167.6(2)C(14)-Mn(1)-C(15)87.5(2)C(14)-Mn(1)-C(16)98.1(2)C(15)-Mn(1)-C(16)89.2(2)C(15)-Mn(1)-C(17)89.8(2)C(15)-Mn(1)-C(18)101.0(2)C(16)-Mn(1)-C(18)101.5(2)Mn(1)-C(14)-O(1)177.8(5)Mn(1)-C(15)-O(2)177.0(5)Mn(1)-C(16)-O(3)178.1(4)Mn(1)-C(17)-O(4)178.2(5)	N(1)-Pt(1)-C(1)	86.03(18)	N(1)-Pt(1)-C(2)	97.79(17)
C(1)-Pt(1)-C(2)87.0(2)C(1)-Pt(1)-C(3)87.0(2)C(2)-Pt(1)-C(3)85.9(2)Pt(1)-Mn(1)-C(14)82.0(2)Pt(1)-Mn(1)-C(15)77.87(18)Pt(1)-Mn(1)-C(16)85.56(17)Pt(1)-Mn(1)-C(17)79.63(17)Pt(1)-Mn(1)-C(18)178.89(15)C(14)-Mn(1)-C(17)87.5(2)C(14)-Mn(1)-C(16)167.6(2)C(14)-Mn(1)-C(15)88.6(2)C(14)-Mn(1)-C(18)98.1(2)C(15)-Mn(1)-C(16)89.2(2)C(15)-Mn(1)-C(17)157.5(2)C(15)-Mn(1)-C(18)101.0(2)C(16)-Mn(1)-C(17)89.8(2)C(16)-Mn(1)-C(18)94.3(2)C(17)-Mn(1)-C(18)101.5(2)Mn(1)-C(14)-O(1)177.8(5)Mn(1)-C(15)-O(2)177.0(5)	N(1)-Pt(1)-C(3)	173.0(2)	N(2)-Pt(1)-C(1)	88.7(2)
C(2)-Pt(1)-C(3)85.9(2)Pt(1)-Mn(1)-C(14)82.0(2)Pt(1)-Mn(1)-C(15)77.87(18)Pt(1)-Mn(1)-C(16)85.56(17)Pt(1)-Mn(1)-C(17)79.63(17)Pt(1)-Mn(1)-C(18)178.89(15)C(14)-Mn(1)-C(15)87.5(2)C(14)-Mn(1)-C(16)167.6(2)C(14)-Mn(1)-C(15)88.6(2)C(14)-Mn(1)-C(18)98.1(2)C(15)-Mn(1)-C(16)89.2(2)C(15)-Mn(1)-C(17)157.5(2)C(15)-Mn(1)-C(18)101.0(2)C(16)-Mn(1)-C(17)89.8(2)C(16)-Mn(1)-C(18)94.3(2)C(17)-Mn(1)-C(18)101.5(2)Mn(1)-C(14)-O(1)177.8(5)Mn(1)-C(15)-O(2)177.0(5)Mn(1)-C(16)-O(3)178.1(4)Mn(1)-C(17)-O(4)178.2(5)	N(2)-Pt(1)-C(2)	173.12(18)	N(2)-Pt(1)-C(3)	99.27(19)
Pt(1)-Mn(1)-C(15)77.87(18)Pt(1)-Mn(1)-C(16)85.56(17)Pt(1)-Mn(1)-C(17)79.63(17)Pt(1)-Mn(1)-C(18)178.89(15)C(14)-Mn(1)-C(15)87.5(2)C(14)-Mn(1)-C(16)167.6(2)C(14)-Mn(1)-C(17)88.6(2)C(14)-Mn(1)-C(18)98.1(2)C(15)-Mn(1)-C(16)89.2(2)C(15)-Mn(1)-C(17)157.5(2)C(15)-Mn(1)-C(18)101.0(2)C(16)-Mn(1)-C(17)89.8(2)C(16)-Mn(1)-C(18)94.3(2)C(17)-Mn(1)-C(18)101.5(2)Mn(1)-C(14)-O(1)177.8(5)Mn(1)-C(15)-O(2)177.0(5)Mn(1)-C(16)-O(3)178.1(4)Mn(1)-C(17)-O(4)178.2(5)	C(1)-Pt(1)-C(2)	87.0(2)	C(1)-Pt(1)-C(3)	87.0(2)
Pt(1)-Mn(1)-C(17)79.63(17)Pt(1)-Mn(1)-C(18)178.89(15)C(14)-Mn(1)-C(15)87.5(2)C(14)-Mn(1)-C(16)167.6(2)C(14)-Mn(1)-C(17)88.6(2)C(14)-Mn(1)-C(18)98.1(2)C(15)-Mn(1)-C(16)89.2(2)C(15)-Mn(1)-C(17)157.5(2)C(15)-Mn(1)-C(18)101.0(2)C(16)-Mn(1)-C(17)89.8(2)C(16)-Mn(1)-C(18)94.3(2)C(17)-Mn(1)-C(18)101.5(2)Mn(1)-C(14)-O(1)177.8(5)Mn(1)-C(15)-O(2)177.0(5)Mn(1)-C(16)-O(3)178.1(4)Mn(1)-C(17)-O(4)178.2(5)	C(2)-Pt(1)-C(3)	85.9(2)	Pt(1)-Mn(1)-C(14)	82.0(2)
