Elucidation of the Structure of A Highly Active

Catalytic System for $\mathrm{CO}_{2} /$ Epoxide Copolymerization: A Salen-Cobaltate Complex of An Unusual Binding Mode

Sung Jae Na, ${ }^{a}$ Sujith S, ${ }^{a}$ Anish Cyriac, ${ }^{a}$ Bo Eun Kim, ${ }^{a}$ Jina Yoo, ${ }^{a}$ Youn K. Kang, ${ }^{b}$ Su Jung Han, ${ }^{\text {c }}$ Chongmok Lee, ${ }^{c}$ and Bun Yeoul Lee ${ }^{* a}$
${ }^{a}$ Department of Molecular Science and Technology, Ajou University, Suwon 443-749 Korea; ${ }^{\mathrm{b}}$ Division of Chemistry and Molecular Engineering, Department of Chemistry, College of Natural Sciences, Seoul National University, Seoul 151-747 Korea; ${ }^{\text {c Department of Chemistry and Nano Science, Ewha }}$ Womans University, Seoul 120-750, Korea

bunyeoul@ajou.ac.kr

Supporting Information

General Remarks. All manipulations were performed in an inert atmosphere using a standard glove box and Schlenk techniques. THF was distilled from benzophenone ketyl. Ethanol was dried by a method in the literature, using sodium and diethyl phthalate. ${ }^{1} \mathrm{CH}_{3} \mathrm{CN}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$, and CDCl_{3} were dried by stirring over CaH_{2}, followed by vacuum-transfer to reservoirs. DMSO- d_{6} was stored in molecular sieves inside a glove box. The CO_{2} gas (99.999%) was dried by storage in a column of molecular sieves 3A at a pressure of 30 bar. Propylene oxide (PO) was dried by stirring over CaH_{2} for several days,
followed by vacuum-transfer to a reservoir. The ${ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz})$ and ${ }^{13} \mathrm{C}$ NMR $(100 \mathrm{MHz})$ spectra were recorded on a Varian Mercury Plus 400. Elemental analyses were performed at the Analytical Center of Kyunghee University. Mass spectral data were obtained from the Korea Basic Science Institute (Daegu) on a Jeol JMS 700 high-resolution mass spectrometer. Gel permeation chromatograms (GPC) were obtained at room temperature in THF using Waters Millennium with polystyrene standards. Complexes $\mathbf{3},{ }^{2} 4,{ }^{2} 10^{3}$ and 12^{2} were prepared according to the previous reports.

[3-Methyl-5-[\{Bu $\left.\left.\left.\mathbf{N}^{+}\left(\mathrm{CH}_{2}\right)_{3}\right\}_{2} \mathbf{C H}\right\}\right]$-salicylaldehyde] $\left(\mathrm{BF}_{4}\right)_{2}$. This compound was prepared through the hydrolysis of $\mathbf{1}\left(\mathrm{X}=\mathrm{I}^{-}\right)$. Thus, $\mathbf{1}\left(\mathrm{X}=\mathrm{I}^{-}, 0.500 \mathrm{~g}, 0.279 \mathrm{mmol}\right)$ was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4.0 \mathrm{~mL})$. After addition of aqueous HI solution ($2.5 \mathrm{~mL}, 2.0 \mathrm{~N}$), the two-phased mixture was heated reflux for 3 hours and then the $\mathrm{CH}_{2} \mathrm{Cl}_{2}$-phase was collected and washed with water. The solution was dried over anhydrous MgSO_{4}, followed by removal of solvent by a rotary evaporator. The pure iodide salt of the hydrolyzed product was purified by column chromatography on silica gel, eluting with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ /ethanol ($\mathrm{v} / \mathrm{v}, 10: 1$). A 95% yield of the product was obtained, which as then dissolved in ethanol (6.0 mL) containing $\mathrm{AgBF}_{4}(0.225 \mathrm{~g}, 1.16 \mathrm{mmol})$. After stirring at room temperature for 1.5 hours, filtration was performed over Celite to remove generated AgI. The solvent was then removed and the product was purified by column chromatography on silica gel, eluting with $\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ ethanol ($\mathrm{v} / \mathrm{v}, 10: 1$). A white solid was obtained with a quantitative yield (0.410 g). IR (KBr): $3422(\mathrm{OH}), 1644(\mathrm{C}=\mathrm{O}) \mathrm{cm}^{-1} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 11.19(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}), 9.89(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CHO}), 7.48(\mathrm{~s}, 1 \mathrm{H}, m-\mathrm{H}), 7.29(\mathrm{~s}, 1 \mathrm{H}, m-\mathrm{H}), 3.32-3.26(\mathrm{~m}$, $\left.4 \mathrm{H}, \mathrm{NCH}_{2}\right), 3.10-3.06\left(\mathrm{~m}, 12 \mathrm{H}, \mathrm{NCH}_{2}\right), 2.77($ septet, $J=6.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}), 2.24\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.76-1.64$ (m, 8H, CH2 $), 1.58-1.44\left(\mathrm{~m}, 16 \mathrm{H}, \mathrm{CH}_{2}\right), 1.34-1.29\left(\mathrm{~m}, 8 \mathrm{H}, \mathrm{CH}_{2}\right), 0.90\left(\mathrm{t}, J=7.6 \mathrm{~Hz}, 18 \mathrm{H}, \mathrm{CH}_{3}\right) \mathrm{ppm}$.
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right): \delta 197.29,158.40,136.63,133.48,130.51,127.12,119.74,58.23,40.91,32.51$, 23.58, 19.48, 18.82, 15.10, 13.45 ppm . HRMS (FAB): m/z calcd ($\left[\mathrm{M}-\mathrm{BF}_{4}\right]^{+} \mathrm{C}_{39} \mathrm{H}_{74} \mathrm{BF}_{4} \mathrm{~N}_{2} \mathrm{O}_{2}$) 689.5779, found 689.5775.
[3-tert-Butyl-5-[\{Bu $\left.\left.\left.\mathbf{N a}^{+}\left(\mathbf{C H}_{2}\right)_{3}\right\}_{2} \mathbf{C H}\right\}\right]$-salicylaldehyde] $\left(\mathrm{BF}_{4}^{-}\right)_{2}$. This compound was synthesized using the same conditions and procedures as those used to synthesize [3-Methyl-5$\left.\left[\left\{\mathrm{Bu}_{3} \mathrm{~N}^{+}\left(\mathrm{CH}_{2}\right)_{3}\right\}_{2} \mathrm{CH}\right\}\right]$-salicylaldehyde $]\left(\mathrm{BF}_{4}\right)_{2}$, starting with $2\left(\mathrm{X}=\mathrm{I}^{-}\right)$. A white solid was obtained with a quantitative yield. IR $(\mathrm{KBr}): 3506(\mathrm{OH}), 1661(\mathrm{C}=\mathrm{O}) \mathrm{cm}^{-1} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 11.76(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH})$, $9.92(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CHO}), 7.53(\mathrm{~s}, 1 \mathrm{H}, \mathrm{m}-\mathrm{H}), 7.35(\mathrm{~s}, 1 \mathrm{H}, m-\mathrm{H}), 3.36-3.22\left(\mathrm{~m}, 16 \mathrm{H}, \mathrm{NCH}_{2}\right), 2.82(\mathrm{br}, 1 \mathrm{H}, \mathrm{CH})$, 1.78-1.70 (m, 4H, CH 2), 1.66-1.46 (m, 16H, CH2 $), 1.42\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 1.38-1.32\left(\mathrm{~m}, 12 \mathrm{H}, \mathrm{CH}_{2}\right), 0.93$ (t, $\left.J=7.6 \mathrm{~Hz}, 18 \mathrm{H}, \mathrm{CH}_{3}\right) \mathrm{ppm} .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right): \delta 197.76,159.67,138.70,133.50,132.63$, 131.10, 120.40, 58.55, 41.45, 34.99, 32.28, 29.31, 23.72, 19.59, 19.00, 13.54 ppm. HRMS (FAB): m/z calcd ($\left.\left[\mathrm{M}-\mathrm{BF}_{4}\right]^{+} \mathrm{C}_{42} \mathrm{H}_{80} \mathrm{BF}_{4} \mathrm{~N}_{2} \mathrm{O}_{2}\right) 731.6249$, found 731.6254.

