## Supporting Information

# [4+2] Cycloaddition of 9-Anthryldiphosphene with 

 Electron-deficient Olefins: Transformation of a Diaryldiphosphene to AlkylaryldiphosphenesAkihiro Tsurusaki, Takahiro Sasamori, and Norihiro Tokitoh*<br>Institute for Chemical Research, Kyoto University, Gakasho, Uji, Kyoto 611-0011 (Japan)

To whom correspondence should be addressed. Phone: +81-774-38-3200. Fax: +81-774-38-3209. Email: tokitoh@boc.kuicr.kyoto-u.ac.jp.

## Experimental Section

General Procedures. All experiments were performed under an argon atmosphere unless otherwise noted. Solvents used for the reactions were purified by The Ultimate Solvent System (Glass Contour Company). ${ }^{\text {S1 }}$ Benzene- $d_{6}$ and cyclohexane- $d_{12}$ used in the spectroscopy were dried by using a potassium mirror. The ${ }^{1} \mathrm{H}$ NMR ( 400 or 300 MHz ) and ${ }^{13} \mathrm{C}$ NMR ( 100 or 75 MHz ) spectra were measured in $\mathrm{C}_{6} \mathrm{D}_{6}$, $\mathrm{C}_{6} \mathrm{D}_{12}$, or $\mathrm{CDCl}_{3}$ with a JEOL JNM AL-400 or AL-300 spectrometer. Signals due to $\mathrm{C}_{6} \mathrm{D}_{5} \mathrm{H}(7.15 \mathrm{ppm})$, $\mathrm{C}_{6} \mathrm{D}_{11} \mathrm{H}(1.38 \mathrm{ppm})$, and $\mathrm{CHCl}_{3}(7.25 \mathrm{ppm})$ in ${ }^{1} \mathrm{H}$ NMR and those due to $\mathrm{C}_{6} \mathrm{D}_{6}(128 \mathrm{ppm}), \mathrm{C}_{6} \mathrm{D}_{12}(26.4$ ppm), and $\mathrm{CDCl}_{3}(77.0 \mathrm{ppm})$ in ${ }^{13} \mathrm{C}$ NMR were used as internal references, respectively. The ${ }^{31} \mathrm{P}$ NMR ( 121 MHz ) spectra were measured in $\mathrm{C}_{6} \mathrm{D}_{6}$ with a JEOL AL-300 spectrometer using $85 \% \mathrm{H}_{3} \mathrm{PO}_{4}$ in water ( 0 ppm ) as an external standard. Multiplicity of signals in ${ }^{13} \mathrm{C}$ NMR spectra was determined by DEPT, HMQC, CH-cosy, HMBC, and long-range CH-cosy techniques. High-resolution FAB-mass spectral data were obtained on a JEOL JMS-700 spectrometer. Gel permeation liquid chromatography (GPLC) was performed on an LC-918 (Japan Analytical Industry Co,.Ltd) equipped with JAIGEL 1H and 2H columns (eluent: toluene). Preparative thin-layer chromatography (PTLC) was performed with Merck Kieselgel 60 PF254. All melting points were determined on a Yanaco micro melting point apparatus and were uncorrected. Elemental analyses were carried out at the Microanalytical Laboratory of the Institute for Chemical Research, Kyoto University. Maleic anhydride, $N$-phenylmaleimide, fumaronitrile, and anthracene were recrystallized from benzene, cyclohexane, benzene/hexane, and toluene, respectively. 2,3-Dimethyl-1,3-butadiene and 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) were distilled from sodium borohydride and sodium hydroxide prior to use, respectively. 2,6-bis[bis(trimethylsilyl)methyl]-4-[tris(trimethylsilyl)methyl]phenylphosphine $\quad\left(\mathrm{BbtPH}_{2}\right),{ }^{\mathrm{S} 2} \quad 9-$ Anthryldichlorophosphine, ${ }^{\mathrm{S} 3}$ maleonitrile, ${ }^{\mathrm{S4}}$ and $\mathrm{BbtP}=\mathrm{PBbt}^{\mathrm{S5}}$ were prepared according to the reported procedures.

Synthesis of 9-anthryldiphosphene $\mathbf{1 b}[\mathbf{B b t} \mathbf{P}=\mathbf{P}(\mathbf{9}-A n t h)]$ : In a glovebox filled with an argon, DBU ( $93 \mu \mathrm{~L}, 0.62 \mathrm{mmol}$ ) was added to a toluene $(10 \mathrm{~mL})$ solution of $\mathrm{BbtPH}_{2}(165 \mathrm{mg}, 0.251 \mathrm{mmol})$ and 9 anthryldichlorophosphine ( $83.7 \mathrm{mg}, 0.300 \mathrm{mmol}$ ) at room temperature. After stirring at room temperature for 2 h , the reaction mixture was filtered through Celite ${ }^{\circledR}$ with toluene. The solvent of the filtrate was removed under reduced pressure, and then the residue was washed with cooled hexane to afford 9-anthryldiphosphene $\mathbf{1 b}(167 \mathrm{mg}, 0.193 \mathrm{mmol}, 77 \%)$ as red crystals. $\mathbf{1 b}$ : $\mathrm{mp}: 229^{\circ} \mathrm{C}$ (decomp.). ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$, r.t.) $\delta=0.31$ (s, 36H), $0.43(\mathrm{~s}, 27 \mathrm{H}), 2.87(\mathrm{~s}, 2 \mathrm{H}), 7.19(\mathrm{~s}, 2 \mathrm{H}), 7.28(\mathrm{ddd}$, $\left.{ }^{3} J_{\mathrm{HH}}=8.5,6.5 \mathrm{~Hz},{ }^{4} J_{\mathrm{HH}}=1.0 \mathrm{~Hz}, 2 \mathrm{H}\right), 7.46\left(\mathrm{ddd},{ }^{3} J_{\mathrm{HH}}=8.7,6.5 \mathrm{~Hz},{ }^{4} J_{\mathrm{HH}}=1.4 \mathrm{~Hz}, 2 \mathrm{H}\right), 7.80\left(\mathrm{~d},{ }^{3} J_{\mathrm{HH}}=\right.$ $8.5 \mathrm{~Hz}), 8.18(\mathrm{~s}, 1 \mathrm{H}), 8.62\left(\mathrm{~d},{ }^{3} J_{\mathrm{HH}}=8.7 \mathrm{~Hz}, 2 \mathrm{H}\right) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right.$, r.t. $) \delta=1.78\left(\mathrm{CH}_{3}\right)$, $5.60\left(\mathrm{CH}_{3}\right), 22.49,33.59(\mathrm{CH}), 125.38(\mathrm{CH}), 125.44(\mathrm{CH}), 127.38(\mathrm{CH}), 128.72\left(\mathrm{~d},{ }^{3} J_{\mathrm{CP}}=7.4 \mathrm{~Hz}, \mathrm{CH}\right)$, $129.61(\mathrm{CH}), 129.79(\mathrm{CH}), 132.26,133.54\left(\mathrm{~d},{ }^{2} J_{\mathrm{CP}}=4.9 \mathrm{~Hz}\right), 137.38\left(\mathrm{br} \mathrm{d},{ }^{1} J_{\mathrm{CP}}=44.5 \mathrm{~Hz}\right), 139.70(\mathrm{br} \mathrm{d}$, $\left.{ }^{1} J_{\mathrm{CP}}=58.6 \mathrm{~Hz}\right), 145.64,146.85 ;{ }^{31} \mathrm{P}$ NMR $\left(121 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right.$, r.t. $) \delta=521.9,586.8\left(\mathrm{AB}\right.$ quartet, ${ }^{1} J_{\mathrm{PP}}=$ $584 \mathrm{~Hz})$. HRMS (FAB) $m / z$, found: $863.3900\left([\mathrm{M}+\mathrm{H}]^{+}\right)$, calcd for $\mathrm{C}_{44} \mathrm{H}_{77} \mathrm{P}_{2} \mathrm{Si}_{7}\left([\mathrm{M}+\mathrm{H}]^{+}\right): 863.3885$. Anal. Found: C, 61.29; H, 8.94\%. Calcd for $\mathrm{C}_{44} \mathrm{H}_{76} \mathrm{P}_{2} \mathrm{Si}_{7}$ : C, 61.19; H, 8.87\%.

