New Sources of Chemical Diversity Inspired by Biosynthesis: Rational Design of a Potent Epothilone Analogue

Jeffrey D. Frein,¹ Richard E. Taylor^{*,1} and Dan L. Sackett²

¹Department of Chemistry and Biochemistry and the Walther Cancer Research Center University of Notre Dame, 251 Nieuwland Science Hall Notre Dame, IN 46556-5670

²Laboratory of Integrated and Medical Biophysics, National Institute of Child Health and Human Development, National Institutes of Health, 9 Memorial Drive, Bethesda, MD 20892-0924

taylor.61@nd.edu

Experimental Details	1-15
Proton and ¹³ C NMR Spectra	16-37

General Information:

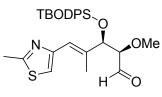
Unless otherwise noted, all materials were used as received from a commercial supplier without further purification. All anhydrous reactions were performed using oven-dried or flame dried glassware under nitrogen or argon. Tetrahydrofuran (THF), diethyl ether (Et₂O), dichloromethane (CH₂Cl₂), and toluene were filtered through activated alumina under nitrogen. Pentane and triethylamine (NEt₃) were dried over LiAlH₄ and CaH₂, respectively, and distilled prior to use. 4 Å molecular sieves were oven-dried overnight and cooled under high vacuum prior to use. Dimethylformamide (DMF) was purchased from Sigma Aldrich. Thionyl chloride (SOCl₂) was distilled prior All reactions were monitored by either E. Merck analytical thin layer to use. chromatography (TLC) plates (silica gel 60 GF, glass back) or Whatman UV active aluminum backed TLC plates (silica gel 250 µm) and analyzed with 254 nm UV light and/or *p*-anisaldehyde/sulfuric acid or potassium permanganate treatment. Silica gel for column chromatography was purchased from E. Merck (Silica Gel 60, 230-400 mesh). Biotage chromatography was performed using Flash 40+M, 25+M, 25+S, or 12+M KP-Sil[™] Silica Cartridges (32-63 µm, 60 Å, nominally 500 m²/g silica). All ¹H and ¹³C NMR spectra were obtained either on a Varian Unity Plus 300 spectrometer (operating at 299.701 MHz for ¹H and 75.367 MHz for ¹³C) or on a Varian INOVA 500 spectrometer (operating at 499.864 MHz for ¹H and 125.690 MHz for ¹³C) or on a Varian INOVA 600 spectrometer (operating at 599.879 MHz for ¹H and 150.839 MHz for ¹³C). Chemical shifts were reported as δ -values in parts per million (ppm) relative to residual CHCl₃ as internal reference (¹H: $\delta 7.27$, ¹³C: $\delta 77.23$) and coupling constants (*J*) were reported in Hertz (Hz). Peak multiplicities are indicated as follows: s (singlet), d (doublet), t (triplet), q (quartet), and b (broad). FTIR spectra were obtained on Perkin-Elmer Paragon 1000 spectrometer and absorption frequencies were reported in reciprocal centimenters (cm⁻¹). Mass spectra (CI/EI/FAB) were obtained at the Department of Chemistry and Biochemistry, University of Notre Dame using either JEOL AX505HA or JEOL JMS-GCmate mass spectrometer.

OH (4): To a stirred solution of allyl methyl ether (2.8 mL, 29.9 OMe mmol) in 100 mL of THF at -78 °C was added dropwise s-BuLi (1.0M in cyclohexane, 24 mL, 23.9 mmol). The solution was stirred at the same temperature for 0.5 h then a 1M solution of (+)-Ipc₂B(OMe) (7.6 g, 23.9 mmol) in THF was added dropwise. The reaction was left to stir at this temperature for 1 h After 1 h, BF₃•OEt₂ was added dropwise, followed by a solution the of 3^1 (4.0 g, 23.9 mmol) in 20 mL of THF and the reaction was left to stir at -78 °C for 12 h. The reaction was quenched by the addition of 3.0 M NaOH (10.4 mL) and H₂O₂ (30 % in H₂O, 4.5 mL, 31.1 mmol). The reaction was warmed to ambient temperature and stirred for 4 h. The solution was diluted with Et₂O and slowly added to a solution of sat. aq. NH₄Cl. The layers were separated and the aqueous layer was further extracted with $Et_2O(3x)$. The organic layers were combined and washed with sat. aq. NH₄Cl. The organic layer was dried over MgSO₄, filtered and concentrated under vacuum. The crude residue was purified with column chromatography using 1:1 EtOAc:Hexanes as eluent to afford 5.0 g (88%, Mosher's ester analysis revealed >99% ee) of 4, as a yellow oil. $R_f = 0.24$ (1:1 EtOAc:Hexanes); $[\alpha]_{D}^{20} + 15.8 \ (c = 1.0, \text{ CHCl}_3); {}^{1}\text{H NMR} \ (500 \text{ MHz}, \text{ CDCl}_3) \ \delta \ 6.95$

¹ Nicolaou, K. C., Ninkovic, S., Sarabia, F., Vourloumis, D., He, Y., Vallberg, H., Finlay, M. R. V., Yang, Z.; *J. Am. Chem. Soc.* **1997**, *119*, 7974-7991.

(1H, s), 6.54 (1H, s), 5.62 (1H, ddd, J = 7.8, 11.0, 16.6), 5.26 (1H, d, J = 16.6), 5.24 (1H, d, J = 10.8), 4.03 (1H, d, J = 7.8), 3.60 (1H, t, J = 7.8), 3.35 (3H, s), 3.05 (1H, bs), 2.70 (3H, s), 2.03 (3H, d, J = 1.4); ¹³C NMR (125 MHz, CDCl₃) δ 164.7, 152.9, 137.6, 134.5, 122.6, 120.0, 116.2, 85.4, 80.5, 56.9, 19.5, 14.9; IR (NaCl, neat) 3430, 2980, 2927, 2824, 1645, 1506 cm⁻¹; HRMS (FAB+) Calcd for C₁₂H₁₈NO₂S, 240.1058. Found 240.1062.