Complex 7. Ethylenediamine- ${ }^{-15} \mathrm{~N}_{2}$-dihydrochloride ($0.010 \mathrm{~g}, 0.074 \mathrm{mmol}$), sodium tert-butoxide $(0.014 \mathrm{~g}, 0.15 \mathrm{mmol})$ and [3-Methyl-5-[\{ $\left.\left.\left.\mathrm{Bu}_{3} \mathrm{~N}^{+}\left(\mathrm{CH}_{2}\right)_{3}\right\}_{2} \mathrm{CH}\right\}\right]$-salicylaldehyde $]\left(\mathrm{BF}_{4}{ }^{-}\right)_{2}(0.115 \mathrm{~g}, 0.150$ $\mathrm{mmol})$ were added to a flask, followed by the addition of anhydrous ethanol $(2.0 \mathrm{~mL})$. The solution was stirred overnight and ethanol was removed after filtration over Celite. Filtration was performed again after the residue was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. Removal of solvent produced the white solid 3, which was used without any further purification in the metallation reaction. $\mathrm{Co}(\mathrm{OAc})_{2}(0.013 \mathrm{~g}, 0.074 \mathrm{mmol})$ and ethanol (2.0 mL) was added to a flask containing 3. After stirring for 3 hours at room temperature, the solvent was removed under a vacuum to give a residue which was washed with diethyl ether ($2.0 \mathrm{~mL} \times$ 2). The solid, after being evacuated overnight, was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2.0 \mathrm{~mL})$ containing 2,4dinitrophenol ($0.014 \mathrm{~g}, 0.074 \mathrm{mmol}$). The resulting solution was stirred under O_{2} atmosphere for 3 hours, after which sodium-2,4-dinitrophenolate ($0.092 \mathrm{~g}, 0.440 \mathrm{mmol}$) was added. After stirring overnight at room temperature, the solution was filtered over Celite. The solvent was then removed by vacuum to give a dark brown powder pure enough for use in NMR characterization and polymerization. Yields were quantitative ($0.149 \mathrm{~g}, 100 \%$). ${ }^{1} \mathrm{H}$ NMR ($\mathrm{dmso}^{-} \mathrm{d}_{6}, 40^{\circ} \mathrm{C}$): $\delta 8.84\left(\mathrm{br}, 2 \mathrm{H},\left(\mathrm{NO}_{2}\right)_{2} \mathrm{C}_{6} \mathrm{H}_{3} \mathrm{O}\right), 8.09(\mathrm{br}$,
$\left.2 \mathrm{H},\left(\mathrm{NO}_{2}\right)_{2} \mathrm{C}_{6} \mathrm{H}_{3} \mathrm{O}\right), 8.04(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}=\mathrm{N}), 7.12(\mathrm{br}, 2 \mathrm{H}, m-\mathrm{H}), 6.66\left(\mathrm{br}, 2 \mathrm{H},\left(\mathrm{NO}_{2}\right)_{2} \mathrm{C}_{6} \mathrm{H}_{3} \mathrm{O}\right), 4.21$ (br, 2 H, ethylene- CH_{2}), 3.35-2.90 (br, $16 \mathrm{H}, \mathrm{NCH}_{2}$), $2.62\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.91(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}), 1.68-1.42$ (br, 20 H , CH_{2}), 1.19 (br, 12H, CH2), 0.83 (br, $18 \mathrm{H}, \mathrm{CH}_{3}$) ppm. ${ }^{1} \mathrm{H}$ NMR (THF-d $\mathrm{d}_{8}, 20^{\circ} \mathrm{C}$): $\delta 8.59$ (br, 1 H , $\left.\left(\mathrm{NO}_{2}\right)_{2} \mathrm{C}_{6} \mathrm{H}_{3} \mathrm{O}\right), 8.10\left(\mathrm{br}, 1 \mathrm{H},\left(\mathrm{NO}_{2}\right)_{2} \mathrm{C}_{6} \mathrm{H}_{3} \mathrm{O}\right), 7.93(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}=\mathrm{N}), 7.88\left(\mathrm{br}, 1 \mathrm{H},\left(\mathrm{NO}_{2}\right)_{2} \mathrm{C}_{6} \mathrm{H}_{3} \mathrm{O}\right), 7.05(\mathrm{~s}$, $1 \mathrm{H}, m-\mathrm{H}), 6.90(\mathrm{~s}, 1 \mathrm{H}, \mathrm{m}-\mathrm{H}), 4.51\left(\mathrm{~s}, 2 \mathrm{H}\right.$, ethylene- $\left.\mathrm{CH}_{2}\right), 3.20-2.90\left(\mathrm{br}, 16 \mathrm{H}, \mathrm{NCH}_{2}\right), 2.69\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$, $1.73(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}), 1.68-1.38\left(\mathrm{br}, 20 \mathrm{H}, \mathrm{CH}_{2}\right), 1.21\left(\mathrm{~m}, 12 \mathrm{H}, \mathrm{CH}_{2}\right), 0.84\left(\mathrm{t}, J=6.8 \mathrm{~Hz}, 18 \mathrm{H}, \mathrm{CH}_{3}\right) \mathrm{ppm} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 20^{\circ} \mathrm{C}\right): \delta 8.43$ (br, $\left.1 \mathrm{H},\left(\mathrm{NO}_{2}\right)_{2} \mathrm{C}_{6} \mathrm{H}_{3} \mathrm{O}\right), 8.15$ (br, $\left.1 \mathrm{H},\left(\mathrm{NO}_{2}\right)_{2} \mathrm{C}_{6} \mathrm{H}_{3} \mathrm{O}\right), 7.92$ (br, 1 H , $\left.\left(\mathrm{NO}_{2}\right)_{2} \mathrm{C}_{6} \mathrm{H}_{3} \mathrm{O}\right), 7.79(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}=\mathrm{N}), 6.87(\mathrm{~s}, 1 \mathrm{H}, m-\mathrm{H}), 6.86(\mathrm{~s}, 1 \mathrm{H}, m-\mathrm{H}), 4.45\left(\mathrm{~s}, 2 \mathrm{H}\right.$, ethylene $\left.-\mathrm{CH}_{2}\right)$, 3.26 (br, 2H, NCH $), 3.0-2.86\left(\mathrm{br}, 14 \mathrm{H}, \mathrm{NCH}_{2}\right), 2.65\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.49(\mathrm{br}, 1 \mathrm{H}, \mathrm{CH}), 1.61-1.32$ (br, $\left.20 \mathrm{H}, \mathrm{CH}_{2}\right), 1.31-1.18\left(\mathrm{~m}, 12 \mathrm{H}, \mathrm{CH}_{2}\right), 0.86\left(\mathrm{t}, J=6.8 \mathrm{~Hz}, 18 \mathrm{H}, \mathrm{CH}_{3}\right) \mathrm{ppm} .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \operatorname{NMR}\left(\mathrm{dmso}-\mathrm{d}_{6}\right.$, $20^{\circ} \mathrm{C}$): $\delta 170.33,165.12,160.61,132.12$ (br), 129.70, 128.97, 127.68 (br), 124.51 (br), 116.18 (br), $57.32,56.46,40.85,31.76,24.12,21.92,20.03,18.04,16.16,12.22 \mathrm{ppm} .{ }^{15} \mathrm{~N}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (dmso-d d_{6}, $20^{\circ} \mathrm{C}$): δ-156.32, -159.21 ppm. ${ }^{15} \mathrm{~N}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (THF- $\mathrm{d}_{8}, 20^{\circ} \mathrm{C}$): δ-154.19 ppm. ${ }^{19} \mathrm{~F}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (dmso-d d_{6}, $\left.20^{\circ} \mathrm{C}\right): \delta-50.63,-50.69 \mathrm{ppm}$.

