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Nanocrystal Growth Rate

Figure S-1 shows three plots of the dimensional instantaneous growth rate (GR) as a function of

crystal radius. Panel A displays the growth rate calculated for different values of the Damköhler

number ranging from 0.001 to 1000 with S=100 and γ = 0.2Jm−2. We see that as ξ is decreased

within this range, the GR increases over several orders of magnitude. At ξ = 1000, growth is

reaction limited and the GR varies with radius only for the smallest crystal sizes. Within the

framework of the imposed conditions at ξ = 0.01 the GR has reached the diffusion limit. Further

decreases to ξ have little effect on the magnitude of the rate. At low values of ξ the rate of crystal
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growth is highly sensitive to its radius. It should be noted that changing the ratio of diffusion to

reaction limited growth has no effect on the size of the crystals with a zero growth rate.
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Figure S-1: Effects of ξ (A), S (B) and γ (C) on the instantaneous growth rate. The above growth rates were
simulated using the following constants: Vm = 3.29× 10−5 m3mol−1, D = 1× 10−11 m2s−1, T = 500 K, [C]0∞ =
0.1 molm−3.

In Panel B we set γ = 0.2 Jm−2 and ξ = 1 and varied the supersaturation, S, from 2 to 200.

As expected, increasing S increases the GR. By increasing S we increase the flux of monomer

toward the particle surface. Hence, for intermediate values of ξ , where the GR is still reasonably

sensitive to changes in the concentration gradient across the diffusion sphere, we see a change in

the functional form of the GR from a reaction to a diffusion limited type profile upon increasing S.

Furthermore, increasing S increases the range of crystals with a positive GR.

In Panel C we vary γ for a constant value of S and ξ . Increasing γ from 0.075 Jm−2 to 1

Jm−2 the radius of the crystals with a ZGR increases from c.a 0.25 nm to 2.2 nm, which defines the

smallest achievable NCs. Through the exponential term, γ has a massive effect on the instantaneous

[C]e for the crystals. Similar to the trends observed for increasing S, a drastic reduction to [C]e at

low γ materialises by increasing the driving force for growth across all crystal sizes. It is important

to note that the sensitivity of the functional form of the GR to changes in either S or γ is evident

only at intermediate values of ξ , with this sensitivity diminishing in either the reaction or diffusion

limits.
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Nanocrystal Nucleation Rate
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Figure S-2: (A) Nucleation rate and the corresponding p value in solution as a function of supersaturation with
T = 573K, u = 0.46, rm = 1.87× 10−10m, D = 1× 10−10m−2s−1, [C]0∞ = 1× 10−3molm−3 and γ = 0.6Jm−2. (B)
and (C) Nucleation rates as a function of supersaturation for varying values of γ (T = 573K) and T (γ = 0.6Jm−2)
respectively.

Figure S-2A is plot of the number of monomer units in the critical cluster and the corresponding

nucleation rate as a function of S. We see that at low supersaturations a small increase in S results

in a dramatic reduction to p. As S is further increased p decreases monotonically and at S ∼ 100

the nucleation rate begins to increase in magnitude. The arrows indicate a nucleation rate of 5

µMs−1, which corresponds to a supersaturation of ∼8300 (8.3 molm−3)1 and a p value of ∼32.

The sensitivity of Rnuc to S and γ is best viewed in Panel B, which shows the nucleation rate as a
1Typical monomer concentrations in the range 20-60 molm−3 are employed for nanocrystal synthesis.

S-3



function of S for different values of γ . For a surface energy of 0.2 Jm−2 increasing S from 2 to 200

results in an increase in the number of nucleated particles per cubic metre per second from 3×108

to 2×1025. The responsiveness of Rnuc to S drops as γ is increased. By raising γ from 0.2 Jm−2 to

1 Jm−2 the onset of nucleation requires an S value of c.a 418 compared to 1.7. Panel C displays a

plot of the nucleation rate as a function of S at different reaction temperatures (γ=0.6 Jm−2). As T

is decreased from 573 K to 373 K Rnuc drops off significantly. A solution with an S value of 215 at

373 K will nucleate ∼10 particles per metre cubed per second compared with 6× 1018 at 573 K.

Under standard laboratory conditions a supersaturation of 2000 would be required to nucleate just

one single particle per second per cubic metre.