(E-1): To a solution of 4 (4.7 g, 19.5 mmol), NaHCO₃ (1.0 g), and 350 mL of CH_2Cl_2 at 0 °C was added portionwise Dess-

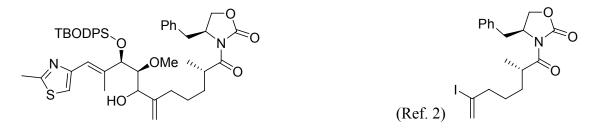

Martin periodinane (12.5 g, 29.5 mmol) over 30 min. The reaction was stirred at 0 °C for 6 h and then quenched by the slow addition a 1:1 solution of sat. aq. NaHCO₃/Na₂S₂O₃. The layers were separated and the aqueous layer was further extracted with CH₂Cl₂ (2x). The organic layers were combined, dried over MgSO₄, filtered and concentrated under vacuum. The crude residue was purified on column chromatography using 1:3 EtOAc:Hexanes as eluent to afford 4.4 g (95%) of **E-1**, as a yellow oil. $R_f = 0.44$ (1:1 EtOAc:Hexanes); $[\alpha]^{20}_{\ D}$ -2.9 (c = 1.0, CHCl₃); ¹H NMR (500 MHz, CDCl₃) δ 7.69 (1H, s), 7.37 (1H, s), 5.93 (1H, ddd, J = 6.2, 10.6, 17.1), 5.47 (1H, d, J = 17.3), 5.35 (1H, d, J = 10.4), 4.87 (1H, d, J = 6.6), 3.40 (3H, s), 2.76 (3H, s), 2.26 (3H,s); ¹³C NMR (125 MHz, CDCl₃) δ 199.4, 165.8, 151.9, 135.5, 134.1, 132.8, 122.4, 119.7, 85.3, 57.3, 19.6, 14.1; IR (NaCl, neat) 3097, 2985, 2928, 2824, 1732, 1671, 1445, 1201, 1134 cm⁻¹; HRMS (FAB+) Calcd for C₁₂H₁₆NO₂S, 238.0902. Found 238.0895.

The reaction was stirred at this temperature for 15 min., then NaBH₄ (0.7 g, 18.5 mmol) was added in small portions. The reaction was maintained at this temperature until complete (~6 h), then quenched with H₂O and allowed to reach ambient temperature. The layers were separated and the aqueous layer was further extracted with Et₂O (3x). The organic layers were combined and dried over MgSO₄. The organic layer was filtered and concentrated under vacuum. The residue was purified on column chromatography using 1:1 EtOAc:Hexanes as eluent to afford 3.9 g (96%, *dr*: 93:7, *ee*: 95%, Mosher's ester analysis) of **5**, as a yellow oil. R_f = 0.28 (1:1 EtOAc:Hexanes); $[\alpha]^{20}_{D}$ +10.1 (*c* = 1, CHCl₃); ¹H NMR (500 MHz, CDCl₃) δ 6.94 (1H, s), 6.58 (1H, s), 5.77 (1H, ddd, *J* = 7.8, 10.6, 18.2), 5.34 (1H, d, *J* = 10.8), 5.31 (1H, d, *J* = 17.9), 4.30 (1H, d, *J* = 4.6), 3.76 (1H, dd, *J* = 4.8, 7.8), 3.34 (3H, s), 2.71 (3H, s), 2.50 (1H, bs), 2.07 (3H, s); ¹³C NMR (125 MHz, CDCl₃) δ 164.7, 153.2, 138.1, 134.1, 120.5, 120.2, 116.0, 84.6, 78.0, 56.9, 19.5, 15.7; IR (NaCl, neat) 3400, 2982, 2927, 2823, 1644, 1506, 1188 cm⁻¹; HRMS (FAB+) Calcd for C₁₂H₁₈NO₂S, 240.1071. Found 240.1058.

TBODPS (E-2): To a solution of 5 (3.9 g, 16.2 mmol) in 100 mL of DMF at 0 °C was added imidazole (5.5 g, 81.0 mmol) and the reaction was stirred until homogenous. To the reaction was

added a solution of TBODPSCl (14.1 g, 48.6 mmol) in 20 mL of DMF dropwise over 30 minutes. The reaction was allowed to reach room temperature while stirring overnight.

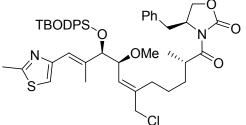
The reaction was quenched by the slow addition of sat. aq. NH₄Cl and was further diluted with Et₂O. The layers were separated and the aqueous layer was further extracted with Et₂O (4x). The organic layers were combined and washed successively with sat. aq. NH₄Cl (2x) and H₂O (2x). The organic layer was dried over MgSO₄, filtered and concentrated under vacuum. The crude oil was purified on column chromatography using 1:9 EtOAc:Hexanes to afford 7.9 g (98%) of **E-2**, as a clear oil. $R_f = 0.20$ (1:9 EtOAc:Hexanes); $[\alpha]^{20}_D$ -22.3 (c = 3.3, CHCl₃); ¹H NMR (500 MHz, CDCl₃) δ 7.63-7.66 (m, 4H), 7.25-7.41 (m, 6H), 6.76 (1H, s), 6.40 (1H, s), 5.74 (1H, ddd, J = 7.8, 10.6, 17.3), 5.26 (1H, d, J = 11.0), 5.23 (1H, d, J = 17.7), 4.34 (1H, d, J = 5.8), 3.65 (1H, dd, J = 6.0, 7.8), 3.21 (3H, s), 2.70 (3H, s), 1.95 (3H, d, J = 1.2), 1.25 (9H, s); ¹³C NMR (125 MHz, CDCl₃) δ 164.2, 153.3, 139.2, 136.3, 135.6, 135.6, 135.5, 135.5, 130.0, 129.8, 127.6, 127.5, 122.2, 119.3, 115.7, 85.5, 80.8, 74.1, 56.9, 32.1, 19.5, 15.3; IR (NaCl, neat) 3070, 3050, 2978, 2927, 2820, 1430, 1365, 1184, 1114, 1088, 1058 cm⁻¹; HRMS (FAB+) Calcd for C₂₈H₃₆O₃NSSi, 494.2185. Found 494.2158.