Complex 8. This compound was synthesized using the same conditions and procedures as those used for synthesis of 7, starting with [3-tert-butyl-5-[\{ $\left.\left.\left.\mathrm{Bu}_{3} \mathrm{~N}^{+}\left(\mathrm{CH}_{2}\right)_{3}\right\}_{2} \mathrm{CH}\right\}\right]$-salicylaldehyde] $\left(\mathrm{BF}_{4}\right)_{2}$. A brown powder was obtained in a quantitative yield. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{dmso}^{-} \mathrm{d}_{6}, 40^{\circ} \mathrm{C}\right): ~ \delta 8.82\left(\mathrm{br}, 2.5 \mathrm{H},\left(\mathrm{NO}_{2}\right)_{2} \mathrm{C}_{6} \mathrm{H}_{3} \mathrm{O}\right)$, 7.89 (br, $\left.3.5 \mathrm{H},\left(\mathrm{NO}_{2}\right)_{2} \mathrm{C}_{6} \mathrm{H}_{3} \mathrm{O}, \mathrm{CH}=\mathrm{N}\right), 7.21(\mathrm{~s}, 1 \mathrm{H}, m-\mathrm{H}), 7.19(\mathrm{~s}, 1 \mathrm{H}, m-\mathrm{H}), 6.46$ (br, 2.5H, $\left.\left(\mathrm{NO}_{2}\right)_{2} \mathrm{C}_{6} \mathrm{H}_{3} \mathrm{O}\right), 4.12\left(\mathrm{~s}, 2 \mathrm{H}\right.$, ethylene- $\left.\mathrm{CH}_{2}\right), 3.25-2.96\left(\mathrm{br}, 16 \mathrm{H}, \mathrm{NCH}_{2}\right), 1.90(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}), 1.71(\mathrm{~s}, 9 \mathrm{H}$, $\left.\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 1.67-1.32\left(\mathrm{br}, 20 \mathrm{H}, \mathrm{CH}_{2}\right), 1.32-1.15\left(\mathrm{~m}, 12 \mathrm{H}, \mathrm{CH}_{2}\right), 0.88\left(\mathrm{t}, J=7.2 \mathrm{~Hz}, 18 \mathrm{H}, \mathrm{CH}_{3}\right) \mathrm{ppm} .{ }^{1} \mathrm{H}$ NMR (THF- $\left.\mathrm{d}_{8}, 20^{\circ} \mathrm{C}\right): \delta 7.78(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}=\mathrm{N}), 7.31(\mathrm{~s}, 1 \mathrm{H}, m-\mathrm{H}), 7.12(\mathrm{~s}, 1 \mathrm{H}, m-\mathrm{H}), 4.19(\mathrm{br}, 2 \mathrm{H}$, ethylene- CH_{2}), 3.43-2.95 (br, $16 \mathrm{H}, \mathrm{NCH}_{2}$), $2.48(\mathrm{br}, 1 \mathrm{H}, \mathrm{CH}), 1.81-1.52\left(\mathrm{br}, 20 \mathrm{H}, \mathrm{CH}_{2}\right), 1.50(\mathrm{~s}, 9 \mathrm{H}$, $\left.\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right)$, 1.42-1.15 (br, 12H, CH_{2}), $0.89\left(\mathrm{t}, J=6.8 \mathrm{~Hz}, 18 \mathrm{H}, \mathrm{CH}_{3}\right)$ ppm. ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 20^{\circ} \mathrm{C}\right): \delta$ $7.47(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}=\mathrm{N}), 7.10(\mathrm{~s}, 1 \mathrm{H}, m-\mathrm{H}), 7.07(\mathrm{~s}, 1 \mathrm{H}, m-\mathrm{H}), 4.24\left(\mathrm{~s}, 2 \mathrm{H}\right.$, ethylene $\left.-\mathrm{CH}_{2}\right), 3.31(\mathrm{br}, 2 \mathrm{H}$, NCH_{2}), 3.09-2.95 (br, 14H, NCH_{2}), 2.64 (br, $\left.1 \mathrm{H}, \mathrm{CH}\right), 1.68-1.50\left(\mathrm{br}, 20 \mathrm{H}, \mathrm{CH}_{2}\right), 1.49\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right)$, 1.39-1.26(m, 12H, CH2), $0.93\left(\mathrm{t}, J=6.8 \mathrm{~Hz}, 18 \mathrm{H}, \mathrm{CH}_{3}\right) \mathrm{ppm} .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(\mathrm{dmso}^{2}-\mathrm{d}_{6}, 20^{\circ} \mathrm{C}\right): \delta 166.57$,
$166.46,161.55,142.16,129.99,129.26,128.39,128.13,127.63,124.18,118.34,57.59,56.93,41.64$, 34.88, 32.27, 29.63, 22.37, 18.64, 18.51, $12.70 \mathrm{ppm} .{ }^{15} \mathrm{~N}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{dmso}^{-} \mathrm{d}_{6}, 20^{\circ} \mathrm{C}\right):-163.43 \mathrm{ppm}$. ${ }^{15} \mathrm{~N}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (THF- $\mathrm{d}_{8}, 20^{\circ} \mathrm{C}$): $\delta-166.80 \mathrm{ppm} .{ }^{19} \mathrm{~F}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{dmso}^{2} \mathrm{~d}_{6}, 20^{\circ} \mathrm{C}\right): \delta-50.65,-50.70 \mathrm{ppm}$.