Reaction of BbtP=P(9-Anth) 1b with 2,3-dimethyl-1,3-butadiene (Scheme 1): A $\mathrm{C}_{6} \mathrm{D}_{6}$ suspension $(0.9 \mathrm{~mL})$ of $\mathrm{BbtP}=\mathrm{P}(9-\mathrm{Anth})(\mathbf{1 b}, 51.8 \mathrm{mg}, 60.0 \mu \mathrm{~mol})$ and 2,3-dimethyl-1,3-butadiene $(68 \mu \mathrm{~L}, 49 \mathrm{mg}$, 0.60 mmol ) was degassed and sealed in an NMR tube. After heating for 15 h at $60^{\circ} \mathrm{C}$, the solvent was removed under reduced pressure. The residue was separated by GPLC to afford 1,2-diphosphacyclohex-4-ene derivative $2\left(37.9 \mathrm{mg}, 40.1 \mu \mathrm{~mol}, 67 \%\right.$ ) as yellow solids. 2: mp: $198^{\circ} \mathrm{C}$ (decomp.). ${ }^{1} \mathrm{H}$ NMR ( 400 $\left.\mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{12}, 50^{\circ} \mathrm{C}\right) \delta=-0.33(\mathrm{br} \mathrm{s}, 18 \mathrm{H}), 0.15(\mathrm{~s}, 18 \mathrm{H}), 0.23(\mathrm{~s}, 27 \mathrm{H}), 1.65(\mathrm{~d}, J=2.9 \mathrm{~Hz}, 3 \mathrm{H}), 2.10(\mathrm{~s}$, $3 \mathrm{H}), 2.40(\mathrm{dt}, J=12.6,10.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.51(\mathrm{dd}, J=15.4,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.19-3.31(\mathrm{~m}, 1 \mathrm{H}), 3.36(\mathrm{br} \mathrm{s}, 2 \mathrm{H})$, $3.41-3.45(\mathrm{~m}, 1 \mathrm{H}), 6.71(\mathrm{~s}, 2 \mathrm{H}), 7.26-7.35(\mathrm{~m}, 4 \mathrm{H}), 7.82\left(\mathrm{~d},{ }^{3} J_{\mathrm{HH}}=8.5 \mathrm{~Hz}, 2 \mathrm{H}\right), 8.29(\mathrm{~s}, 1 \mathrm{H}), 9.39(\mathrm{~d}$, $\left.{ }^{3} J_{\mathrm{HH}}=8.0 \mathrm{~Hz}, 2 \mathrm{H}\right) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{12}, 50{ }^{\circ} \mathrm{C}\right) \delta=1.83\left(\mathrm{CH}_{3}\right), 2.24\left(\mathrm{CH}_{3}\right), 5.93\left(\mathrm{CH}_{3}\right)$, $20.03\left(\mathrm{CH}_{3}\right), 21.40\left(\mathrm{CH}_{3}\right), 22.95,29.76\left(\mathrm{~d},{ }^{3} J_{\mathrm{CP}}=9.1 \mathrm{~Hz}, \mathrm{CH}\right), 29.96\left(\mathrm{~d},{ }^{3} J_{\mathrm{CP}}=9.1 \mathrm{~Hz}, \mathrm{CH}\right), 31.74(\mathrm{dd}$,
$\left.{ }^{1} J_{\mathrm{CP}}=22.3 \mathrm{~Hz},{ }^{2} J_{\mathrm{CP}}=9.1 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 33.24\left(\mathrm{dd},{ }^{1} J_{\mathrm{CP}}=20.6 \mathrm{~Hz},{ }^{2} J_{\mathrm{CP}}=4.9 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 125.12(\mathrm{CH})$, $125.48(\mathrm{CH}), 127.80\left(\mathrm{dd},{ }^{2} J_{\mathrm{CP}}=4.5 \mathrm{~Hz},{ }^{3} J_{\mathrm{CP}}=2.1 \mathrm{~Hz}\right), 128.14(\mathrm{CH}), 128.57\left(\mathrm{~d},{ }^{1} J_{\mathrm{CP}}=21.0 \mathrm{~Hz},{ }^{2} J_{\mathrm{CP}}=\right.$ $2.9 \mathrm{~Hz}), 129.51(\mathrm{CH}), 130.43\left(\mathrm{dd},{ }^{3} J_{\mathrm{CP}}=20.2 \mathrm{~Hz},{ }^{4} J_{\mathrm{CP}}=14.4 \mathrm{~Hz}, \mathrm{CH}\right), 130.81\left(\mathrm{~d},{ }^{2} J_{\mathrm{CP}}=4.9 \mathrm{~Hz}\right)$, $131.24(\mathrm{CH}), 132.86\left(\mathrm{dd},{ }^{3} J_{\mathrm{CP}}=2.0 \mathrm{~Hz},{ }^{4} J_{\mathrm{CP}}=2.0 \mathrm{~Hz}\right), 133.03\left(\mathrm{~d},{ }^{1} J_{\mathrm{CP}}=28.0 \mathrm{~Hz}\right), 138.03\left(\mathrm{dd},{ }^{2} J_{\mathrm{CP}}=\right.$ $9.5 \mathrm{~Hz},{ }^{3} J_{\mathrm{CP}}=4.5 \mathrm{~Hz}$ ), 146.75, 153.52; ${ }^{31} \mathrm{P}$ NMR ( $121 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$, r.t.) $\delta=-58.2,-57.4$ (AB quartet, ${ }^{1} J_{\mathrm{PP}}=208 \mathrm{~Hz}$ ). HRMS (FAB) $m / z$, found: $945.4689\left([\mathrm{M}+\mathrm{H}]^{+}\right)$, calcd for $\mathrm{C}_{50} \mathrm{H}_{87} \mathrm{P}_{2} \mathrm{Si}_{7}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$: 945.4668. Anal. Found: C, $63.38 ; \mathrm{H}, 9.38 \%$. Calcd for $\mathrm{C}_{50} \mathrm{H}_{86} \mathrm{P}_{2} \mathrm{Si}_{7}$ : C, $63.50 ; \mathrm{H}, 9.17 \%$.