(6): To a solution of E-2 (8.0 g, 16.2 mmol) in 160 mL of *t*-BuOH, 160 mL of THF, and 27 mL of H_2O at 0 °C was added NMO (3.8 g, 32.4 mmol). The reaction was stirred until a

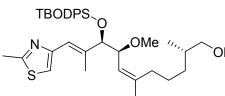
homogenous solution was achieved then OsO_4 (0.01 g, 0.4 mmol) was added and the reaction was allowed to reach ambient temperature while stirring overnight. The reaction was saturated with solid $Na_2S_2O_3$ and stirred for an additional 4 h. The reaction was diluted with EtOAc and brine and further extracted with EtOAc (3x). The organic layers

were combined and dried over MgSO₄. The slurry was filtered and the filtrate was concentrated under vacuum to yield the crude diol.


The crude diol was diluted with 320 mL of CH₂Cl₂ and cooled to 0 °C. To the chilled solution was added 3.0 g of NaHCO₃ (35.4 mmol) followed by portionwise addition of 7.9 g of Pb(OAc)₄ (17.7 mmol). The reaction was stirred at 0 °C for 1 h, then filtered through a glass frit funnel. The filtrate was diluted with sat. aq. NaHCO₃ and the layers were separated. The aqueous layer was further extracted with $Et_2O(3x)$. The organic layers were combined, dried over MgSO₄, and filtered. The filtrate was concentrated under vacuum and the residue was purified on column chromatography using 1:3 EtOAc: Hexanes as eluent to afford 5.6 g (70%) of 6, as a clear oil. $R_f = 0.51$ (1:1 EtOAc:Hexanes); $[\alpha]_{D}^{20}$ -30.1 (c = 9.9, CHCl₃). ¹H NMR (500 MHz, CDCl₃) δ 9.62 (1H, d, J = 3.0), 7.61 (4H, m), 7.26-7.42 (6H, m), 6.77 (1H, s), 6.45 (1H, s), 4.61 (1H, d, *J* = 6.0), 3.68 (1H, ddd, *J* = 2.8, 6.0), 3.34 (3H, s), 2.70 (3H, s), 1.97 (3H, s), 1.24 (9H, s); ¹³C NMR (125 MHz, CDCl₃) δ 164.6, 152.8, 137.1, 135.5, 135.4, 134.6, 134.6, 130.3, 130.2, 127.9, 127.7, 122.8, 116.6, 87.4, 78.2, 74.5, 58.9, 32.1, 19.5, 15.1; IR (NaCl, neat) 2975, 2929, 2829, 1736, 1430, 1184, 1115, 1058 cm⁻¹; HRMS (FAB+) Calcd for C₂₇H₃₄O₄NSSi, 496.1978. Found 496.1979.

(E-3): Under an inert atmosphere, 1.4 g of $CrCl_2$ (11.3 mmol) loaded with 1 mol% NiCl₂ was added to a flask. To this flask was added via cannula 20 mL of dry DMF:THF (3:1)

solution. The reaction was cooled to 0 °C and a solution containing 1.1 g of 6 (2.3 mmol) and 1.9 g of 7² (4.5 mmol) in 10 mL of dry DMF:THF (3:1) was added dropwise via cannula. After addition, the reaction was allowed to reach ambient temperature and continued to stir for additional 6 h. The reaction was diluted with Et₂O and sat. aq. NH₄Cl. The layers were separated and the aqueous layer was further extracted with Et₂O (3x). The organic layers were combined and dried over MgSO₄. The slurry was filtered and the filtrate was concentrated under reduced pressure. The crude residue was purified on column chromatography using 1:3 EtOAc:Hexanes as eluent to afford 1.4 g (78%, 3:1 dr) of E-3, as a clear semi-solid. $R_f = 0.56$ (1:1 EtOAc:Hexanes); ¹H NMR (500 MHz, CDCl₃, characteristic peaks for mixture of diastereomers) δ 7.61-7.68 (m), 7.20-7.42 (m), 6.77 (s), 6.72 (s), 6.45 (s), 5.13 (s), 5.06 (s), 4.92 (s), 4.89 (s), 4.65 (m), 4.58 (d, J = 5.0), 4.48 (d, J = 6.5), 4.30 (d, J = 4.0), 4.12-4.21 (m), 4.02 (d, J = 8.0), 3.72 (m), 3.35 (s), 3.32 (s), 3.22-3.34 (m), 2.78 (m), 2.69 (s), 1.90-2.21 (m), 2.0 (s), 1.91 (s), 1.75-1.81 (m), 1.36-1.50 (m), 1.24 (s), 1.23 (s), 1.22 (d, J = 7.0); ¹³C NMR (125 MHz, CDCl₃, characteristic peaks for mixture of diastereomers) δ 177.2, 177.1, 164.0, 153.1, 152.9, 149.5, 148.9, 138.9, 138.6, 135.4, 135.3, 135.2, 134.8, 134.7, 134.6, 134.5, 130.1, 130.0, 130.0, 129.8, 129.5, 128.9, 127.7, 127.6, 127.5, 127.4, 127.3, 122.6, 122.2, 115.6, 115.6, 111.8, 110.8, 85.4, 83.7, 80.4, 77.8, 75.4, 74.2, 74.1, 72.0, 66.0, 60.7, 60.2, 55.4, 37.9, 37.7, 37.6, 33.1, 32.5, 32.2, 31.8, 31.8, 25.4, 25.3, 19.2, 17.5, 17.4, 15.6; IR (NaCl, neat) 3513, 2975, 2930, 1781, 1698, 1388, 1122, 1056 cm⁻¹; HRMS (FAB+) Calcd for C₄₅H₅₇O₇N₂SSi, 796.3578. Found 796.3582.