C(14)-Mn(1)-C(15)87.5(2)C(14)-Mn(1)-C(16)167.6(2)C(14)-Mn(1)-C(17)88.6(2)C(14)-Mn(1)-C(18)98.1(2)C(15)-Mn(1)-C(16)89.2(2)C(15)-Mn(1)-C(17)157.5(2)C(15)-Mn(1)-C(18)101.0(2)C(16)-Mn(1)-C(17)89.8(2)C(16)-Mn(1)-C(18)94.3(2)C(17)-Mn(1)-C(18)101.5(2)Mn(1)-C(14)-O(1)177.8(5)Mn(1)-C(15)-O(2)177.0(5)Mn(1)-C(16)-O(3)178.1(4)Mn(1)-C(17)-O(4)178.2(5)	Pt(1)-Mn(1)-C(15)	77.87(18)	Pt(1)-Mn(1)-C(16)	85.56(17)
C(14)-Mn(1)-C(17)88.6(2)C(14)-Mn(1)-C(18)98.1(2)C(15)-Mn(1)-C(16)89.2(2)C(15)-Mn(1)-C(17)157.5(2)C(15)-Mn(1)-C(18)101.0(2)C(16)-Mn(1)-C(17)89.8(2)C(16)-Mn(1)-C(18)94.3(2)C(17)-Mn(1)-C(18)101.5(2)Mn(1)-C(14)-O(1)177.8(5)Mn(1)-C(15)-O(2)177.0(5)Mn(1)-C(16)-O(3)178.1(4)Mn(1)-C(17)-O(4)178.2(5)	Pt(1)-Mn(1)-C(17)	79.63(17)	Pt(1)-Mn(1)-C(18)	178.89(15)
C(15)-Mn(1)-C(16)89.2(2)C(15)-Mn(1)-C(17)157.5(2)C(15)-Mn(1)-C(18)101.0(2)C(16)-Mn(1)-C(17)89.8(2)C(16)-Mn(1)-C(18)94.3(2)C(17)-Mn(1)-C(18)101.5(2)Mn(1)-C(14)-O(1)177.8(5)Mn(1)-C(15)-O(2)177.0(5)Mn(1)-C(16)-O(3)178.1(4)Mn(1)-C(17)-O(4)178.2(5)	C(14)-Mn(1)-C(15)	87.5(2)	C(14)-Mn(1)-C(16)	167.6(2)
C(15)-Mn(1)-C(18)101.0(2)C(16)-Mn(1)-C(17)89.8(2)C(16)-Mn(1)-C(18)94.3(2)C(17)-Mn(1)-C(18)101.5(2)Mn(1)-C(14)-O(1)177.8(5)Mn(1)-C(15)-O(2)177.0(5)Mn(1)-C(16)-O(3)178.1(4)Mn(1)-C(17)-O(4)178.2(5)	C(14)-Mn(1)-C(17)	88.6(2)	C(14)-Mn(1)-C(18)	98.1(2)
C(16)-Mn(1)-C(18)94.3(2)C(17)-Mn(1)-C(18)101.5(2)Mn(1)-C(14)-O(1)177.8(5)Mn(1)-C(15)-O(2)177.0(5)Mn(1)-C(16)-O(3)178.1(4)Mn(1)-C(17)-O(4)178.2(5)	C(15)-Mn(1)-C(16)	89.2(2)	C(15)-Mn(1)-C(17)	157.5(2)
Mn(1)-C(14)-O(1)177.8(5)Mn(1)-C(15)-O(2)177.0(5)Mn(1)-C(16)-O(3)178.1(4)Mn(1)-C(17)-O(4)178.2(5)	C(15)-Mn(1)-C(18)	101.0(2)	C(16)-Mn(1)-C(17)	89.8(2)
Mn(1)-C(16)-O(3) 178.1(4) $Mn(1)-C(17)-O(4)$ 178.2(5)	C(16)-Mn(1)-C(18)	94.3(2)	C(17)-Mn(1)-C(18)	101.5(2)
	Mn(1)-C(14)-O(1)	177.8(5)	Mn(1)-C(15)-O(2)	177.0(5)
Mn(1)-C(18)-O(5) 178.4(4)	Mn(1)-C(16)-O(3)	178.1(4)	Mn(1)-C(17)-O(4)	178.2(5)
	Mn(1)-C(18)-O(5)	178.4(4)		