Reaction of $\mathbf{B b t P}=\mathbf{P}\left(\mathbf{9}\right.$-Anth) 1b with maleic anhydride (3a) (Scheme 1): $\mathrm{A}_{6} \mathrm{D}_{6}$ suspension (0.9 $\mathrm{mL})$ of $\mathrm{BbtP}=\mathrm{P}(9-$ Anth $)(\mathbf{1 b}, 51.8 \mathrm{mg}, 60.0 \mu \mathrm{~mol})$ and maleic anhydride ( $\mathbf{3 a}, 17.8 \mathrm{mg}, 0.182 \mathrm{mmol}$ ) was degassed and sealed in an NMR tube. After heating for 14 h at $120^{\circ} \mathrm{C}$, the reaction mixture was filtered through Celite ${ }^{\circledR}$ with toluene. The solvent of the filtrate was removed under reduced pressure, and the residue was separated by GPLC to afford maleic anhydride adduct $\mathbf{4 a}(49.1 \mathrm{mg}, 51.1 \mu \mathrm{~mol}, 85 \%)$ as orange crystals. $4 \mathbf{a}: \mathrm{mp}: 235{ }^{\circ} \mathrm{C}$ (decomp.). ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$, r.t.) $\delta=0.368(\mathrm{~s}, 18 \mathrm{H}), 0.370(\mathrm{~s}$, $18 \mathrm{H}), 0.45(\mathrm{~s}, 27 \mathrm{H}), 2.76\left(\mathrm{dd},{ }^{3} J_{\mathrm{HH}}=9.1 \mathrm{~Hz}, 3.3 \mathrm{~Hz}, 1 \mathrm{H}\right), 2.85(\mathrm{~s}, 2 \mathrm{H}), 4.53\left(\mathrm{~d},{ }^{3} J_{\mathrm{HH}}=3.3 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.55$ (br d, $\left.{ }^{3} J_{\mathrm{HH}}=9.1 \mathrm{~Hz}, 1 \mathrm{H}\right), 6.77\left(\mathrm{ddd},{ }^{3} J_{\mathrm{HH}}=7.5 \mathrm{~Hz}, 7.3 \mathrm{~Hz},{ }^{4} J_{\mathrm{HH}}=1.2 \mathrm{~Hz}, 1 \mathrm{H}\right), 6.84\left(\mathrm{ddd},{ }^{3} J_{\mathrm{HH}}=7.5 \mathrm{~Hz}\right.$, $\left.7.3 \mathrm{~Hz},{ }^{4} J_{\mathrm{HH}}=1.5 \mathrm{~Hz}, 1 \mathrm{H}\right), 6.92\left(\mathrm{ddd},{ }^{3} J_{\mathrm{HH}}=7.3 \mathrm{~Hz}, 7.3 \mathrm{~Hz},{ }^{4} J_{\mathrm{HH}}=1.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 6.97\left(\mathrm{dd},{ }^{3} J_{\mathrm{HH}}=7.3\right.$ $\left.\mathrm{Hz},{ }^{5} J_{\mathrm{HH}}=1.5 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.06\left(\mathrm{dd},{ }^{3} J_{\mathrm{HH}}=7.3 \mathrm{~Hz},{ }^{4} J_{\mathrm{HH}}=1.2 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.14\left(\mathrm{ddd}, 1 \mathrm{H},{ }^{3} J_{\mathrm{HH}}=7.8 \mathrm{~Hz}, 7.3\right.$ $\left.\mathrm{Hz},{ }^{4} J_{\mathrm{HH}}=1.5 \mathrm{~Hz}\right),{ }^{\mathrm{S} 6} 7.26(\mathrm{~s}, 2 \mathrm{H}), 7.74\left(\mathrm{~d},{ }^{3} J_{\mathrm{HH}}=7.8 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.84\left(\mathrm{~d},{ }^{3} J_{\mathrm{HH}}=7.3 \mathrm{~Hz}, 1 \mathrm{H}\right) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ( $100 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$, r.t.) $\delta=1.83\left(\mathrm{CH}_{3}\right), 1.88\left(\mathrm{CH}_{3}\right), 5.67\left(\mathrm{CH}_{3}\right), 22.61,33.53(\mathrm{CH}), 46.55(\mathrm{CH})$, $49.94(\mathrm{CH}), 52.85\left(\mathrm{~d},{ }^{2} J_{\mathrm{CP}}=15.7 \mathrm{~Hz}, \mathrm{CH}\right), 56.78\left(\mathrm{~d},{ }^{1} J_{\mathrm{CP}}=66.8 \mathrm{~Hz}\right), 124.60(\mathrm{CH}), 125.60\left(\mathrm{~d},{ }^{3} J_{\mathrm{CP}}=\right.$ $23.9 \mathrm{~Hz}, \mathrm{CH}), 125.90(\mathrm{CH}), 126.28(\mathrm{CH}), 127.00(\mathrm{CH}), 127.32(\mathrm{CH}), 127.68(\mathrm{CH} \times 2), 127.86(\mathrm{CH})$, $134.85\left(\mathrm{br} \mathrm{d},{ }^{1} J_{\mathrm{CP}}=34.6 \mathrm{~Hz}\right), 138.85,141.13\left(\mathrm{br} \mathrm{d},{ }^{2} J_{\mathrm{CP}}=10.7 \mathrm{~Hz}\right), 142.58,143.98,146.39,147.36$, $169.79 ;{ }^{31} \mathrm{P}$ NMR ( $121 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$, r.t.) $\delta=520.3$, $571.2\left(\mathrm{AB}\right.$ quartet, ${ }^{1} J_{\mathrm{PP}}=583 \mathrm{~Hz}$ ). HRMS (FAB) $m / z$,
found: $961.3905\left([\mathrm{M}+\mathrm{H}]^{+}\right)$, calcd for $\mathrm{C}_{48} \mathrm{H}_{79} \mathrm{O}_{3} \mathrm{P}_{2} \mathrm{Si}_{7}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$: 961.3889. Anal. Found: C, 59.67; H, $8.42 \%$. Calcd for $\mathrm{C}_{48} \mathrm{H}_{78} \mathrm{O}_{3} \mathrm{P}_{2} \mathrm{Si}_{7}$ : C, $59.95 ; \mathrm{H}, 8.18 \%$.