Compound 16. A 0.1 M solution of 1 -chloro-4-iodobutane ($1.00 \mathrm{~g}, 4.57 \mathrm{mmol}$) in ether-pentane (v / v, 2:3) was cooled to $-78^{\circ} \mathrm{C}$, followed by the addition of tert-BuLi ($3.69 \mathrm{~g}, 9.61 \mathrm{mmol}, 1.7 \mathrm{M}$ in pentane) by syringe under N_{2} atmosphere. ${ }^{4}$ After stirring the reaction mixture for 2 hours at $-78^{\circ} \mathrm{C}$, a solution of 1,5-dichloropentan-3-one ($838 \mathrm{mg}, 4.58 \mathrm{mmol}$) in diethyl ether (8.0 mL) was added. The solution was stirred for 4 hours at $-78^{\circ} \mathrm{C}$, and then ice water $(50 \mathrm{~mL})$ was added to quench the reaction. The product was extracted with diethyl ether ($3 \times 100 \mathrm{~mL}$). After the combined organic phase was dried over anhydrous MgSO_{4}, the solvent was removed using a rotary evaporator to give an oily residue. It was purified by column chromatography on silica gel eluting with hexane and ethyl acetate ($\mathrm{v} / \mathrm{v}, 5: 1$) to give pale yellow oil ($0.820 \mathrm{~g}, 65 \%$ yield $)$. The product is very susceptible to dehydration reaction. Therefore it was not stored but used immediately upon preparation. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): ~ \delta 3.52(\mathrm{t}, J=6.4 \mathrm{~Hz}, 6 \mathrm{H}$, $\left.\mathrm{CH}_{2} \mathrm{Cl}\right), 1.80-1.73\left(\mathrm{~m}, 6 \mathrm{H}, \mathrm{CH}_{2}\right), 1.56-1.52\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2}\right), 1.42\left(\mathrm{~s}, 4 \mathrm{H}, \mathrm{CH}_{2}\right) \mathrm{ppm} .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 73.58,45.69,44.95,38.29,36.48,32.94,26.96,20.88 \mathrm{ppm}$.

Compound 17. o-Cresol ($26.6 \mathrm{~g}, 246 \mathrm{mmol}$), $\mathbf{1 6}(6.73 \mathrm{~g}, 30.8 \mathrm{mmol})$ and $\mathrm{AlCl}_{3}(4.52 \mathrm{~g}, 33.9 \mathrm{mmol})$
were dissolved in 20 mL methylene chloride and the mixture was stirred overnight under an N_{2} atmosphere. The reaction was quenched by the addition of methylene chloride $(100 \mathrm{~mL})$ and water (100 mL). The organic phase was collected and the water phase was further extracted using additional methylene chloride $(3 \times 50 \mathrm{~mL})$. The combined diethyl ether was dried over anhydrous MgSO_{4} and the solvent was removed using a rotary evaporator. Excess o-cresol was recovered by vacuum distillation $\left(45^{\circ} \mathrm{C} / 2 \mathrm{mmHg}\right)$. The residue was purified by column chromatography on silica gel eluting with hexane and ethyl acetate (v/v, 10:1). Yield was $10.1 \mathrm{~g}(90 \%)$. IR (KBr): $3535(\mathrm{OH}) \mathrm{cm}^{-1} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta$ $7.02(\mathrm{~s}, 1 \mathrm{H}, m-\mathrm{H}), 6.99(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}, m-\mathrm{H}), 6.73(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}, o-\mathrm{H}), 4.67(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}), 3.53-$ $3.46\left(\mathrm{~m}, 6 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Cl}\right), 2.27\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.79-1.44\left(\mathrm{~m}, 6 \mathrm{H}, \mathrm{CH}_{2}\right), 1.67-1.62\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.58-1.53(\mathrm{~m}$,
 $123.39,114.70,60.83,46.05,45.04,42.09,36.69,35.07,33.36,27.26,21.40,21.02,16.54,14.49 \mathrm{ppm}$. HRMS (FAB): m/z calcd ([M+H] $\left.{ }^{+} \mathrm{C}_{18} \mathrm{H}_{27} \mathrm{Cl}_{3} \mathrm{O}\right)$ 365.1206, found 365.1206

Compound 18. Compound 17 ($4.54 \mathrm{~g}, 12.4 \mathrm{mmol}$) was dissolved in anhydrous THF (250 mL). Paraformaldehyde ($1.49 \mathrm{~g}, 49.7 \mathrm{mmol}$), triethylamine ($5.28 \mathrm{~g}, 25.1 \mathrm{mmol}$) and magnesium chloride $(4.73 \mathrm{~g}, 52.16 \mathrm{mmol})$ were added under a N_{2} atmosphere. The reaction mixture was heated to reflux for 5 hours and then cooled to room temperature. The solvent was removed using a rotary evaporator, after which water $(100 \mathrm{~mL})$ and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(200 \mathrm{~mL})$ were added to the residue and the mixture was filtered over Celite. The organic phase was collected and the aqueous phase was further extracted using $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(2 \times 50 \mathrm{~mL})$. The combined organic phase was dried over anhydrous MgSO_{4}. The solvent was removed using a rotary evaporator to give an oily residue that was further evacuated to remove some residual triethylamine. The product was purified by column chromatography on silica gel, eluting with hexane and ethyl acetate ($\mathrm{v} / \mathrm{v}, 20: 1$). Yellow oil was obtained in 80% yield (3.91 g). IR (KBr): $3258(\mathrm{OH}), 1650$ $(\mathrm{C}=\mathrm{O}) \mathrm{cm}^{-1} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 11.05(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}), 9.78(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CHO}), 7.25(\mathrm{~s} .1 \mathrm{H}, m-\mathrm{H}), 7.19(\mathrm{~s}, 1 \mathrm{H}$, m-H), 3.44-3.39 (m, 6H, CH2Cl), $2.19\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right.$), 1.74-1.43 (m, 12H, CH CH_{2}), 1.20-1.11 (br, $2 \mathrm{H}, \mathrm{CH}_{2}$) ppm. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 196.79,158.07,136.98,135.85,128.95,126.85,119.52,45.77,44.88$, $42.12,36.50,34.64,33.09,27.07,20.85,15.71 \mathrm{ppm}$. HRMS (FAB): m/z calcd ($[\mathrm{M}+\mathrm{H}]^{+} \mathrm{C}_{19} \mathrm{H}_{27} \mathrm{Cl}_{3} \mathrm{O}$)
393.1155, found 393.1155 .