² Taylor, R. E., Chen, Y. Org. Lett. 2001, 3, 2221.

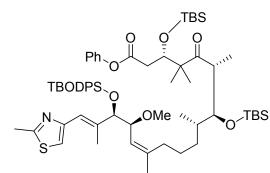
(8): To a solution of 1.1 g of E-3 (1.4 mmol) in
100 mL of Et₂O:pentane (1:3) at -78 °C was added
over 1 minute via cannula a precooled (-78 °C)
solution of 0.55 mL of freshly distilled SOCl₂ (7.0

mmol) in 40 mL Et₂O:pentane (1:3). The reaction was maintained at the same temperature for 2h then slowly warmed to room temperature over 5h. The reaction was recooled to -78 °C and 3.9 mL of NEt₃ (28.0 mmol) was added. The solution was diluted with sat. aq. NH₄Cl and Et₂O, warmed to room temperature and stirred for 1h. The layers were separated and the aqueous layer was further extracted with $Et_2O(3x)$. The organic layers were combined and dried over MgSO₄. The slurry was filtered and the filtrate was concentrated under vacuum. The residue was purified on column chromatography using 1:3 EtOAc:Hexanes as eluent to afford 0.9 g (80%) of 8, as a thick oil. $R_f = 0.59$ (1:1 EtOAc:Hexanes); $[\alpha]_{D}^{20} + 22.2$ (c = 0.67, CHCl₃). ¹H NMR (500 MHz, CDCl₃) δ 7.61 (4H, d, J = 6.5), 7.23-7.41 (10H, m), 7.20 (1H, d, J = 6.5), 6.80 (1H, s), 6.43 (1H, s), 5.40(1H, d, J = 9.5), 4.61 (1H, dddd, J = 3.0, 3.0, 6.0, 10.5), 4.36 (1H, d, J = 6.0), 4.12 (2H, J = 0.0), 4m), 3.99 (2H, m), 3.67 (1H, m), 3.24 (1H, dd, J = 3.0, 13.0), 3.16 (3H, s), 2.75 (1H, dd, J = 10.0, 13.5), 2.70 (3H, s), 2.17 (2H, m), 1.98 (3H, s), 1.72 (1H, m), 1.34-1.44 (4H, m), 1.22 (9H, s), 1.17 (3H, d, J = 3.9); ¹³C NMR (125 MHz, CDCl₃) δ 176.8, 164.0, 153.0, 152.9, 140.4, 138.8, 135.4, 135.3, 135.2, 135.2, 129.8, 129.6, 129.5, 129.4, 128.9, 127.4, 127.3, 127.3, 122.2, 115.6, 80.0, 78.9, 77.2, 73.9, 66.0, 56.4, 55.3, 49.3, 37.9, 37.5, 33.2, 31.9, 28.3, 25.6, 19.2, 17.5, 15.3; IR (NaCl, neat) 3069, 2972, 2927, 1780, 1698, 1386,

1114, 1056 cm⁻¹; HRMS (FAB+) Calcd for C₄₅H₅₆ClO₆N₂SSi, 815.3317. Found 815.3341.

(E-4): To a solution of 560 mg of 8 (0.68 mmol)
OH in 40 mL of THF at -78 °C was added over 40 minutes via a syringe pump 6.8 mL of LiHBEt₃

(1.0 M in THF, 3.4 mmol). After addition was complete, the reaction was maintained at this temperature for 2h then warmed slowly to room temperature over 4h. The solution was diluted with Et_2O , followed by the slow addition of sat. aq. NH_4Cl . The layers were separated and the aqueous layer was extracted with $Et_2O(3x)$. The organic layers were combined and washed with sat. aq. NH₄Cl. The organic layer was dried over MgSO₄, filtered and concentrated under vacuum. The residue was purified on column chromatography using 1:3 EtOAc:Hexanes as eluent to afford 355 mg (81%) of E-4, as a thick oil. $R_f = 0.50$ (1:1 EtOAc:Hexanes); $[\alpha]^{20}_D$ -12.1 (c = 1.8, CHCl₃); ¹H NMR (500 MHz, CDCl₃) & 7.66 (4H, m), 7.25-7.42 (6H, m), 6.79 (1H, s), 6.43 (1H, s), 5.10 (1H, d, J = 9.5), 4.36 (1H, d, J = 5.2), 3.99 (1H, dd, J = 5.3, 9.5), 3.42 (2H, dddd, J = 6.0, 6.0, 16.5, 16.5), 3.19 (3H, s), 2.72 (3H, s), 2.02 (2H, m), 1.98 (3H, s), 1.74 (3H, s), 1.28-1.58 (4H, m), 1.26 (9H, s), 1.03-1.10 (2H, m), 0.90 (3H, d, J = 6.5); ¹³C NMR (125 MHz, CDCl₃) 8 164.4, 153.3, 141.6, 140.0, 135.7, 135.6, 135.6, 135.5, 129.9, 129.8, 127.6, 127.5, 124.0, 121.8, 115.4, 80.5, 79.9, 74.1, 68.3, 56.4, 36.0, 33.4, 32.9, 32.1, 25.8, 23.9, 19.4, 16.8, 15.7; IR (NaCl, neat) 3367, 3069, 2974, 2928, 1430, 1366, 1185, 1114, 1056 cm⁻¹; HRMS (FAB+) Calcd for $C_{35}H_{50}O_4NSSi$, 608.3230. Found 608.3024.