Reaction of $\mathbf{B b t P}=\mathbf{P}\left(\mathbf{9}\right.$-Anth) 1b with $N$-phenylmaleimide (3b) (Scheme 1): A $\mathrm{C}_{6} \mathrm{D}_{6}$ suspension $(0.9 \mathrm{~mL})$ of $\mathrm{BbtP}=\mathrm{P}(9-\mathrm{Anth})(\mathbf{1 b}, 51.8 \mathrm{mg}, 60.0 \mu \mathrm{~mol})$ and $N$-phenylmaleimide $(\mathbf{3 b}, 31.2 \mathrm{mg}, 0.180$ mmol ) was degassed and sealed in an NMR tube. After heating for 6 h at $120^{\circ} \mathrm{C}$, the reaction mixture was filtered through Celite ${ }^{\circledR}$ with toluene. The solvent of the filtrate was removed under reduced pressure, and then the residue was separated by GPLC to afford $N$-phenylmaleimide adduct $\mathbf{4 b}$ ( 53.7 mg , $51.7 \mu \mathrm{~mol}, 86 \%$ ) as orange crystals. $\mathbf{4 b}: \mathrm{mp}: 232{ }^{\circ} \mathrm{C}$ (decomp.). ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$, r.t.) $\delta=$ $0.348(\mathrm{~s}, 18 \mathrm{H}), 0.356(\mathrm{~s}, 18 \mathrm{H}), 0.45(\mathrm{~s}, 27 \mathrm{H}), 2.976\left(\mathrm{dd},{ }^{3} J_{\mathrm{HH}}=8.5 \mathrm{~Hz}, 3.1 \mathrm{~Hz}, 1 \mathrm{H}\right), 2.982(\mathrm{~s}, 2 \mathrm{H}), 4.60$ (br d, $\left.{ }^{3} J_{\mathrm{HH}}=8.5 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.79\left(\mathrm{~d},{ }^{3} J_{\mathrm{HH}}=3.1 \mathrm{~Hz}, 1 \mathrm{H}\right), 6.71-6.74(\mathrm{~m}, 2 \mathrm{H}), 6.81-6.91(\mathrm{~m}, 3 \mathrm{H}), 6.96-7.03$ $(\mathrm{m}, 3 \mathrm{H}), 7.14\left(\mathrm{~d},{ }^{3} J_{\mathrm{HH}}=7.5 \mathrm{~Hz}, 1 \mathrm{H}\right),{ }^{56} 7.16\left(\mathrm{dd},{ }^{3} J_{\mathrm{HH}}=7.0 \mathrm{~Hz},{ }^{4} J_{\mathrm{HH}}=1.4 \mathrm{~Hz}, 1 \mathrm{H}\right),{ }^{56} 7.23\left(\mathrm{ddd},{ }^{3} J_{\mathrm{HH}}=\right.$ $\left.7.5 \mathrm{~Hz}, 7.5 \mathrm{~Hz},{ }^{4} J_{\mathrm{HH}}=1.3 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.25(\mathrm{~s}, 2 \mathrm{H}), 7.92\left(\mathrm{~d},{ }^{3} J_{\mathrm{HH}}=7.5 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.94\left(\mathrm{~d},{ }^{3} J_{\mathrm{HH}}=7.5 \mathrm{~Hz}\right.$, $1 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(100 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right.$, r.t.) $\delta=1.83\left(\mathrm{CH}_{3}\right), 1.88\left(\mathrm{CH}_{3}\right), 5.68\left(\mathrm{CH}_{3}\right), 22.52,33.18(\mathrm{CH})$, $47.21(\mathrm{CH}), 49.36(\mathrm{CH}), 52.57\left(\mathrm{~d},{ }^{2} J_{\mathrm{CP}}=13.2 \mathrm{~Hz}, \mathrm{CH}\right), 57.05\left(\mathrm{~d},{ }^{1} J_{\mathrm{CP}}=64.3 \mathrm{~Hz}\right), 124.68(\mathrm{CH}), 125.72$ $\left(\mathrm{d},{ }^{3} J_{\mathrm{CP}}=19.0 \mathrm{~Hz}, \mathrm{CH}\right), 125.81(\mathrm{CH}), 126.10(\mathrm{CH}), 126.51(\mathrm{CH}), 127.06(\mathrm{CH}), 127.19(\mathrm{CH} \times 2), 127.26$ (br, CH), $127.62(\mathrm{CH}), 128.27(\mathrm{CH}), 128.57(\mathrm{CH}), 132.29,135.74\left(\mathrm{~d},{ }^{1} J_{\mathrm{CP}}=27.2 \mathrm{~Hz}\right), 139.84,141.58(\mathrm{~d}$, $\left.{ }^{3} J_{\mathrm{CP}}=4.9 \mathrm{~Hz}\right), 143.39,144.53,146.42,146.91,174.55,174.61 ;{ }^{31} \mathrm{P}$ NMR ( $121 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$, r.t. $) \delta=$ 525.8, $564.3\left(\mathrm{AB}\right.$ quartet, ${ }^{1} J_{\mathrm{PP}}=577 \mathrm{~Hz}$ ). HRMS (FAB) $m / z$, found: $1036.4352\left([\mathrm{M}+\mathrm{H}]^{+}\right)$, calcd for $\mathrm{C}_{54} \mathrm{H}_{84} \mathrm{NO}_{2} \mathrm{P}_{2} \mathrm{Si}_{7}\left([\mathrm{M}+\mathrm{H}]^{+}\right): 1036.4362$. Anal. Found: C, $62.63 ; \mathrm{H}, 8.09 ; \mathrm{N}, 1.40 \%$. Calcd for $\mathrm{C}_{54} \mathrm{H}_{83} \mathrm{NO}_{2} \mathrm{P}_{2} \mathrm{Si}_{7}: \mathrm{C}, 62.56 ; \mathrm{H}, 8.07 ; \mathrm{N}, 1.35 \%$.