 $\textbf{Table S3.} Selected Bond Lengths (\AA) and Selected Bond Angles (deg.) of (bpy)Me_3Pt-Mn(CO)_5 (\textbf{1a})$

Observed Rate Constant for the Methyl Transfer of 2f under Dark

Complex **2f** (ca. 1 mg, 0.001 mmol) was placed in a Schlenk type quartz UV cell and then 4.0 mL of solvent was added into the Schlenk tube by trap-to-trap transfer under reduced pressure. The time-course of the reaction was monitored by the absorption maximum at 535 nm. During measurement of the reaction, the temperature was set up at 20.0 °C by a thermostatted UV cell holder and the deviation of the temperature was less than ± 0.5 °C.


Figure S2. UV-vis spectral change for 2f. Conditions: Solvent, benzene; temperature, 20 °C; under dark.

Entry	Complex	Solvent	Temperature (°C)	$10^4 k_{\rm obs} ({\rm s}^{-1})$
1	2f	benzene	15.0	0.768±0.001
2			20.0	1.63±0.003
3		THF	15.0	1.16±0.002
4		acetone	15.0	0.832±0.002
5	2g	benzene	20.0	1.57±0.005

Table S4. First-order rate constants for the methyl transfer under dark

Figure S3. Effect of added [PPN][Mn(CO)₅] on k_{obs} for (^{*t*}Bu₂bpy)Me₃Pt–Mn(CO)₅ (**2f**). Conditions: Solvent, THF; temperature, 25 °C; [**2f**] = 0.3 mM; under dark.

Figure S4. Effect of added 'Bu₂bpy on k_{obs} for ('Bu₂bpy)Me₃Pt–Mn(CO)₅ (**2f**). Conditions: Solvent, benzene; temperature, 25 °C; [**9f**] = 0.3 mM; under dark.

Observed Rate Constant for the Methyl Transfer of 2f under Irradiation

Complex **2f** (ca. 1 mg, 0.001 mmol) was placed in a Schlenk type quartz UV cell and then 4.0 mL of solvent was added into the Schlenk tube by trap-to-trap transfer under reduced pressure. The solution of **2f** was photoirradiated with visible light of a super high-pressure UV lamp (500W, USIO Inc., Japan) equipped with a Y-50 sharp cut filter and HA-50 heat absorbing filter to cut off UV light and heat. The time-course of the reaction was monitored by the absorption maximum. During irradiation and measurement of the reaction, the temperature was set up at 15.0 or 20.0 °C by a thermostatted UV cell holder and the deviation of the temperature was less than ± 0.5 °C. The solution of **2f** was also photoirradiated with UV light (300-400 nm) of a super high-pressure UV lamp (500W, USIO Inc., Japan) equipped with a U-360 UV transmitting, visible absorbing filter and HA-50 heat absorbing filter to cut off visivle and heat.

