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1 Point groupsfor 6T and 5T

In Figure 1a we show two aromatic molecules (6T and 5T) wigmeand odd number of thiophene
cores and the corresponding symmetry operations, whidsfwsem the molecule into itself. For
two-dimensional rectangular lattice, like the one encligshT and 5T molecules, the possible
symmetry operations are mirror-reflections across linaeptexl bym. For 6T molecule, we can

write the following symmetry operations which leave onenpoinmoved
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Their productmymym, = -1 , acting on a vector, results in the total inversion sym-

-1
metry. For 5T molecule the point group is different, conitagrnthe operators

my = 1 , my= -1 . =mmy= -1 . (2)
-1 1 1

These symmetry operations leave veeter(x, 0, 0) invariant, which is not the case for 6T molecules.

This result can be generalized to even and odd number oftteimpand benzene rings.

2 Conformal mapping
Let us consider a spheroid, which is a surface of revolutieergby the following parametrization
x(u,v) = (asinvcosu, asinvsinu, ccosv), o<v<m 0<u<?2nm, 3)
with semiaxeg anda (see Figure 1d). Then, the metric of spheroid is given by
ds? = (acoSv+ c?sirfv) dv2 4 a2 sirfvdu?. (4)

The mapping of spheroids onto a sphere with metist = R2(d62 + sirPd¢?) is said to be

conformal if we can write

ds? = 2 Wds2, (5)

wheree? (V) is called the conformal factor, which varies with position= {u,v} on spheroid.

Because of the rotational symmetry= ¢ and conformal factor depends only on parametdsy
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equating two metrics we find that

RZsir? 6 de / c?
Al 227 7 7 2y =
air?y’ Sind +dv4/cotv+ 5 (6)

By integrating both sides of the second equality we get

0 v/ —1+n2cotv
log( tan= | =g(v) = —+/—1+ n2arctan —log(cotv++/n2+cotv), (7
g( 2) g(v)=-v-1+n < 7 ooty ) g(cotv++/n ). (7)

wherg n = c/a| Substituting si® = 2tan(8/2)/(1+tar? 8/2) into Eq. (6) we find the analytical

expression for the conformal factor

R?

V) —
¢ a2sirfv coslfg(v)’

(8)

and the limit of interest

lim A (v) :Iogg—\/—l+ n2arctany/ —1+n2. 9)

v—0

3 Freeenergy

3.1 Contribution from defects

The pair Green function for topological defects on deforraplere can be defined similar as for
superfluids in referenée
Zij 1

r(xi’xj):_%TlogF+ET()\(Xi>+)\(Xj))7 (20)

where Z;j is the distance between two defects on the sphere (the cletreén two points!) and
d is the core size of the defe@tThis representation of the Green function already incluuizh

the interaction between defects (first term) and the pasdependent self-energy of defect. In the
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case of two topological defects on sphere with topologibakgeq; = qj = +1, the minimum of
Faefect= 411K a0iq il (xi,Xj) corresponds to the defects located at the nr{ta= 0) and the south
S(v= m) poles (see Figure 1d). It gives; = 2R, and together with Egs. (9) and (10) we find the
Green function

(0, n):—%TOogzd—a—i- —1+n2arctam/—l+n2), (11)

and consequently an analytical expressionRk.c: In Figure Figure 1 below we plot the Green
functionT (O, 1) and the Gaussian curvatufeas the function of). As was expected, the Green
function decreases witip, while the Gaussian curvature is increasing, resultingpénore nega-

tive I (0, 1) and thusFgetectfor higherK, which is in agreement with a theofy.
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Figure 1: (a) The Green functidi(0, 1) given by Eq. (11). For this plot we choose the equilibrium
radius of the vesicl&® = 100 nm and the size of the code= 3.5 Aas the equilibrium distance
between thiophene cores. (b) The Gaussian curvéturec®/a* = n?/a? calculated at the poles,
assuming the condition of constant surface (Eg. 16).

3.2 Bending energy

The bending energy proposed by HelfricR is written as

Foena= 2K / / dSH?, (12)
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whereH is the mean curvature and the integral is over the sui$a&er spheroids (Eq. 3)

dS= asinvv/a2co@v + c2sirfvdudy, (13)
1 c/a ac

H=3 : 14
2 <\/azco§v+ czsin2v+ (a?cogv+ czsinzv)3/2> (14)

After some calculations, the integral in Eq. (12) can be $iied to the following form

tanhl/1—-n2 2 1 2
=26 YT o (1) ) (15)

This energy term does not depend on the size of the vesigfearthe dimensionless parameter

However, the Green function in Eq. (11) depends on the atsseélue of the distance between the

defects, therefore in all our calculations we assumed thditon of constant surface of spheroid

—1 Y
S:2n.a2(1+r’2tanh \/12 r’

\/ﬁ ) = const (16)

yielding constant density of the molecules.

4 Estimateof theratio of Ka/k

We assume that for aromatic molecules this value is mainigrdened by the long-rangen-

TT interactions between aromatic rings, and not by extrinffiece (e.g. solvent) as discussed
in® for thiophene oligomers. Therefore, we propose to estirtiaeratio Ka/k by using the
results of quantum chemistry calculations for the bindingrgy of thiophene dimers with dif-
ferent relative orientation$.The basic idea is to associate the energy of the splay coafigur
tion of two N-thiophene molecules with the value of the bending rigiditysee Figure Fig-
ure 2b below), and the value of hexatic constéptwith the rotation around the long axes of
the molecule (see Figure Figure 2c below). Then, based ooallcelated interaction energy for

different geometries of thiophene dimers (configuratidnss, H of Figure 2, Table 2 of refer-
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ence) we findk 0 Eqotal(G) — Etotal(A) = —2.05— (—1.32) = —0.73 kcal/mol~ 5-10-2! J and
Ka O Egotal(H) — Etotal(A) = —2.28— (—1.32) = —0.96 kcal/mol, yieldingKa/k ~ 1.3.
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Figure 2: (a) Flat plaquettes, described by unit vectpandm;, which are normal and tangent
vectors to the surface respectively. (b) The splay conftgaraof two plaquettes with the angle
@ defined as cop = (m1,my). (c) The rotation around the long axes of two plaquettes thi¢h
angley defined as cog = (n1,ny).
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