Reaction of $\operatorname{BbtP}=\mathbf{P}\left(\mathbf{9}\right.$-Anth) 1b with 5 equiv of fumaronitrile (3c) (Table 1, entry 1): $\mathrm{A}_{6} \mathrm{D}_{6}$ suspension $(0.9 \mathrm{~mL})$ of $\mathrm{BbtP}=\mathrm{P}(9-\mathrm{Anth})(\mathbf{1 b}, 51.8 \mathrm{mg}, 60.0 \mu \mathrm{~mol})$ and fumaronitrile $(\mathbf{3 c}, 23.4 \mathrm{mg}, 0.300$
mmol) was degassed and sealed in an NMR tube. After heating for 72 h at $120^{\circ} \mathrm{C}$, the starting material $\mathbf{1 b}$, fumaronitrile adduct $\mathbf{4} \mathbf{c}$, and maleonitrile adduct $\mathbf{4 d}$ were observed in the ratio of 14:63:23 as judged by the ${ }^{1} \mathrm{H}$ NMR spectra together with maleonitrile (3d). ${ }^{57}$ The reaction mixture was separated by GPLC and then PTLC (eluent: benzene, $R_{\mathrm{f}}=0.5$ for $\mathbf{4 c}$ and 0.4 for $\mathbf{4 d}$, respectively) to afford fumaronitrile adduct $4 \mathbf{c}(25.1 \mathrm{mg}, 26.6 \mu \mathrm{~mol}, 44 \%)$ and maleonitrile adduct $4 \mathbf{d}(8.4 \mathrm{mg}, 8.9 \mu \mathrm{~mol}, 15 \%)$ as orange crystals, respectively. $\mathbf{4 c}: \mathrm{mp}: 210{ }^{\circ} \mathrm{C}$ (decomp.). ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$, r.t.) $\delta=0.29$ (s, 18 H ), 0.35 $(\mathrm{s}, 18 \mathrm{H}), 0.42(\mathrm{~s}, 27 \mathrm{H}), 2.59(\mathrm{~s}, 2 \mathrm{H}), 2.67\left(\mathrm{dd},{ }^{3} J_{\mathrm{HH}}=4.1 \mathrm{~Hz}, 2.7 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.92\left(\mathrm{~d},{ }^{3} J_{\mathrm{HH}}=2.7 \mathrm{~Hz}, 1 \mathrm{H}\right)$, $4.46\left(\mathrm{~d},{ }^{3} J_{\mathrm{HH}}=4.1 \mathrm{~Hz}, 1 \mathrm{H}\right), 6.89-7.02(\mathrm{~m}, 4 \mathrm{H}), 7.10-7.16(\mathrm{~m}, 2 \mathrm{H}), 7.20(\mathrm{~s}, 2 \mathrm{H}), 7.65\left(\mathrm{~d},{ }^{3} J_{\mathrm{HH}}=7.5 \mathrm{~Hz}\right.$, $1 \mathrm{H}), 7.89\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=7.5 \mathrm{~Hz}, 1 \mathrm{H}\right) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right.$, r.t. $) \delta=1.84\left(\mathrm{CH}_{3}\right), 1.89\left(\mathrm{CH}_{3}\right), 5.63$ $\left(\mathrm{CH}_{3}\right), 22.65,34.11(\mathrm{CH}), 38.13(\mathrm{CH}), 42.48\left(\mathrm{~d},{ }^{2} J_{\mathrm{CP}}=26.4 \mathrm{~Hz}, \mathrm{CH}\right), 46.94(\mathrm{CH}), 56.68\left(\mathrm{~d},{ }^{1} J_{\mathrm{CP}}=63.5\right.$ $\mathrm{Hz}), 118.29,118.98,125.19(\mathrm{CH}), 126.19(\mathrm{br}, \mathrm{CH}), 126.24(\mathrm{CH}), 126.43\left(\mathrm{br} \mathrm{d},{ }^{3} J_{\mathrm{CP}}=26.4 \mathrm{~Hz}, \mathrm{CH}\right)$, $127.06(\mathrm{CH}), 127.67(\mathrm{CH}), 127.71(\mathrm{CH} \times 2), 128.20(\mathrm{CH}), 133.74\left(\mathrm{~d},{ }^{1} J_{\mathrm{CP}}=30.5 \mathrm{~Hz}\right), 139.65,140.17$, $140.42\left(\mathrm{~d},{ }^{2} J_{\mathrm{CP}}=9.1 \mathrm{~Hz}\right), 142.62,146.40,147.79 ;{ }^{31} \mathrm{P}$ NMR $\left(121 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right.$, r.t. $) \delta=518.8,579.4(\mathrm{AB}$ quartet, ${ }^{1} J_{\mathrm{PP}}=592 \mathrm{~Hz}$ ); HRMS (FAB) $m / z$, found: $941.4102\left([\mathrm{M}+\mathrm{H}]^{+}\right)$, calcd for $\mathrm{C}_{48} \mathrm{H}_{79} \mathrm{~N}_{2} \mathrm{P}_{2} \mathrm{Si}_{7}$ $\left([\mathrm{M}+\mathrm{H}]^{+}\right)$: 941.4103. Anal. Found: C, $61.07 ; \mathrm{H}, 8.36 ; \mathrm{N}, 3.07 \%$. Calcd for $\mathrm{C}_{48} \mathrm{H}_{78} \mathrm{~N}_{2} \mathrm{P}_{2} \mathrm{Si}_{7}$ : C, 61.22; H , 8.35; N, $2.97 \%$. 4d: mp: $215{ }^{\circ} \mathrm{C}$ (decomp.). ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$, r.t.) $\delta=0.35(\mathrm{~s}, 18 \mathrm{H}), 0.37$ (s, $18 \mathrm{H}), 0.44(\mathrm{~s}, 27 \mathrm{H}), 2.29\left(\mathrm{dd},{ }^{3} J_{\mathrm{HH}}=9.7 \mathrm{~Hz}, 2.2 \mathrm{~Hz}, 1 \mathrm{H}\right), 2.65(\mathrm{~s}, 2 \mathrm{H}), 3.98\left(\mathrm{~d},{ }^{3} J_{\mathrm{HH}}=2.2 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.11$ $\left(\mathrm{d},{ }^{3} J_{\mathrm{HH}}=9.7 \mathrm{~Hz}, 1 \mathrm{H}\right), 6.83\left(\mathrm{dd},{ }^{3} J_{\mathrm{HH}}=7.3 \mathrm{~Hz},{ }^{4} J_{\mathrm{HH}}=1.2 \mathrm{~Hz}, 1 \mathrm{H}\right), 6.88-6.93(\mathrm{~m}, 2 \mathrm{H}), 6.96\left(\mathrm{ddd},{ }^{3} J_{\mathrm{HH}}=\right.$ $\left.7.5 \mathrm{~Hz}, 7.3 \mathrm{~Hz},{ }^{4} J_{\mathrm{HH}}=1.5 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.08\left(\mathrm{ddd},{ }^{3} J_{\mathrm{HH}}=7.8 \mathrm{~Hz}, 7.5 \mathrm{~Hz},{ }^{4} J_{\mathrm{HH}}=1.2 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.18\left(\mathrm{dd},{ }^{3} J_{\mathrm{HH}}\right.$ $\left.=7.0 \mathrm{~Hz},{ }^{4} J_{\mathrm{HH}}=1.5 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.23(\mathrm{~s}, 2 \mathrm{H}), 7.57\left(\mathrm{~d},{ }^{3} J_{\mathrm{HH}}=7.8 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.86\left(\mathrm{~d},{ }^{3} J_{\mathrm{HH}}=7.3 \mathrm{~Hz}, 1 \mathrm{H}\right) ;{ }^{13} \mathrm{C}$ $\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(100 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right.$, r.t. $) \delta=1.83\left(\mathrm{CH}_{3}\right), 1.90\left(\mathrm{CH}_{3}\right), 5.66\left(\mathrm{CH}_{3}\right), 22.71,34.06(\mathrm{CH}), 36.64$ $(\mathrm{CH}), 41.02\left(\mathrm{CH}, \mathrm{d},{ }^{2} J_{\mathrm{CP}}=26.4 \mathrm{~Hz}\right), 47.18(\mathrm{CH}), 56.70\left(\mathrm{~d},{ }^{1} J_{\mathrm{CP}}=61.0 \mathrm{~Hz}\right), 117.31,117.73,124.65$ $(\mathrm{CH}), 126.14\left(\mathrm{br} \mathrm{d},{ }^{3} J_{\mathrm{CP}}=23.9 \mathrm{~Hz}, \mathrm{CH}\right), 126.37(\mathrm{CH}), 126.43(\mathrm{br}, \mathrm{CH}), 126.68(\mathrm{CH}), 127.70(\mathrm{CH})$, $127.78(\mathrm{CH}), 127.82(\mathrm{CH}), 128.07(\mathrm{CH}), 133.80\left(\mathrm{~d},{ }^{1} J_{\mathrm{CP}}=33.0 \mathrm{~Hz}\right), 138.61,140.59\left(\mathrm{~d},{ }^{2} J_{\mathrm{CP}}=4.9 \mathrm{~Hz}\right)$, $141.53,142.67,146.36,147.84 ;{ }^{31} \mathrm{P} \operatorname{NMR}\left(121 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right.$, r.t. $) \delta=522.6,578.3\left(\mathrm{AB}\right.$ quartet, ${ }^{1} J_{\mathrm{PP}}=$
$592 \mathrm{~Hz})$. HRMS (FAB) $m / z$, found: $941.4092\left([\mathrm{M}+\mathrm{H}]^{+}\right)$, calcd for $\mathrm{C}_{48} \mathrm{H}_{79} \mathrm{~N}_{2} \mathrm{P}_{2} \mathrm{Si}_{7}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$: 941.4103. Anal. Found: C, $61.11 ; \mathrm{H}, 8.37$; N, 3.06\%. Calcd for $\mathrm{C}_{48} \mathrm{H}_{78} \mathrm{~N}_{2} \mathrm{P}_{2} \mathrm{Si}_{7}: \mathrm{C}, 61.22 ; \mathrm{H}, 8.35 ; \mathrm{N}, 2.97 \%$.

Reaction of $\mathbf{B b t P}=\mathbf{P}\left(\mathbf{9}\right.$-Anth) $\mathbf{1 b}$ with $\mathbf{3 0}$ equiv of fumaronitrile (3c) (Table 1, entry 2): $\mathrm{A}_{6} \mathrm{D}_{6}$ suspension $(0.9 \mathrm{~mL})$ of $\mathrm{BbtP}=\mathrm{P}(9-\mathrm{Anth})(\mathbf{1 b}, 51.8 \mathrm{mg}, 60.0 \mu \mathrm{~mol})$ and fumaronitrile $(\mathbf{3 c}, 141 \mathrm{mg}, 1.81$ mmol) was degassed and sealed in an NMR tube. After heating for 13 h at $120^{\circ} \mathrm{C}$, the starting material $\mathbf{1 b}$ and fumaronitrile adduct $\mathbf{4 c}$ were observed in the ratio of $3: 97$ as judged by the ${ }^{1} \mathrm{H}$ NMR spectra together with maleonitrile (3d). ${ }^{\text {S7 }}$ After the reaction mixture was filtered through Celite ${ }^{\circledR}$ with toluene, the solvent of the filtrate was removed under reduced pressure. The residue was separated by GPLC and then PTLC (benzene as eluent) to afford fumaronitrile adduct $\mathbf{4 c}(47.1 \mathrm{mg}, 50.0 \mu \mathrm{~mol}, 83 \%)$ as orange crystals.