Effects of initial stationary distribution function

Here we evaluate the effects of the initial distribution function (g(r)) on the evolution of NCs

over time under various reaction conditions. Both test simulations were conducted in the reaction

limit ξ = 1× 106 as appropriate to the nucleation and growth of NCs. Three different initial

distributions were trialed under otherwise identical reaction conditions, namely: A distribution

where the number of particles continually increases below the critical radius (A), a negatively

skewed distribution (B) and a Gaussian distribution (C). From inspection of Figure S-3 it can

be seen that despite the form of the initial stationary distribution (t = 0) after 250 ms all the

distributions begin to appear Gaussian in nature. By t = 3s all the distributions have converged

and are almost indistinguishable. Notably ∼ 3 s is approximately the time taken for injection and

mixing in typical hot injection protocols. It is also evident from the distributions at t = 3s that the

mean radius and particle number ([NCs]) have also converged to similar values. Furthermore, from

comparison of Test Simulations 1 and 2 we see that the insensitivity of the simulation outcome to

the choice of distribution function is preserved for different supersaturations and surface energies.

In summary, these simulations have shown that regardless of form of the initial distribution function

(and reaction conditions) the distributions converge to Gaussian-type within the injection/mixing

time of hot injection protocols.
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Test Simulation 2: gamma=1.0 Jm-2 , S=3000, Eta=1e6.

Test Simulation 1: gamma= 0.5 Jm-2, S=500, Eta=1e6.

Figure S-3: Test simulations highlighting the insensitivity of a given simulation to the choice of initial distribution
function. The distributions used are: A distribution where the number of particles continually increases below the
critical radius (A-dashed line), a negatively skewed distribution (B-solid line) and a Gaussian distribution (C-dotted
line).

Flux Limiter Functions

In this section we present the results of test simulations using various flux limiter functions applied

to the advection of both Gaussian and step-functions. The limiter functions Ψ(χ) used are given

by:

Ψ(χ) =
χ + |χ|
1+ χ

VanLeer(χ) , (1)
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Ψ(χ) =
(χ + χ2)
(1+ χ2)

VanAlbada(χ) , (2)

Ψ(χ) = Max{0,Min[1,2χ]} MinMod(χ) , (3)

Ψ(χ) = Max{0,Min[2χ,1],Min[χ,2]} Superbee(χ) . (4)

Prior to the implementation of a numeric scheme it is vital to test its stability and accuracy. This

not only ensures that the written code is stable but also gives valuable information regarding the

extent of total error associated with the implemented scheme due to round-off and truncation

errors.2 In order to test these properties we apply the flux limiting scheme to the linear convection

of a square wave with the velocity component (growth rate) constant over all space. The sharp

edges of the square wave test how well the scheme deals with sudden gradient changes. Figure S-

4 shows the the results of the linear convection of a square wave after 1× 105 itterations using

the different flux limiters outlined above. For reference the top left panel show the extent of

convection. We see that the first-order and second-order schemes results in either a large amount

of numerical (false) diffusion or the creation of unreal oscillations respectively. Such diffusivity

and oscillations are typical of low order and flux unlimited schemes and highlight their inability to

cope with sudden gradient changes. Fortunately, through the use of limiters this problem is quickly

corrected. In all the cases where the limiters were used the results show excellent preservation of

the functional form of the square wave. However, as each limiter functions slightly differently

some limiters are better than others at preserving the form of the wave. Figure S-5 shows the same

test simulations where the square wave is replaced by a Gaussian, which is more appropriate for

the case of modelling nanocrystal growth. From the results obtained by first-order upstreaming
2Round-off error is introduced through the omission of significant figures and is accociated with the computer

numbering system. Truncation error is caused by the omission of higher order terms in the Taylor expansion of the
integrals that are approximated by finite differencing.
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Figure S-4: Translation of a step function using various flux limiters. For reference the first-order and second-order
upstream scheme with no limiter is shown (top right). 200 points 100000 time steps

(top right) we see that although the analytical and numerical positions of the maxima are almost

identical the final profile has artificially broadened. This is important to avoid in the modelling of

nanocrystals where interpretation of the results of a given simulation relies heavily on the FWHM

of the distribution. The remaining four panels show the results obtained from the four limiters.

Both the Van Leer and Van Albada limiters return much the same result. The MinMod limiter

acts strongly on the scheme when the gradient drops below a certain value. Thus the data is seen

to quickly flatten out around the peak of the Gaussian where 2χ < 1. Although the Superbee

limiter copes excellently with sharp gradients, as seen in Figure S-4, it perhaps deals too well
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Figure S-5: Translation of a Gaussian function using various flux limiters. For reference the first-order upstream
scheme with no limiter is shown (top right). 200 points 100000 time steps

when operating on smoother profiles. Through the use of all the limiters (except perhaps for the

MinMod limiter), the position of the maximum value of the Gaussian is preserved as is its FWHM

and amplitude. From analysis of the information presented in Figure S-4 and Figure S-5 we may

now implement the scheme with confidence in the obtained values. Given its low diffusivity and

ability to cope well with smooth profiles the Van Leer limiter was chosen for the simulations of

NC formation and growth.
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Flow-chart of Program

Figure S-6: Flow-chart showing the basic order of the computer program employed to solve the population balance
equation.
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