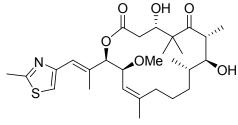

(12): To a solution of 3.7 g of N-Ts-D-Valine-H (12 mmol) in TMS 30 mL of CH_2Cl_2 at 0 °C was added 12.0 mL of BH_3 •THF (1.0M in THF, 12.0 mmol) dropwise over 10 minutes. The reaction mixture was stirred at 0 °C for 30 minutes, then warmed to room temperature and stirred for an additional 30 minutes. The solution was cooled to -78 °C, then 1.54 g of 2,2-dimethyl-3-oxo-pentanal³ (12.0 mmol) in 10 mL of CH₂Cl₂ was added slowly. After stirring for 5 minutes, a solution of 2.08 g of trimethyl-(1-phenoxy-vinyloxy)-silane⁴ (10.0 mmol) in 10 mL of CH₂Cl₂ was added dropwise over 10 minutes. The reaction was stirred at -78 °C for 2h and then quenched with sat. aq. NaHCO₃. The reaction was warmed to room temperature and stirred for an additional 30 minutes. The layers were separated and the aqueous layer was extracted with CH_2Cl_2 (3x). The organic layers were combined and dried over MgSO₄. The slurry was filtered, concentrated and purified on column chromatography using 1:2 Et₂O:Hexanes as eluent to afford 2.3 g (69%) of **12**, as a colorless oil. ^{1}H NMR (300 MHz, CDCl₃) δ 7.44-7.10 (5H, m), 4.53 (1H, dd, J = 3.0, 8.1), 2.74-2.52 (4H, m), 1.21 (3H, s), 1.18 (3H, s), 1.04 (3H, t, J = 7.2), 0.15 (9H, s); ¹³C NMR (75 MHz, CDCl₃) § 215.6, 170.8, 150.8, 129.6, 126.0, 121.7, 74.3, 52.3, 39.3, 32.4, 21.5, 20.8, 7.9, 0.6.

TBS (13): To a solution of 0.34 g of 12 (1.0 mmol) in 10 mL of CH_2Cl_2/THF (1:1) was added 0.4 mL of CF_3COOH and 0.04 mL of H_2O . The reaction was stirred at room temperature for 2h,

³ Inukai, T., Yoshizawa, R. J. Org. Chem. 1967, 32, 404-407.

⁴ Bieniek, A., Epsztajn, J., Kulikiewicz, K. K.; Syn. Commun. 2003, 33, 667-677.

then all the volatiles were removed completely under reduced pressure. The crude product was dissolved in 5 mL of CH₂Cl₂ and then 0.23 mL of 2,6-lutidine (2.0 mmol) followed by 0.42 mL of TBSOTf (1.2 mmol) were added dropwise. The reaction was stirred at room temperature for 1h, then the solvent was removed under reduced pressure and the residue was purified on column chromatography using 1:2 Et₂O:Hexanes as eluent to afford 0.34 g (91%) of **13**, as a colorless oil. $R_f = 0.37$ (1:10 EtOAc:Hexanes); $[\alpha]^{20}{}_{D}$ -18.9 (c = 2.0, THF); ¹H NMR (300 MHz, CDCl₃) δ 7.38 (2H, d, J = 7.5), 7.23 (1H, m), 7.09 (2H, d, J = 7.5), 4.58 (1H, dd, J = 3.6, 6.6), 2.74 (1H, dd, J = 4.2, 16.8), 2.50-2.60 (2H, m), 1.22 (3H, s), 1.18 (3H, s), 1.05 (3H, t, J = 7.2), 0.91 (9H, s), 0.12 (6H, s); ¹³C NMR (75 MHz, CDCl₃) δ 215.3, 170.8, 150.8, 129.6, 126.0, 121.7, 73.7, 52.8, 39.8, 32.0, 26.1, 21.4, 20.7, 18.3, 7.9, -4.1, -4.8; IR (NaCl, neat) 2932, 2857, 1759, 1702, 1593, 1493, 1472, 1089, 836, 777 cm⁻¹.


(E-5): To a solution of 310 mg of E-4 (0.51 mmol) and 210 mg of NaHCO₃ (2.6 mmol) in 20 mL of CH₂Cl₂ at 0 $^{\circ}$ C was added portionwise 300 mg of Dess-Martin periodinane (0.71 mmol). The reaction was

stirred at 0 °C for 3h then quenched with sat. aq. NaHCO₃. The layers were separated and the aqueous layer was further extracted with CH_2Cl_2 (3x). The organic layers were combined and dried over MgSO₄. The slurry was filtered and the filtrate was concentrated under vacuum. The crude residue was diluted with hexanes and filtered