Reaction of $\mathbf{B b t} \mathbf{P}=\mathbf{P}\left(\mathbf{9}\right.$-Anth) $\mathbf{1 b}$ with 30 equiv of maleonitrile (3d) (Table 1, entry 3): $\mathrm{A}_{6} \mathrm{D}_{6}$ suspension $(0.9 \mathrm{~mL})$ of $\mathrm{BbtP}=\mathrm{P}(9-\mathrm{Anth})(\mathbf{1 b}, 51.8 \mathrm{mg}, 60.0 \mu \mathrm{~mol})$ and maleonitrile ( $\mathbf{3 d}, 141 \mathrm{mg} 1.81$ mmol) was degassed and sealed in an NMR tube. After heating for 12 h at $120^{\circ} \mathrm{C}$, the starting material $\mathbf{1 b}$ and maleonitrile adduct $\mathbf{4 d}$ were observed in the ratio of 3:97 as judged by the ${ }^{1} \mathrm{H}$ NMR spectra together with trace amount of $\mathbf{4 c}$ and fumaronitrile (3c). ${ }^{57}$ The reaction mixture was separated by GPLC and then PTLC (benzene as eluent) to afford maleonitrile adduct $4 \mathrm{~d}(40.2 \mathrm{mg}, 42.7 \mu \mathrm{~mol}, 71 \%$ ) as orange crystals.

Reaction of anthracene with 5 equiv of fumaronitrile (3c): A $\mathrm{C}_{6} \mathrm{D}_{6}$ suspension ( 0.9 mL ) of anthracene $(10.7 \mathrm{mg}, 60.0 \mu \mathrm{~mol})$ and fumaronitrile $(3 \mathbf{c}, 23.4 \mathrm{mg}, 0.300 \mathrm{mmol})$ was degassed and sealed in an NMR tube. After heating for 24 h at $120^{\circ} \mathrm{C}$, the signals of anthracene disappeared as judged by
the ${ }^{1} \mathrm{H}$ NMR spectra. No change was observed by ${ }^{1} \mathrm{H}$ NMR spectra after the additional heating for 48 h at $120^{\circ} \mathrm{C}$. The unreacted fumaronitrile and the solvent of the reaction mixture were removed under reduced pressure to afford the $[4+2]$ cycloadduct $\mathbf{5 c}(15.6 \mathrm{mg}, 60 \mu \mathrm{~mol},>99 \%)$ as colorless solids. $\mathbf{5 c}$ : mp: $194{ }^{\circ} \mathrm{C}$ (sublimed; lit..$^{\mathrm{S} 8} 274{ }^{\circ} \mathrm{C}$, lit. ${ }^{\mathrm{S} 9} 259{ }^{\circ} \mathrm{C}$, lit. ${ }^{\mathrm{S} 10} 259-260^{\circ} \mathrm{C}$ ). ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$, r.t.) $\delta$ $=3.13-3.14(\mathrm{~m}, 2 \mathrm{H}), 4.64(\mathrm{~m}, 2 \mathrm{H}), 7.23-7.30(\mathrm{~m}, 4 \mathrm{H}), 7.34-7.38(\mathrm{~m}, 2 \mathrm{H}), 7.44-7.47(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ( $75 \mathrm{MHz}, \mathrm{CDCl}_{3}$, r.t.) $\delta=35.47(\mathrm{CH}), 46.32(\mathrm{CH}), 118.47,124.16(\mathrm{CH}), 125.75(\mathrm{CH}), 127.82$ (CH), 127.91 (CH), 137.33, 139.27. HRMS (EI) $m / z$, found: 256.0996 ([M] ${ }^{+}$), calcd for $\mathrm{C}_{18} \mathrm{H}_{12} \mathrm{~N}_{2}$ ([M] $^{+}$): 256.1000. Anal. Found: C, 84.43; H, 4.84; N, 10.83\%. Calcd for $\mathrm{C}_{18} \mathrm{H}_{12} \mathrm{~N}_{2}$ : C, 84.35; H, 4.72; N, 10.93.

Reaction of anthracene with 5 equiv of maleonitrile (3d): A $\mathrm{C}_{6} \mathrm{D}_{6}$ suspension ( 0.9 mL ) of anthracene ( $10.7 \mathrm{mg}, 60.0 \mu \mathrm{~mol}$ ) and maleonitrile ( $\mathbf{3 d}, 23.4 \mathrm{mg}, 0.300 \mathrm{mmol}$ ) was degassed and sealed in an NMR tube. After heating for 24 h at $120^{\circ} \mathrm{C}$, the signals of anthracene disappeared as judged by the ${ }^{1} \mathrm{H}$ NMR spectra. No change was observed by ${ }^{1} \mathrm{H}$ NMR spectra after the additional heating for 48 h at $120^{\circ} \mathrm{C}$. The supernatant of the reaction mixture was removed, and then the residue was washed with benzene to afford the [4+2] cycloadduct $\mathbf{5 d}(15.0 \mathrm{mg}, 58.5 \mu \mathrm{~mol}, 97 \%)$ as colorless solids. $\mathbf{5 d}$ : mp : $225{ }^{\circ} \mathrm{C}$ (sublimed; lit. ${ }^{\mathrm{S} 10} 269-270{ }^{\circ} \mathrm{C}$ ). ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$, r.t.) $\delta=3.33-3.34(\mathrm{~m}, 2 \mathrm{H}), 4.67(\mathrm{~m}$, $2 \mathrm{H}), 7.22\left(\mathrm{dd}, J_{\mathrm{HH}}=5.5,3.1 \mathrm{~Hz}, 2 \mathrm{H}\right), 7.32\left(\mathrm{dd}, J_{\mathrm{HH}}=5.5,3.3 \mathrm{~Hz}, 2 \mathrm{H}\right), 7.35\left(\mathrm{dd}, J_{\mathrm{HH}}=5.5,3.3 \mathrm{~Hz}, 2 \mathrm{H}\right)$, $7.49\left(\mathrm{dd}, J_{\mathrm{HH}}=5.5,3.1 \mathrm{~Hz}, 2 \mathrm{H}\right) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, r.t.) $\delta=34.50(\mathrm{CH}), 46.55(\mathrm{CH})$, 117.21, $124.37(\mathrm{CH}), 125.66(\mathrm{CH}), 127.73(\mathrm{CH}), 128.03(\mathrm{CH}), 137.63,139.32$. HRMS (EI) $m / z$, found: $256.0996\left([M]^{+}\right)$, calcd for $\mathrm{C}_{18} \mathrm{H}_{12} \mathrm{~N}_{2}\left([\mathrm{M}]^{+}\right)$: 256.1000. Anal. Found: C, 84.11; H, 4.83; N, 11.51\%. Calcd for $\mathrm{C}_{18} \mathrm{H}_{12} \mathrm{~N}_{2}$ : C, 84.35; H, 4.72; $\mathrm{N}, 10.93$.

Thermal Reaction of fumaronitrile (3c): A $\mathrm{C}_{6} \mathrm{D}_{6}$ solution ( 0.75 mL ) of fumaronitrile ( $\mathbf{3 c}, 15.6 \mathrm{mg}$, 0.20 mmol ) was degassed and sealed in an NMR tube. After heating for 60 h at $120^{\circ} \mathrm{C}$, no change was observed by ${ }^{1} \mathrm{H}$ NMR spectrum.

Isomerization of fumaronitrile (3c) into maleonitrile (3d) in the presence of diphosphene $\mathbf{( B b t P}=\mathbf{P B b t}):$ A $\mathrm{C}_{6} \mathrm{D}_{6}$ solution $(0.6 \mathrm{~mL})$ of $\mathrm{BbtP}=\mathrm{PBbt}(6.6 \mathrm{mg}, 5.0 \mu \mathrm{~mol})$ and fumaronitrile ( $\mathbf{3 c}, 11.7$ $\mathrm{mg}, 0.150 \mathrm{mmol}$ ) was degassed and sealed in an NMR tube. After heating for 24 h at $120{ }^{\circ} \mathrm{C}$, fumaronitrile (3c) and maleonitirile ( $\mathbf{3 d}$ ) were observed in the ratio of $68: 32$ as judged by ${ }^{1} \mathrm{H}$ NMR spectrum.

