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1 Point groups for 6T and 5T

In Figure 1a we show two aromatic molecules (6T and 5T) with even and odd number of thiophene

cores and the corresponding symmetry operations, which transform the molecule into itself. For

two-dimensional rectangular lattice, like the one enclosing 6T and 5T molecules, the possible

symmetry operations are mirror-reflections across line, denoted bym. For 6T molecule, we can

write the following symmetry operations which leave one point unmoved1
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Their productmxmymz =
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, acting on a vector, results in the total inversion sym-

metry. For 5T molecule the point group is different, containing the operators
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These symmetry operations leave vectorv =(x,0,0) invariant, which is not the case for 6T molecules.

This result can be generalized to even and odd number of thiophene and benzene rings.

2 Conformal mapping

Let us consider a spheroid, which is a surface of revolution given by the following parametrization

x(u,v) =
(

asinvcosu, asinvsinu, ccosv
)

, 0≤ v ≤ π, 0≤ u ≤ 2π, (3)

with semiaxesc anda (see Figure 1d). Then, the metric of spheroid is given by

ds2
1 = (a2cos2v+ c2sin2v)dv2+a2sin2vdu2. (4)

The mapping of spheroids onto a sphere with metricds2 = R2(dθ2 + sin2θ dφ2) is said to be

conformal if we can write

ds2 = e2λ (u)ds2
1, (5)

wheree2λ (u) is called the conformal factor, which varies with positionu = {u,v} on spheroid.

Because of the rotational symmetryu = φ and conformal factor depends only on parameterv. By
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equating two metrics we find that

e2λ (v) =
R2sin2 θ
a2sin2 v

,
dθ

sinθ
= ±dv

√

cot2v+
c2

a2 . (6)

By integrating both sides of the second equality we get

log
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tan
θ
2

)

= g(v)≡−
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√
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)

− log
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cotv+
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)

, (7)

where η = c/a . Substituting sinθ = 2tan(θ/2)/(1+ tan2 θ/2) into Eq. (6) we find the analytical

expression for the conformal factor

e2λ (v) =
R2

a2sin2v cosh2g(v)
, (8)

and the limit of interest

lim
v→0

λ (v) = log
R
a
−
√

−1+η2 arctan
√

−1+η2. (9)

3 Free energy

3.1 Contribution from defects

The pair Green function for topological defects on deformedsphere can be defined similar as for

superfluids in reference2

Γ(xi,x j) = −
1

2π
log

Di j

d
+

1
4π
(

λ (xi)+λ (x j)
)

, (10)

whereDi j is the distance between two defects on the sphere (the chord between two points!) and

d is the core size of the defect.3 This representation of the Green function already includesboth

the interaction between defects (first term) and the position dependent self-energy of defect. In the
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case of two topological defects on sphere with topological chargeqi = q j = +1, the minimum of

Fdefect= 4π2KAqiq jΓ(xi,x j) corresponds to the defects located at the northN (v = 0) and the south

S (v = π) poles (see Figure 1d). It givesDi j = 2R, and together with Eqs. (9) and (10) we find the

Green function

Γ(0,π) = −
1

2π

(

log
2a
d

+
√

−1+η2 arctan
√

−1+η2

)

, (11)

and consequently an analytical expression forFdefect. In Figure Figure 1 below we plot the Green

functionΓ(0,π) and the Gaussian curvatureK as the function ofη. As was expected, the Green

function decreases withη, while the Gaussian curvature is increasing, resulting in the more nega-

tive Γ(0,π) and thusFdefectfor higherK, which is in agreement with a theory.4
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Figure 1: (a) The Green functionΓ(0,π) given by Eq. (11). For this plot we choose the equilibrium
radius of the vesicleR = 100 nm and the size of the cored = 3.5 Åas the equilibrium distance
between thiophene cores. (b) The Gaussian curvatureK = c2/a4 = η2/a2 calculated at the poles,
assuming the condition of constant surface (Eq. 16).

3.2 Bending energy

The bending energy proposed by Helfrich in5 is written as

Fbend= 2k
∫∫

dSH2, (12)
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whereH is the mean curvature and the integral is over the surfaceS. For spheroids (Eq. 3)

dS = asinv
√

a2cos2 v+ c2sin2 vdudv, (13)

H =
1
2

(

c/a
√

a2cos2 v+ c2sin2 v
+

ac

(a2cos2 v+ c2sin2 v)3/2

)

. (14)

After some calculations, the integral in Eq. (12) can be simplified to the following form

Fbend= 2kπη2
{

tanh−1
√

1−η2
√

1−η2
+

2
η2 +

1
3η2

(

1+
2

η2

)}

. (15)

This energy term does not depend on the size of the vesicle only on the dimensionless parameterη.

However, the Green function in Eq. (11) depends on the absolute value of the distance between the

defects, therefore in all our calculations we assumed the condition of constant surface of spheroid

S = 2πa2
(

1+η2 tanh−1
√

1−η2
√

1−η2

)

= const, (16)

yielding constant density of the molecules.

4 Estimate of the ratio of KA/k

We assume that for aromatic molecules this value is mainly determined by the long-rangedπ-

π interactions between aromatic rings, and not by extrinsic effect (e.g. solvent) as discussed

in6 for thiophene oligomers. Therefore, we propose to estimatethe ratio KA/k by using the

results of quantum chemistry calculations for the binding energy of thiophene dimers with dif-

ferent relative orientations.7 The basic idea is to associate the energy of the splay configura-

tion of two N-thiophene molecules with the value of the bending rigidityk (see Figure Fig-

ure 2b below), and the value of hexatic constantKA with the rotation around the long axes of

the molecule (see Figure Figure 2c below). Then, based on thecalculated interaction energy for

different geometries of thiophene dimers (configurationsA, G, H of Figure 2, Table 2 of refer-
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ence7) we find k ∝ Etotal(G)−Etotal(A) = −2.05− (−1.32) = −0.73 kcal/mol≈ 5 ·10−21 J and

KA ∝ Etotal(H)−Etotal(A) = −2.28− (−1.32) = −0.96 kcal/mol, yieldingKA/k ≈ 1.3.

Figure 2: (a) Flat plaquettes, described by unit vectorsni andmi, which are normal and tangent
vectors to the surface respectively. (b) The splay configuration of two plaquettes with the angle
φ defined as cosφ = (m1,m2). (c) The rotation around the long axes of two plaquettes withthe
angleψ defined as cosψ = (n1,n2).
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