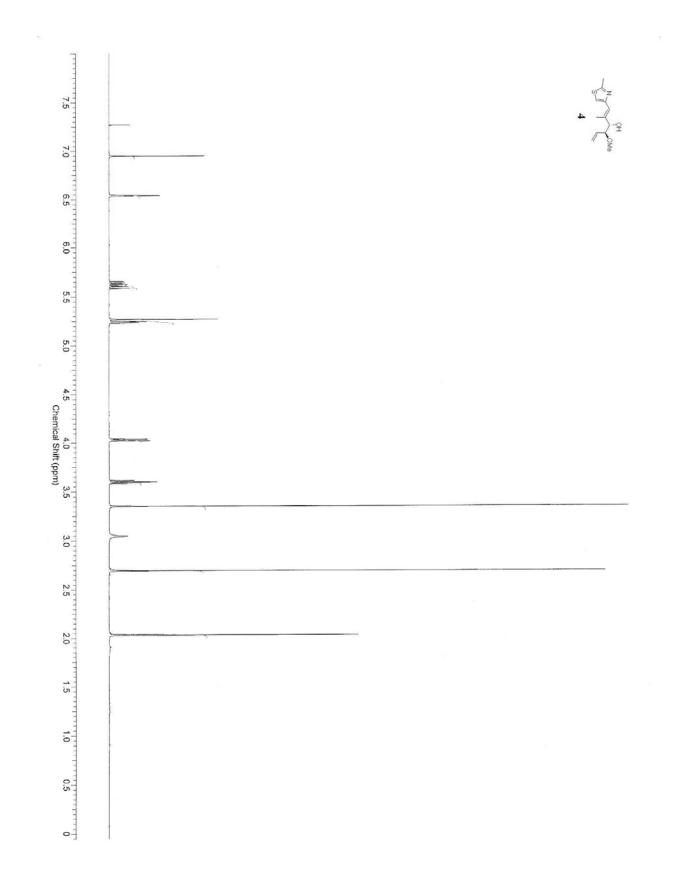
through a plug of Celite, using hexanes as eluent. The hexanes was then removed under vacuum to afford the relatively pure **9**, which was used without further purification.

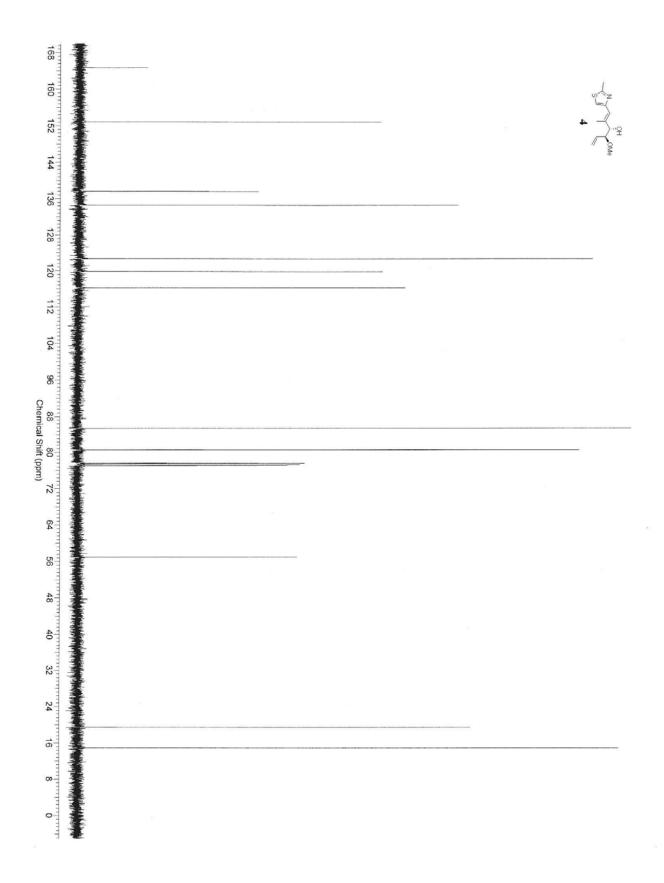
To a solution of 260 mg of **13** (0.7 mmol) in 15 mL of CH_2Cl_2 at -78 °C was added dropwise a 1M solution of TiCl₄ (0.74 mL, 0.74 mmol) in CH_2Cl_2 . The bright yellow-orange solution was stirred for 2 minutes, then 0.13 mL of $EtNiPr_2$ (0.74 mmol) was added and the dark red reaction was stirred at -78 °C for 1h. After 1h, a solution of 280 mg of **9** (0.46 mmol) in 5 mL of CH_2Cl_2 was added dropwise via cannula. The reaction was let to warm to -20 °C overnight (by placing the reaction in a -78 °C bath in a freezer at -20 °C and allowing to equilibrate) and was quenched with sat. aq. NH₄Cl. The layers were separated and the aqueous layer was further extracted with Et_2O (3x). The organic layers were combined and washed with sat. aq. NH₄Cl. The organic layer was dried over MgSO₄, filtered, and concentrated under vacuum. The crude residue was purified by column chromatography using 1:4 EtOAc:Hexanes as eluent to afford 360 mg (80%) of **14**, as a single diastereomer.