Isomerization of maleonitrile (3d) into fumaronitrile (3c) in the presence of diphosphene ( $\mathbf{B b t P}=\mathbf{P B b t}$ ): $\mathrm{A} \mathrm{C}_{6} \mathrm{D}_{6}$ solution $(0.6 \mathrm{~mL})$ of $\mathrm{BbtP}=\mathrm{PBbt}(6.6 \mathrm{mg}, 5.0 \mu \mathrm{~mol})$ and maleonitrile ( $\mathbf{3 d}$, 12.6 $\mathrm{mg}, 0.161 \mathrm{mmol}$ ) was degassed and sealed in an NMR tube. After heating for 24 h at $120{ }^{\circ} \mathrm{C}$, fumaronitrile (3c) and maleonitirile (3d) were observed in the ratio of 14:86 as judged by ${ }^{1} \mathrm{H}$ NMR spectrum.

Thermal reactions of the maleimide adduct $\mathbf{4 b}$ in the presence of $\mathbf{2 0}$ equiv of maleic anhydride (3a): $\mathrm{A}_{6} \mathrm{D}_{6}$ solution $(0.7 \mathrm{~mL})$ of maleimide adduct $\mathbf{4 b}(7.4 \mathrm{mg}, 7.1 \mu \mathrm{~mol})$ and maleic anhydride (3a, $14.4 \mathrm{mg}, 0.147 \mathrm{mmol}$ ) as a trapping reagent for anthryldiphosphene $\mathbf{1 b}$ was degassed and sealed in an NMR tube. After heating for 48 h at $120^{\circ} \mathrm{C}$, no change was observed by ${ }^{1} \mathrm{H}$ NMR spectrum.

Thermal reactions of $[4+2]$ cycloadducts $4 \mathrm{a}, 4 \mathrm{c}$, and 4 d in the presence of $N$-phenylmaleimide: A $\mathrm{C}_{6} \mathrm{D}_{6}$ solution $(0.7 \mathrm{~mL})$ of $[4+2]$ cycloadduct $\mathbf{4}(7.2 \mu \mathrm{~mol})$ and $N$-phenylmaleimide ( $\mathbf{3 b}, 12.5 \mathrm{mg}, 72.2$ $\mu \mathrm{mol}$ ) was degassed and sealed in an NMR tube, and then heated for 24 h at $120^{\circ} \mathrm{C}$.

With maleic anhydride adduct $\mathbf{4 a}(6.9 \mathrm{mg})$, the signals for $\mathbf{4 a}$, maleimide adduct $\mathbf{4 b}$ generated from the $[4+2]$ cycloaddition of anthryldiphosphene $\mathbf{1 b}$ and $\mathbf{3 b}$, and the dissociated olefin $\mathbf{3 a}$ was observed in the ratio of $88 / 12 / 4(\mathbf{4 a} / \mathbf{4 b} / \mathbf{3 a})$.

With fumaronitrile adduct $\mathbf{4 c}(6.8 \mathrm{mg})$, the signals for $\mathbf{4 c}$, maleimide adduct $\mathbf{4 b}$, and the dissociated olefin $3 \mathbf{c}$ was observed in the ratio of $83 / 17 / 4(4 \mathbf{c} / \mathbf{4 b} / \mathbf{3 c})$.

With maleonitrile adduct $\mathbf{4 d}(6.8 \mathrm{mg})$, the signals for $\mathbf{4 d}$, maleimide adduct $\mathbf{4 b}$, and the dissociated olefin 3 d was observed in the ratio of $63 / 37 / 18(\mathbf{4 d} / \mathbf{4 b} / \mathbf{3 d})$.

X-Ray crystallographic analysis of $\mathbf{1 b}$ and $\mathbf{4 a - d}$ : The intensity data were collected with a Rigaku/MSC Mercury CCD diffractometer with graphite-monochromated Mo $K_{\alpha}$ radiation ( $\lambda=0.71070$ A) (for $\mathbf{1 b}, \mathbf{4 a}, \mathbf{4 b}$, and $\mathbf{4 d}$ ) or a Rigaku Saturn70 CCD system with VariMax Mo Optic using Mo $K_{\alpha}$ radiation ( $\lambda=0.71070 \AA$ ) (for $\mathbf{4 c}$ ) at a temperature of $103(2) \mathrm{K}$. The structures were solved by direct methods (SIR-97 ${ }^{\text {S11 }}$ or SHELXS-97 ${ }^{\text {S12 }}$ ) and refined by full-matrix least-squares procedures on $F^{2}$ for all reflections (SHELXL-97). ${ }^{\text {S13 }}$ All hydrogen atoms were placed using AFIX instructions, while all the other atoms were refined anisotropically. Additional crystal data and detail of the data collection and structure refinement are given in Table S1 and S2, and the molecular structures of [ $\mathbf{4 b} \cdot 3$ benzene], $\mathbf{4 c}$, and $[\mathbf{4 d} \cdot 1.5$ benzene] with thermal ellipsoid plot ( $50 \%$ probability) were shown in Figure S1-S3, respectively.

Table S1: Crystal Data for Compounds 1b, [ $\mathbf{4 a} \cdot 1.5$ benzene], and [ $\mathbf{4 b} \cdot 3$ benzene].

|  | 1b | [ $4 \mathrm{a} \cdot 1.5$ benzene] | [4b $\cdot 3$ benzene] |
| :---: | :---: | :---: | :---: |
| formula | $\mathrm{C}_{44} \mathrm{H}_{76} \mathrm{P}_{2} \mathrm{Si}_{7}$ | $\mathrm{C}_{57} \mathrm{H}_{87} \mathrm{O}_{3} \mathrm{P}_{2} \mathrm{Si}_{7}$ | $\mathrm{C}_{72} \mathrm{H}_{101} \mathrm{NO}_{2} \mathrm{P}_{2} \mathrm{Si}_{7}$ |
| Mw | 863.62 | 1078.84 | 1271.11 |
| crystal dimension ( $\mathrm{mm}^{-3}$ ) | $0.30 \times 0.10 \times 0.10$ | $0.25 \times 0.20 \times 0.10$ | $0.45 \times 0.30 \times 0.20$ |
| crystal system | triclinic | triclinic | tetragonal |
| space group | $P-1$ (\#2) | $P-1$ (\#2) | I-4 (\#82) |
| $a(\AA)$ | 12.3313(5) | 11.7476(3) | 34.142(12) |
| $b$ ( $\AA$ ) | 12.2910 (4) | 12.6699(3) | 34.142(12) |
| $c(\AA)$ | 19.5641(9) | $22.2004(7)$ | 12.635(4) |
| $\alpha\left({ }^{\circ}\right)$ | 72.6570(19) | 74.0631(12) | 90 |
| $\beta\left({ }^{\circ}\right)$ | 82.893(2) | 79.3447(14) | 90 |
| $\gamma\left({ }^{\circ}\right.$ | 63.6039(18) | 88.6068(15) | 90 |
| $V\left(\AA^{3}\right)$ | 2535.18(18) | 3121.32(15) | 14728(9) |
| Z | 2 | 2 | 8 |
| $\rho_{\text {calcd }}\left(\mathrm{g} \mathrm{cm}^{-3}\right)$ | 1.131 | 1.148 | 1.146 |
| $\mu\left(\mathrm{mm}^{-1}\right)$ | 0.280 | 0.243 | 0.215 |
| $2 \theta_{\text {max }}\left({ }^{\circ}\right)$ | 51 | 51 | 51 |
| no. of reflections | 17954 | 22309 | 62150 |
| no. of independent reflections | 9182 | 11366 | 13673 |
| no. of parameters | 499 | 643 | 778 |
| $\mathrm{R}_{\text {int }}$ | 0.0620 | 0.0639 | 0.0606 |
| $R_{1}[1>2 \sigma(I)]$ | 0.0511 | 0.0520 | 0.0843 |
| $w \mathrm{R}_{2}$ (all data) | 0.0893 | 0.0957 | 0.2332 |
| Residual electron density ( $\AA^{\circ}{ }^{3}$ ) | -0.317 and 0.314 | -0.476 and 0.703 | -0.478 and 0.813 |
| GOF | 1.010 | 1.036 | 1.074 |