Compound 19. Compound 18 ($2.97 \mathrm{~g}, 7.54 \mathrm{mmol}$) was dissolved in $\mathrm{CH}_{3} \mathrm{CN}(12 \mathrm{~mL})$, followed by the addition of $\mathrm{NaI}(16.9 \mathrm{~g}, 113 \mathrm{mmol})$. The resulting mixture was refluxed for 20 hours and then cooled to room temperature. Water $(100 \mathrm{~mL})$ was added and then the product was extracted using methylene chloride ($3 \times 100 \mathrm{~mL}$) . After the collected organic phase was dried over anhydrous MgSO_{4}, all volatiles were removed using a rotary evaporator to give a yellow oil. The yield was $89 \%(4.49 \mathrm{~g})$. IR (KBr): $3299(\mathrm{OH}), 1648(\mathrm{C}=\mathrm{O}) \mathrm{cm}^{-1} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 11.06(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}), 9.80(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CHO}), 7.25(\mathrm{~s}, 1 \mathrm{H}$, $m-\mathrm{H}), 7.17(\mathrm{~s}, 1 \mathrm{H}, m-\mathrm{H}), 3.21-3.14\left(\mathrm{~m}, 6 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Cl}\right), 2.27\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.79-1.53\left(\mathrm{~m}, 12 \mathrm{H}, \mathrm{CH}_{2}\right), 1.28-$ 1.19 (br, 2H, CH CH_{2}) ppm. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 196.81,158.20,137.00,135.90,128.90,126.98$, 119.54, 42.17, $38.45,36.11,33.93,27.83,24.50,15.84,7.96,7.14 \mathrm{ppm}$. Anal. Calcd. $\left(\mathrm{C}_{19} \mathrm{H}_{27} \mathrm{I}_{3} \mathrm{O}_{2}\right): \mathrm{C}$, 34.16; H, 4.07 \%. Found: C, 34.44; H, 4.08\%. HRMS (FAB): m/z calcd ([M+H] ${ }^{+} \mathrm{C}_{19} \mathrm{H}_{27} \mathrm{I}_{3} \mathrm{O}$) 668.9223, found 668.9228 .

Compound 20. Compound $19(0.680 \mathrm{~g}, 1.02 \mathrm{mmol})$ and (\pm)-trans-1,2-diaminocyclohexane (0.058 g , $0.509 \mathrm{mmol})$ were weighed into a vial, followed by the addition of $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5.0 \mathrm{~mL})$. The solution was stirred overnight under a N_{2} atmosphere and the solvent was removed under vacuum to give a pure compound ($0.706 \mathrm{~g}, 98 \%$). Yellow solid was obtained in quantitative yield. IR (KBr): $3419(\mathrm{OH}), 1629$ $(\mathrm{C}=\mathrm{N}) \mathrm{cm}^{-1} .{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right): \delta 13.45(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}), 8.34(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}=\mathrm{N}), 7.05(\mathrm{~s}, 1 \mathrm{H}, m-\mathrm{H}), 6.94(\mathrm{~s}, 1 \mathrm{H}$, m-H), 3.39-3.36 (m, 1H, cyclohexyl-CH), 3.17-3.09 (m, 6H, CH2I), $2.26\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.96-1.89(\mathrm{~m}, 2 \mathrm{H}$, cyclohexyl- CH_{2}), 1.89-1.43 (m, 14H, cyclohexyl- CH_{2} and CH_{2}), 1.18-1.20 (br, 2H, CH2 ppm. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 164.97,157.2,135.58,131.25,127.12,125.50,117.65,72.89,42.00,38.71,36.14$, 34.18, 33.73, 27.91, 24.57, 24.50, 16.32, 8.26, 7.18 ppm. Anal. Calcd. $\left(\mathrm{C}_{44} \mathrm{H}_{64} \mathrm{I}_{6} \mathrm{~N}_{2} \mathrm{O}_{2}\right): \mathrm{C}, 37.36 ; \mathrm{H}$, 4.56; N, 1.98 \%. Found: C, 37.29; H, 4.52; N, 1.88 \%.

Compound 21. Compound $20(0.364 \mathrm{~g}, 0.257 \mathrm{mmol})$ and tributylamine ($0.291 \mathrm{~g}, 1.57 \mathrm{mmol}$) were weighed into a one-neck flask, followed by the addition of $\mathrm{CH}_{3} \mathrm{CN}(5.0 \mathrm{~mL})$. The solution was refluxed for 2 days under a N_{2} atmosphere. After cooling to room temperature, the solvent was removed under vacuum to give a residue that was subsequently triturated three times in diethyl ether $(2.5 \mathrm{~mL})$ to give a
light yellow powder in 88% yield $(0.579 \mathrm{~g})$. IR $(\mathrm{KBr}): 3442(\mathrm{OH}), 1627(\mathrm{C}=\mathrm{N}) \mathrm{cm}^{-1} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right)$: $\delta 13.46(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}), 8.58(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}=\mathrm{N}), 7.18(\mathrm{~s}, 1 \mathrm{H}, m-\mathrm{H}), 7.07(\mathrm{~s}, 1 \mathrm{H}, m-\mathrm{H}), 3.42(\mathrm{br}, 1 \mathrm{H}$, cyclohexylCH), $3.32\left(\mathrm{br}, 8 \mathrm{H}, \mathrm{NCH}_{2}\right), 3.16\left(\mathrm{br}, 16 \mathrm{H}, \mathrm{NCH}_{2}\right), 2.10\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.74-1.20(\mathrm{br}, 54 \mathrm{H}$, cyclohexyl$\left.\mathrm{CH} 2, \mathrm{CH}_{2}\right), 0.86\left(\mathrm{br}, 9 \mathrm{H}, \mathrm{CH}_{3}\right), 0.75$ (br, 18H, $\left.\mathrm{CH}_{3}\right) \mathrm{ppm} .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): \delta 164.78,157.27$, $134.04,130.82,127.22,125.15,117.46,71.01,59.96,59.63,59.00,58.86,53.52,43.03,34.89,33.90$, 33.68, 24.16, 24.05, 23.07, 22.78, 20.69, 19.68, 19.53, 17.64, 15.79, 13.58 ppm. Anal. Calcd. $\left(\mathrm{C}_{116} \mathrm{H}_{226} \mathrm{I}_{6} \mathrm{~N}_{8} \mathrm{O}_{2}\right)$: C, $55.14 ; \mathrm{H}, 9.02$; N, 4.44%. Found: C, $54.44 ; \mathrm{H}, 8.87 ; \mathrm{N}, 4.34 \%$.