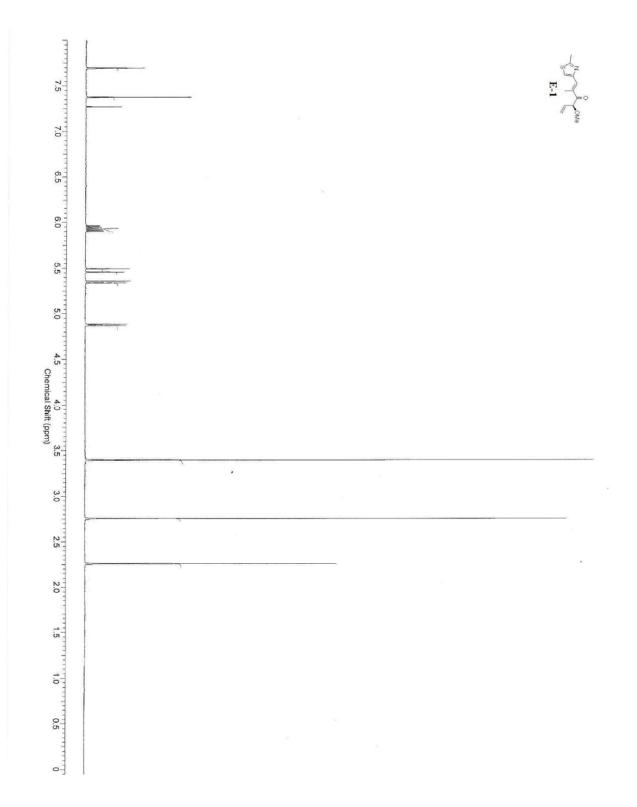
To a solution of 400 mg of **14** (0.41 mmol) in 15 mL of CH₂Cl₂ at 0 °C was added dropwise 0.3 mL of 2,6-lutidine (2.64 mmol) followed by 0.33 mL of TBSOTF (1.42 mmol). The reaction was stirred at 0 °C for 1h then warmed to room temperature and stirred for an additional 3h. The reaction was quenched by the addition of H₂O and extracted with Et₂O (3x). The combined organic layers were dried over MgSO₄, filtered and concentrated under vaccum. The crude oil was purified on column chromatography using 15% EtOAc:Hexanes to afford 430 mg (95%) of **E-5**, as a thick oil. R_f = 0.53 (1:3 EtOAc:Hexanes); $[\alpha]^{20}_{\text{D}}$ -17.2 (*c* = 2.7, CHCl₃); ¹H NMR (500 MHz, CDCl₃) δ 7.60-7.62 (4H, m), 7.20-7.39 (9H, m), 7.10 (2H, dd, *J* = 1.0, 8.0), 6.75 (1H, s), 6.38 (1H, s), 5.00 (1H, d, J = 9.5), 4.47 (1H, dd, J = 3.5, 6.0), 4.26 (1H, d, J = 6.5), 3.96 (1H, dd, J = 6.5, 9.5), 3.80 (1H, dd, J = 1.5, 6.5), 3.16 (1H, m), 3.15 (3H, s), 2.74 (1H, dd, J = 3.5, 16.5), 2.70 (3H, s), 2.53 (1H, dd, J = 6.0, 17.0), 2.08 (1H, m), 1.96 (3H, s), 1.89 (1H, m), 1.70 (3H, s), 1.31 (3H, s), 1.22 (9H, s), 1.13 (3H, s), 1.13-1.40 (5H, m), 1.09 (3H, d, J = 7.0), 0.92 (9H, s), 0.91 (9H, s), 0.89 (3H, d, J = 8.0), 0.11 (3H, s), 0.10 (3H, s), 0.10 (3H, s), 0.07 (3H, s); ¹³C NMR (125 MHz, CDCl₃) δ 222.1, 170.6, 163.9, 153.2, 150.7, 141.6, 139.4, 135.5, 135.4, 135.3, 135.3, 129.7, 129.5, 129.4, 127.3, 127.3, 125.8, 123.9, 121.9, 121.6, 121.5, 115.3, 80.6, 79.1, 77.6, 77.2, 73.8, 73.7, 56.1, 53.5, 45.3, 40.5, 38.7, 33.1, 31.8, 31.1, 26.4, 26.3, 26.1, 25.7, 23.7, 19.5, 19.2, 18.5, 18.2, 17.7, 15.5, 15.1, -3.6, -3.6, -4.2, -4.7; IR (NaCl, neat) 2955, 2930, 1762, 1692, 1472, 1365, 1253, 1195, 1113, 1058 cm⁻¹; HRMS (FAB+) Calcd for C₆₂H₉₆O₈NSSi₃, 1098.6165. Found 1098.6147.

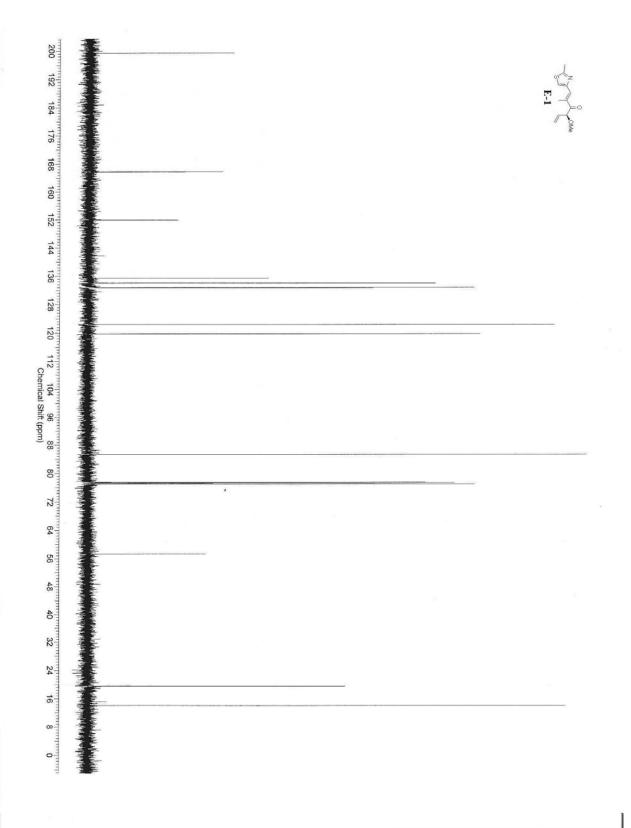
(2): To a solution of 280 mg of E-5 (0.26 mmol) and 2.1 g of NaHCO₃ (25.5 mmol) in 22 mL of THF at 0 °C was added dropwise 11 mL of a 30% H_2O_2 solution in H_2O . The reaction was allowed to