Table S2: Crystal Data for Compounds $\mathbf{4 c}$, and [ $\mathbf{4 d} \cdot 1.5$ benzene $]$.

|  | $\mathbf{4 c}$ | $[\mathbf{4 d} \cdot 1.5$ benzene $]$ |
| :--- | :--- | :--- |
| formula | $\mathrm{C}_{48} \mathrm{H}_{78} \mathrm{~N}_{2} \mathrm{P}_{2} \mathrm{Si}_{7}$ | $\mathrm{C}_{57} \mathrm{H}_{8} \mathrm{~N}_{2} \mathrm{P}_{2} \mathrm{Si}_{7}$ |
| $M \mathrm{w}$ | 941.69 | 1058.86 |
| crystal dimension $\left(\mathrm{mm}^{-3}\right)$ | $0.20 \times 0.02 \times 0.01$ | $0.20 \times 0.20 \times 0.10$ |
| crystal system | triclinic | triclinic |
| space group | $P-1(\# 2)$ | $P-1(\# 2)$ |
| $a(\AA)$ | $9.0157(4)$ | $11.804(5)$ |
| $b(\AA)$ | $14.2460(7)$ | $12.676(6)$ |
| $c(\AA)$ | $23.6907(12)$ | $22.115(9)$ |
| $\alpha\left({ }^{\circ}\right)$ | $73.902(2)$ | $74.025(11)$ |
| $\beta\left({ }^{\circ}\right)$ | $82.098(3)$ | $79.207(11)$ |
| $\gamma\left({ }^{\circ}\right)$ | $71.202(4)$ | $88.701(11)$ |
| $V\left(\AA^{3}\right)$ | $2763.6(2)$ | $3123(2)$ |
| $Z$ | 2 | 2 |
| $\rho_{\text {calcd }}\left(\mathrm{g} \mathrm{cm}^{-3}\right)$ | 1.132 | 1.126 |
| $\mu\left(\mathrm{~mm}^{-1}\right)$ | 0.263 | 0.239 |
| $2 \theta_{\text {max }}\left({ }^{\circ}\right)$ | 51 | 51 |
| no. of reflections | 24412 | 27384 |
| no. of independent reflections | 10218 | 11509 |
| no. of parameters | 553 | 634 |
| $\mathrm{R}_{\text {int }}$ | 0.1072 | 0.0858 |
| $R_{1}[I>2 \sigma(I)]$ | 0.0628 | 0.0747 |
| $w \mathrm{R}_{2}($ all data $)$ | 0.1285 | 0.1502 |
| Residual electron density $\left(\mathrm{e} \AA^{3}\right)$ | -0.335 and 0.372 | -0.502 and 0.660 |
| GOF | 1.015 | 1.113 |



Figure S1. Molecular structure of [4b•3benzene] with thermal ellipsoid plot ( $50 \%$ probability). All hydrogen atoms and solvent molecules (benzene) are omitted for clarity. Selected bond length $[\AA]$ and angles [deg]: $\mathrm{P}(1)-\mathrm{P}(2)$ 2.022(2), $\mathrm{P}(1)-\mathrm{C}(1) 1.889(6), \mathrm{P}(2)-\mathrm{C}(25)$ 1.834(6), $\mathrm{C}(1)-\mathrm{P}(1)-\mathrm{P}(2)$ 101.58(18), $\mathrm{C}(25)-\mathrm{P}(2)-\mathrm{P}(1) 105.43(19)$.


Figure S2. Molecular structure of $\mathbf{4 c}$ with thermal ellipsoid plot ( $50 \%$ probability). All hydrogen atoms are omitted for clarity. Selected bond length $[\AA$ ] and angles [deg]: $\mathrm{P}(1)-\mathrm{P}(2) 2.0366(14), \mathrm{P}(1)-\mathrm{C}(1)$ $1.903(4), \mathrm{P}(2)-\mathrm{C}(19) 1.839(4), \mathrm{C}(1)-\mathrm{P}(1)-\mathrm{P}(2)$ 100.34(12), $\mathrm{C}(19)-\mathrm{P}(2)-\mathrm{P}(1) 103.25(12)$.


Figure S3. Molecular structure of [ $\mathbf{4 d} \cdot 1.5$ benzene] with thermal ellipsoid plot ( $50 \%$ probability). All hydrogen atoms and solvent molecules (benzene) are omitted for clarity. Selected bond length [ $\AA$ ] and angles [deg]: $\mathrm{P}(1)-\mathrm{P}(2)$ 2.0383(18), $\mathrm{P}(1)-\mathrm{C}(1)$ 1.896(4), $\mathrm{P}(2)-\mathrm{C}(19)$ 1.845(4), $\mathrm{C}(1)-\mathrm{P}(1)-\mathrm{P}(2)$ 103.17(15), $\mathrm{C}(19)-\mathrm{P}(2)-\mathrm{P}(1) 103.80(14)$.

## References:

(S1) Pangborn, A. B.; Giardello, M. A.; Grubbs, R. H.; Rosen, R. K.; Timmers, F. J. Organometallics 1996, $15,1518$.
(S2) Nagahora, N.; Sasamori, T.; Watanabe, Y.; Furukawa, Y.; Tokitoh, N. Bull. Chem. Soc. Jpn. 2007, 80, 1884.
(S3) Sasamori, T.; Tsurusaki, A.; Nagahora, N.; Matsuda, K.; Kanemitsu, Y.; Watanabe, Y.; Furukawa, Y.; Tokitoh, N. Chem. Lett. 2006, 35, 1382.
(S4) Linstead, R. P.; Whalley, M. J. Chem. Soc. 1952, 4839.
(S5) Sasamori, T.; Takeda, N.; Tokitoh, N. J. Phys. Org. Chem. 2003, 16, 450.
(S6) The coupling constants were decided by the Water Eliminated FT (WEFT) method.
(S7) The signals of $\mathbf{3 c}(\delta=4.18)$ and $\mathbf{3 d}(\delta=4.06)$ in $\mathrm{C}_{6} \mathrm{D}_{6}$ in ${ }^{1} \mathrm{H}$ NMR were identical to the corresponding signals ( $\mathbf{3 c}(\delta=6.27)$ and $\mathbf{3 d}(\delta=6.18)$ ) in $\mathrm{CDCl}_{3}$, respectively: see, Halter, R. J.; Fimmen, R. L.; McMahon, R. J.; Peebles, S. A.; Kuczkowski, R. L.; Stanton, J. F. J. Am. Chem. Soc. 2001, 123, 12353.
(S8) Weber, E.; Csöregh, I.; Ahrendt, J.; Finge, S.; Czugler, M. J. Org. Chem. 1988, 53, 5831.
(S9) Mowry, D. T. J. Am. Chem. Soc. 1947, 69, 573.
(S10) Arbuzov, B. A.; Vereshchagin, A. N. Izv. Akad. Nauk SSSR, Ser. Khim. 1966, 10, 1731.
(S11) Altomare, A.; Burla, M. C.; Camalli, M.; Cascarano, G. L.; Giacovazzo, C.; Guagliardi, A.; Moliterni, A. G. G.; Polidori, G.; Spagna, R. J. Appl. Cryst. 1999, 32, 115.
(S12) Sheldrick, G. M. Acta Crystallogr. Sect. A 1990, 46, 467.
(S13) Sheldrick, G. M. 1997 SHELX-97, Program for the Refinement of Crystal Structures; University of Göttingen, Göttingen, Germany.