Compound 22. $\mathrm{CH}_{2} \mathrm{Cl}_{2}(12 \mathrm{~mL})$ was added rapidly with stirring to a flask containing $21(0.455 \mathrm{~g}$, $0.180 \mathrm{mmol})$ and $\mathrm{AgBF}_{4}(0.211 \mathrm{~g}, 1.08 \mathrm{mmol})$, Black precipitates observed upon the addition of methylene chloride prompted stirring to be ceased due to the formation of light yellow lump. The lump was broken down with a spatula to facilitate further stirring for a day in the dark. Newly formed AgI was filtered off over Celite inside a glove box, followed by immediate removal of solvent by vacuum to give a yellow residue. The residue was subsequently purified by column chromatography on a short pad of silica gel, eluting with ethanol and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (v/v, 1:5). The yield was 0.322 g (78\%). IR (KBr): 3422 $(\mathrm{OH}), 1628(\mathrm{C}=\mathrm{N}) \mathrm{cm}^{-1} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 13.64(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}), 8.52(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}=\mathrm{N}), 7.27(\mathrm{~s}, 1 \mathrm{H}, m-\mathrm{H})$, $7.16(\mathrm{~s}, 1 \mathrm{H}, \mathrm{m}-\mathrm{H}), 3.44(\mathrm{br}, 1 \mathrm{H}$, cyclohexyl-CH$), 3.30-3.10\left(\mathrm{br}, 24 \mathrm{H}, \mathrm{NCH}_{2}\right), 2.24\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.95-$ 1.29 (br, 54 H , cyclohexyl-CH2, CH_{2}), $0.99\left(\mathrm{br}, 9 \mathrm{H}, \mathrm{CH}_{3}\right), 0.90\left(\mathrm{br}, 18 \mathrm{H}, \mathrm{CH}_{3}\right) \mathrm{ppm} .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 165.61,157.84,134.63,131.42,127.59,125.75,118.15,72.10,59.84,58.97,58.83,50.12$, $43.15,34.32,33.95,33.84,24.13,23.65,22.51,20.65,20.05,19.90,19.42,16.73,16.11,13.98,13.89$ ppm. Anal. Calcd. $\left(\mathrm{C}_{116} \mathrm{H}_{226} \mathrm{~B}_{6} \mathrm{~F}_{24} \mathrm{~N}_{8} \mathrm{O}_{2}\right)$: C, $60.95 ; \mathrm{H}, 9.97 ; \mathrm{N}, 4.90 \%$. Found: C, 61.20; H, 10.22; N , 4.92 \%.

Complex 9. Cobalt(II) acetate ($5.30 \mathrm{mg}, 0.030 \mathrm{mmol})$ and $22(68.2 \mathrm{mg}, 0.030 \mathrm{mmol})$ were dissolved in ethanol $(2.0 \mathrm{~mL})$ inside a glove box. The solid was precipitated in approximately 5 minutes and the resulting slurry was stirred overnight at room temperature. The solvent was removed under vacuum to give a red solid subsequently triturated two times with diethyl ether $(2.0 \mathrm{~mL})$ to remove acetic acid that had been generated. The solid was evacuated by vacuum overnight and dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2.0 \mathrm{~mL})$
containing 2,4-dinitrophenol ($5.40 \mathrm{mg}, 0.030 \mathrm{mmol}$) followed by stirring under an O_{2} atmosphere for 3 hours. Sodium-2,4-dinitrophenolate $(61.4 \mathrm{mg}, 0.300 \mathrm{mmol})$ was added and the solution was stirred overnight at room temperature. The solution was filtered over Celite, after which the solvent was removed by vacuum to give a dark brown powder pure enough for use in NMR characterization. Yields were quantitative (68.5 mg). ${ }^{1} \mathrm{H}$ NMR ($\mathrm{dmso}^{-} \mathrm{d}_{6}, 40^{\circ} \mathrm{C}$): $\delta 8.68$ (br, $2 \mathrm{H},\left(\mathrm{NO}_{2}\right)_{2} \mathrm{C}_{6} \mathrm{H}_{3} \mathrm{O}$), 8.05 (br, 2 H , $\left.\left(\mathrm{NO}_{2}\right)_{2} \mathrm{C}_{6} \mathrm{H}_{3} \mathrm{O}\right), 7.85(\mathrm{br}, 1 \mathrm{H}, \mathrm{CH}=\mathrm{N}), 7.30(\mathrm{br}, 2 \mathrm{H}, m-\mathrm{H}), 6.76\left(\mathrm{br}, 2 \mathrm{H},\left(\mathrm{NO}_{2}\right)_{2} \mathrm{C}_{6} \mathrm{H}_{3} \mathrm{O}\right), 3.58(\mathrm{br}, 1 \mathrm{H}$, cyclohexyl-CH), $3.09\left(\mathrm{br}, 24 \mathrm{H}, \mathrm{NCH}_{2}\right), 2.63\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.53-1.06\left(\mathrm{br}, 54 \mathrm{H}, \mathrm{CH}_{2}\right), 0.93-0.85(\mathrm{~m}, 27 \mathrm{H}$, CH_{3}) ppm. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (dmso-d ${ }_{6}$): $\delta 170.93,160.72,131.45$ (br), 129.71 (br), 129.30 (br), 127.58 (br), 124.40 (br), 115.82 (br), $68.91,57.58,57.08,41.04,35.80,32.41,29.03,23.92,22.49,20.50,19.76$, 18.62, 16.84, 15.71, 12.81, $12.78 \mathrm{ppm} .{ }^{19} \mathrm{~F}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{dmso}^{-} \mathrm{d}_{6}, 20^{\circ} \mathrm{C}\right): \delta-50.72,-50.77 \mathrm{ppm}$.