Entry	Wavelength of light	Solvent	Additive	$10^4 k_{\rm obs} ({\rm s}^{-1})$
1	under dark	benzene	none	1.63±0.00
2	visible light	benzene	none	24.6±0.4
3	visible light	benzene	2,6-di(tert-butyl)phenol (8.1 mM)	31.3±0.6
4	visible light	benzene	<i>p</i> -methoxyphenol (3.0 mM)	27.1±0.5
5	visible light	benzene	^t Bu ₂ bpy (3.2 mM)	22.8±0.3
6	visible light	THF	none	19.4±0.3
7	visible light	THF	[PPN][Mn(CO) ₅] (3.4 mM)	14.2±0.2
8	visible light	acetone	none	10.4±0.1
9	UV light	benzene	none	11.9 ±0.3

Table S5. Effect of additive for first-order rate constants at 20 °C under irradiation

The photochemical quantum yield for the reductive elimination process of 2f

The photochemical quantum yield for the reductive elimination process of **2f** was briefly estimated using chemical actinometry. Intensity of the irradiating visible light wiht HA-50 and Y-50 filters to cut off UV light and heat was estimated as 2.91×10^{-9} einsteins s⁻¹ by using a potassium ferrioxalate ($\phi = 0.15$ at 546 nm)⁸. Monitoring of the reaction by UV–vis spectrophotometry gave a quantum yield as 0.50 for the photo-induced reductive elimination of **2f**.

DFT Calculation of trimethyl and dimethylphenylplatinum-manganesepentacarbonyl complexes.

DFT calculations of (bpy)Me₂RPt–Mn(CO)₅ (R = Me (**1a**), Ph (**1c**)) were performed with the Spartan06 program package (Wavefunction, Inc., Irvine, CA) at the B3LYP level using the LACVP*. The optimized structures represent the equilibrium geometries of the molecules in gas phase. Based on the computed results, reductive elimination of dimenthylphenylplatinum complex giving methyl manganese complex and PtMePh(bpy) is exothermic ($\Delta E = -11.3 \text{ kJmol}^{-1}$), whereas those for trimethylplatinum complex are endothermic ($\Delta E = 12.2 \text{ kJmol}^{-1}$).

Table S6. Computed total energies using DFT optimized at the B3LYP level using the LACVP* basis set for (bpy)Me₂RPt–Mn(CO)₅ (R = Me (**1a**), Ph (**1c**)) and methyl transfer products.

Entry	Complex	E/au	E/kJmol ⁻¹
1	$(bpy)Me_3Pt-Mn(CO)_5$ (1a)	-1404.9552461	-3688712.58
2	(bpy)Me ₂ PhPt-Mn(CO) ₅ (1c)	-1596.6883501	-4192108.20
3	PtMe ₂ (bpy)	-694.413358	-1823183.55
4	PtMePh(bpy)	-886.155417	-2326602.68
5	MnMe(CO) ₅	-710.537247	-1865516.85

Reference

- 1 Clegg, D. E.; Halla, J. R.; Swile, G. A. J. Organomet. Chem. 1972, 38, 403.
- 2 Crespo, M.; Puddephatt, R. J. Organometallics 1987, 6, 2548.
- 3 Canty, A. J.; Patel, J.; Rodemann, T.; Ryan, J. H.; Skelton, B. W.; White, A. H. *Organometallics* **2004**, *23*, 3466.
- 4 PATTY: Beurskens, P. T.; Admiraal, G.; Beurskens, G.; Bosman, W. P.; Garcia-Granda, S.; Gould, R. O.; Smits, J. M. M.; Smykalla, C. *The DIRDIF Program System*; Technical Report of the Crystallography Laboratory; University of Nijmegen: Nijmegen, The Netherlands, 1992.
- 5 DIF99: Beurskens, P. T.; Admiraal, G.; Beurskens, G.; Bosman, W. P.; de Gelder, R.; Israel, R.; Smits, J. M.
 M. The DIRDIF-99 program system; Technical Report of the Crystallography Laboratory; University of Nijmegen: Nijmegen, The Netherlands, 1999.
- 6 CrystalStructure 3.8: Crystal Structure Analysis Package, Rigaku and Rigaku/MMC, The Woodlands TX 77381 USA, 2000-2006.
- 7 Sheldrick, G. M. SHELX-97, Programs for crystal structure determination (SHELXS) and refinement (SHELXL); University of Göttingen: Göttingen, Germany, 1997.
- 8 Murov, S. L.; Carmichael, I.; Hug, G. L. *Handbook of Photochemistry*, 2nd Ed., Marcel Dekker, Inc, 1993.