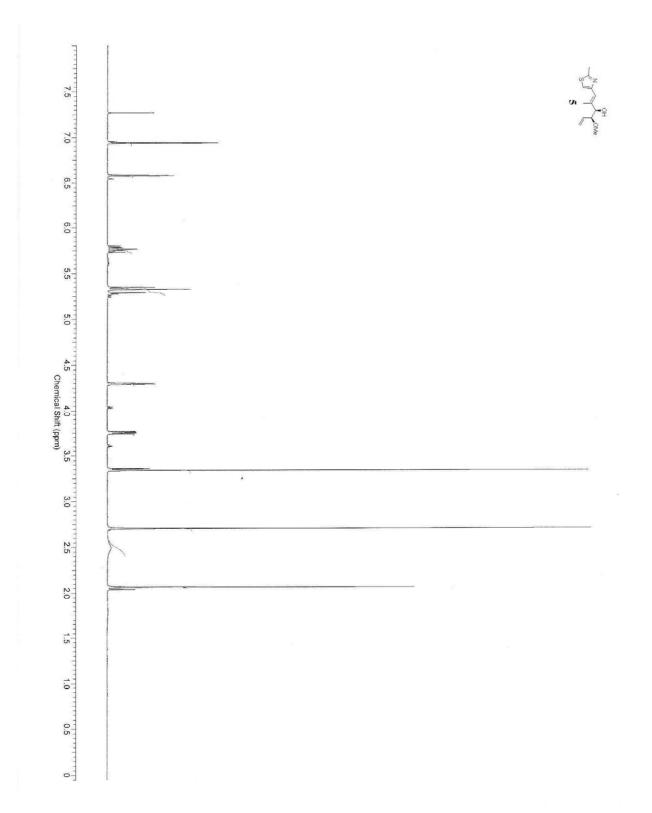
warm to room temperature while stirring overnight. The THF was removed in *vacuo* and the aqueous layer was acidified with 2M HCl to pH = 2. The aqueous layer was extracted with EtOAc (3x). The organic layers were combined and washed with brine. The organic layer was dried over MgSO₄, filtered and concentrated under vacuum. The crude product was purified on column chromatography using 1:4 Et₂O:Hexanes (with 2%


AcOH) to afford 30 mg of E-5 and 200 mg (85%, based upon recovered E-5) of E-6, as an oil.


The 200 mg of the **E-6** (0.20 mmol) was dissolved in 5 mL of THF. The reaction was cooled to 0 °C and 1.2 mL of TBAF (1M in THF, 1.2 mmol) was added dropwise. The reaction was allowed to reach room temperature over 3h and stirred for an additional 4h. The reaction was quenched with sat. aq. NaHCO₃ and extracted with Et₂O (4x). The combined organic layers were dried over MgSO₄, filtered and concentrated. The crude oil was purified on column chromatography using 2:1 Et₂O:Hexanes (with 4% AcOH) to afford 110 mg (75%) of **15**, as a foam.


To a solution of 70 mg of the **15** (0.091 mmol) in 20 mL of THF at 0 °C was added dropwise 0.15 mL of EtN*i*Pr₂ (0.82 mmol) followed 50 μ L of 2,4,6trichlorobenzoylchloride (0.27 mmol). The reaction was stirred at 0 °C for 1h, then diluted with 70 mL of THF. This mixture was added by syringe pump to a solution of 250 mg of DMAP (2.0 mmol) in 200 mL of toluene at 40 °C over 4h. After addition, the reaction was stirred at 40 °C for 12h, then concentrated to afford a white residue. The residue was dissolved in Et₂O and washed successively with 20% glacial AcOH, sat. aq. NaHCO₃, and sat. aq. NH₄Cl. The organic layer was dried over MgSO₄, filtered and concentrated. The crude product was purified on column chromatography using 1:9 EtOAc:Hexanes as eluent to afford 55 mg (81%) of **E-7**, as a foam.


To a solution of 50 mg of **E-7** (0.067 mmol) in 2 mL of THF at 0 °C was added 1 mL of HF•Pyridine (65% HF in pyridine). The reaction was warmed to room temperature over 2h and stirred for an additional 12h. The reaction was carefully poured into a solution of sat. aq. NaHCO₃ at 0 °C and then diluted with EtOAc. The layers were


separated and the aqueous layer was extracted with EtOAc (3x). The combined organic layers were washed with brine and dried over MgSO₄. The slurry was filtered and the filtrate was concentrated under vacuum. The crude product was purified on column chromatography using 1:9 *i*-PrOH:Hexanes as eluent to afford 30 mg (88%) of 2, as a white solid. $R_f = 0.26$ (1:1 EtOAc:Hexanes); $[\alpha]_{D}^{20} - 101.8$ (c = 0.2, CHCl₃); ¹H NMR (600 MHz, CDCl₃) δ 6.98 (1H, s), 6.60 (1H, s), 5.03 (1H, d, J = 9.6), 5.00 (1H, d, J = 9.6) 9.0), 4.28 (1H, d, J = 10.8), 4.10 (1H, dd, J = 9.6, 9.6), 3.79 (1H, bs), 3.69 (1H, d, J =3.6), 3.19 (3H, s), 3.14 (1H, bs), 3.13 (1H, dt, J = 6.6, 6.6, 1.2), 2.68 (3H, s), 2.46 (1H, m), 2.41 (1H, dd, J = 11.4, 13.8), 2.18 (1H, dd, J = 3.0, 13.8), 2.11 (3H, s), 1.96 (1H, m), 1.77 (1H, m), 1.74 (3H, s), 1.71 (1H, m), 1.34 (3H, s), 1.24-1.33 (3H, m), 1.18 (3H, d, J = 6.6), 1.05 (3H, s), 1.01 (3H, d, J = 7.2); ¹³C NMR (150 MHz, CDCl₃) δ 220.9, 169.7, 165.1, 151.9, 143.3, 139.8, 124.1, 121.0, 115.9, 79.8, 77.9, 73.9, 72.1, 55. 9, 53.7, 41.2, 39.7, 38.7, 32.2, 31.9, 25.3, 23.2, 22.9, 19.0, 17.4, 17.1, 15.6, 13.2; IR (NaCl, neat) 3460, 2963, 2924, 2854, 1738, 1682, 1455, 1378, 1260, 1091, 1017 cm⁻¹; HRMS (FAB+) Calcd for C₂₈H₄₄O₆NS, 522.2889. Found 522.29114.