Complex 11. 2,3-Diamino-2,3-dimethylbutane $(0.027 \mathrm{~g}, 0.232 \mathrm{mmol})^{5}$ and [3-methyl-5$\left.\left[\left\{\mathrm{Bu}_{3} \mathrm{~N}^{+}\left(\mathrm{CH}_{2}\right)_{3}\right\}_{2} \mathrm{CMe}\right\}\right]$-salicylaldehyde $]\left(\mathrm{BF}_{4}\right)_{2}(0.367 \mathrm{~g}, 0.464 \mathrm{mmol})$ were refluxed overnight in ethanol (3.0 mL) with molecular sieves $(0.180 \mathrm{~g})$ under N_{2} atmosphere. After filtration, the solvent was removed to obtain a yellow solid in quantitative yield $(0.385 \mathrm{~g}) . \mathrm{IR}(\mathrm{KBr})$: $3432(\mathrm{OH}), 1620(\mathrm{C}=\mathrm{N}) \mathrm{cm}^{-}$ ${ }^{1} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}\right): \delta 14.19(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}), 8.54(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}=\mathrm{N}), 7.24(\mathrm{~s}, 1 \mathrm{H}, m-\mathrm{H}), 7.18(\mathrm{~s}, 1 \mathrm{H}, m-\mathrm{H})$, 3.05-3.02 (m, 16H, NCH 2), $2.24\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.79-1.32\left(\mathrm{~m}, 41 \mathrm{H}, \mathrm{CH}_{2}\right), 0.91\left(\mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}, 18 \mathrm{H}, \mathrm{CH}_{3}\right)$ ppm. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}\right): \delta 163.04,158.59,134.68,131.27,127.94,126.25,118.32,65.66,59.61$, 59.01, $40.54,38.45,24.82,24.20,23.39,20.18,17.59,16.08,13.85 \mathrm{ppm}$. Anal. Calc. $\left(\mathrm{C}_{86} \mathrm{H}_{164} \mathrm{~B}_{4} \mathrm{~F}_{16} \mathrm{~N}_{6} \mathrm{O}_{2}\right): \mathrm{C}, 62.17 ; \mathrm{H}, 9.95 ; \mathrm{N}, 5.06$ \%. Found: C, 62.23; H, 10.16; N, 5.24%. Cobalt(II) acetate $(0.016 \mathrm{~g}, 0.090 \mathrm{mmol}$,$) and ligand prepared as above (0.150 \mathrm{~g}, 0.090 \mathrm{mmol})$ were dissolved in
ethanol (5.0 mL) inside a glove box and stirred for 5 hours at room temperature. The solvent was removed by vacuum to give a red solid subsequently triturated two times in diethyl ether (5.0 mL). The solid was evacuated overnight to remove acetic acid that had been generated. The solid was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5.0 \mathrm{~mL})$ containing 2,4-dinitrophenol $(0.017 \mathrm{~g}, 0.090 \mathrm{mmol})$, and then the solution was stirred under an O_{2} atmosphere for 12 hours. Sodium-2,4-dinitrophenolate ($0.093 \mathrm{~g}, 0.451 \mathrm{mmol}$) was added, after which the solution was stirred overnight at room temperature and filtered over Celite. The solvent was removed by vacuum to give a dark brown powder pure enough for use in NMR characterization and
 $\left.\left(\mathrm{NO}_{2}\right)_{2} \mathrm{C}_{6} \mathrm{H}_{3} \mathrm{O}\right), 7.87$ (br, $\left.1.5 \mathrm{H},\left(\mathrm{NO}_{2}\right)_{2} \mathrm{C}_{6} \mathrm{H}_{3} \mathrm{O}\right), 7.72$ (br, $1 \mathrm{H}, \mathrm{CH}=\mathrm{N}$), $7.50(\mathrm{br}, 1 \mathrm{H}, m-\mathrm{H}), 7.35$ (br, 1 H , $m-\mathrm{H}), 6.47$ (br, $\left.1.5 \mathrm{H},\left(\mathrm{NO}_{2}\right)_{2} \mathrm{C}_{6} \mathrm{H}_{3} \mathrm{O}\right), 3.11$ (br, $16 \mathrm{H}, \mathrm{NCH}_{2}$), $2.70\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.66-1.22\left(\mathrm{br}, 41 \mathrm{H}, \mathrm{CH}_{2}\right)$, 0.88 (br, 18H, CH ${ }_{3}$) ppm. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (dmso- d_{6}): δ 164.67, 159.42, 132.30, 129.71, 128.86 (br), 128.46 (br), 127.42 (br), 124.05 (br), 118.84, 73.92, 57.74, 57.19, 25.94, 23.33, 22.61, 21.05, 18.73, 16.68, 16.43, 12.93 ppm.

Complex 13. The compound was prepared following the same method and conditions applied for the preparation of $\mathbf{1 2}$ and using the corresponding Salen-type ligand of which synthesis was reported. ${ }^{2}{ }^{1} \mathrm{H}$ NMR (dmso- $\left.\mathrm{d}_{6}, 40^{\circ} \mathrm{C}\right): \delta 7.68(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}=\mathrm{N}), 7.36(\mathrm{~s}, 1 \mathrm{H}, m-\mathrm{H}), 7.23(\mathrm{~s}, 1 \mathrm{H}, m-\mathrm{H}), 3.61(\mathrm{br}, 1 \mathrm{H}, \mathrm{NCH})$, 3.31-2.91 (br, $16 \mathrm{H}, \mathrm{NCH}_{2}$), $2.04\left(\mathrm{br}, 1 \mathrm{H}\right.$, cyclohexyl- CH_{2}), $1.89\left(\mathrm{br}, 1 \mathrm{H}\right.$, cyclohexyl- $\left.\mathrm{CH}_{2}\right), 1.74(\mathrm{~s}, 9 \mathrm{H}$, $\left.\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right)$, 1.68-1.35 (br, 20H, CH2 $)$, 1.32-1.18 (br, $\left.15 \mathrm{H}, \mathrm{CH}_{2}\right), 0.91\left(\mathrm{t}, J=7.2 \mathrm{~Hz}, 18 \mathrm{H}, \mathrm{CH}_{3}\right) \mathrm{ppm}$. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (dmso-d d_{6}): $\delta 161.66,160.42,140.90,129.71,128.38,127.31,117.38,67.40,55.85,33.89$, 31.11, 28.70, 27.70 (br), 22.58, 21.29, 19.47, 17.45, 15.21, 11.69 ppm.

Complex 14. Complex 10 ($0.100 \mathrm{~g}, 0.0460 \mathrm{mmol}$) was dissolved in propylene oxide (5.0 mL) inside a glove box, follow by stirring for 1 h . Propylene oxide was removed by vacuum vaccum to give a red powder used for NMR characterization and polymerization. ${ }^{1} \mathrm{H}$ NMR (dmso- d_{6}): $\delta 8.57(\mathrm{~s}, 1 \mathrm{H}$, $\left.\left(\mathrm{NO}_{2}\right)_{2} \mathrm{C}_{6} \mathrm{H}_{3} \mathrm{O}\right), 8.45,8.43\left(\mathrm{~d},{ }^{4} \mathrm{~J}=2.8 \mathrm{~Hz}, 1 \mathrm{H}, m-\mathrm{H}\right.$ spiro-Meisenheimer anion), $7.75(\mathrm{dd}, J=9.6 \mathrm{~Hz}, 2.8$ $\left.\mathrm{Hz}, 1 \mathrm{H},\left(\mathrm{NO}_{2}\right)_{2} \mathrm{C}_{6} \mathrm{H}_{3} \mathrm{O}\right), 7.39-6.98(\mathrm{~m}, 3 \mathrm{H}, m-\mathrm{H}, \mathrm{CH}=\mathrm{N}), 6.84,6.81(\mathrm{dd}, J=9.6 \mathrm{~Hz}, 2.8 \mathrm{~Hz}, 1 \mathrm{H}, m-\mathrm{H}$ spiro-Meisenheimer anion), $6.28\left(\mathrm{~d}, J=9.6 \mathrm{~Hz},\left(\mathrm{NO}_{2}\right)_{2} \mathrm{C}_{6} \mathrm{H}_{3} \mathrm{O}\right), 5.36,5.30(\mathrm{~d}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H}, o-\mathrm{H}$ spiro-

Meisenheimer anion), 4.46-4.29 (m, 1H, spiro-Meisenheimer anion), 4.21-3.99 (m, 1H, spiroMeisenheimer anion), 3.65-3.48 (m, 1H, spiro-Meisenheimer anion), 3.20 (br, 1H, NCH), 3.07 (br, 16H, NCH_{2}), 2.47 (m, 3H, CH3), 1.98 (br, 1H, cyclohexyl- CH_{2}), 1.62-1.39 (br, 20H), 1.39-1.15 (br, 18H), 0.91 (br, 18H, CH_{3}) ppm.

Preparation of 60mol\% sodium 2,4-dinitrophenolate. Commerically available 2,4-dinitrophenol is wetted one which was dried through dissolving in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and then treatment of anhydrous MgSO_{4}. After removing MgSO_{4} by filtration, methylene chloride was removed by vacuum to give anhydrous 2,4-dinitrophenol, which was stored in a glove box. Anhydrous 2,4-dinitrophenol ($10.0 \mathrm{~g}, 54.3 \mathrm{mmol}$) was dissolved in THF (300 mL), followed by step-wise addition of $\mathrm{NaH}(0.782 \mathrm{~g}, 32.6 \mathrm{mmol})$. After stirring for three hours, THF was removed by vacuum to give an orange-colored solid. The color of the solid was slowly changed from orange to yellow during storage. The yellow-colored solid was used in the anion exchange reaction. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{dmso}^{-} \mathrm{d}_{6}, 20^{\circ} \mathrm{C}\right): \delta 12.42(\mathrm{br}, 0.4 \mathrm{H}, \mathrm{OH}), 8.64\left(\mathrm{~d},{ }^{4} \mathrm{~J}=2.8 \mathrm{~Hz}, 1 \mathrm{H}\right.$, $m-\mathrm{H}), 8.05(\mathrm{dd}, J=9.2 \mathrm{~Hz}, 2.8 \mathrm{~Hz}, 1 \mathrm{H}, m-\mathrm{H}), 6.79(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}, o-\mathrm{H}) \mathrm{ppm}$.

Complex 15. Cobalt(II) acetate $(0.107 \mathrm{~g}, 0.602 \mathrm{mmol})$ and the corresponding ligand $(1.00 \mathrm{~g}, 0.602$ mmol) were dissolved in ethanol (20 mL) inside a glove box. The solid was precipitated in approximately 5 minutes and the resulting slurry was stirred for 3 hours at room temperature. The solvent was removed by vacuum to give a red solid subsequently triturated two times with diethyl ether $(10 \mathrm{~mL})$ to remove newly generated acetic acid. The solid was evacuated by vacuum overnight, after which it was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ containing 2,4-dinitrophenol ($0.111 \mathrm{~g}, 0.602 \mathrm{mmol}$). The resulting solution was stirred under an O_{2} atmosphere for 3 hours. $60 \mathrm{~mol} \%$ sodium-2,4-dinitrophenolate $(0.594 \mathrm{~g}, 3.01 \mathrm{mmol})$ was added and the solution was stirred overnight at room temperature, followed by filtration over Celite. The solvent was removed by vacuum to give a dark brown powder pure enough for use in NMR characterization and polymerization. Yields were quantitative (1.45 g). ${ }^{1} \mathrm{H}$ NMR (dmso$\mathrm{d}_{6}, 40^{\circ} \mathrm{C}$): $\delta 8.61$ (br, 3H, $\left.\left(\mathrm{NO}_{2}\right)_{2} \mathrm{C}_{6} \mathrm{H}_{3} \mathrm{O}\right), 8.02\left(\mathrm{br}, 3 \mathrm{H},\left(\mathrm{NO}_{2}\right)_{2} \mathrm{C}_{6} \mathrm{H}_{3} \mathrm{O}\right), 7.91$ (br, $1 \mathrm{H}, \mathrm{CH}=\mathrm{N}$), 7.41-7.19 (br, $2 \mathrm{H}, m-\mathrm{H}$), $6.71\left(\mathrm{br}, 3 \mathrm{H},\left(\mathrm{NO}_{2}\right)_{2} \mathrm{C}_{6} \mathrm{H}_{3} \mathrm{O}\right), 3.61(\mathrm{br}, 1 \mathrm{H}, \mathrm{NCH}), 3.29-2.84\left(\mathrm{br}, 16 \mathrm{H}, \mathrm{CH}_{2}\right), 2.62(\mathrm{~s}, 3 \mathrm{H}$, CH_{3}), 2.08 (br, 1H, cyclohexyl- CH_{2}), 1.82 (br, 1 H , cyclohexyl- CH_{2}), 1.65-1.40 (br, 20H), 1.40-1.06 (br,

15 H), 0.85 (br, $18 \mathrm{H}, \mathrm{CH}_{3}$) ppm. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (dmso- d_{6}): $\delta 165.64$ (br), 163.62, 160.82, 135.86 (br), $132.25,131.66,130.80,130.07,129.68,127.91,123.67,117.05$ (br), 69.23 (br), 57.81, 57.29, 38.28, 29.35 (br), 24.15 (br), 23.47, 22.84, 19.02, 17.31, 16.61, 13.29 ppm.

DFT Calculations. Computational calculations were performed using the Gaussian 03 program package. ${ }^{6}$ In the computational model, butyl groups located in the peripheral ammonium moieties were replaced with methyl groups. The geometry optimizations were performed at the DFT level of theory using the B3LYP hybrid functional without any symmetry restriction. ${ }^{7}$ The cobalt atom was described using the LANL2DZ basis set, which includes the relativistic effective core potential (ECP) of Hay and Wadt ${ }^{8}$ for the inner electrons and a double- ζ basis set for the outer electrons. The standard $6-31 \mathrm{G}(\mathrm{d})$ basis set was used for the remaining atoms. Table S1 shows the results of the calculation. Table S2 shows the atomic coordinates for model compounds 7-A and 7-B.

Table S1. Selected bond distances and relative energies of 7-A and 7-B

	Bond distances (\AA)								
n^{a}									
	Co-O1	Co-O2	Co-O3	Co-O4	Co-O5	Co-O6	Co-N1	Co-N2	
7-A	1.9606	1.9056	1.9388	1.9890	2.0362	2.0321			0
7-B	1.8863	1.8987	1.9376	1.9558			1.9329	1.9191	34^{b}

${ }^{a}$ Relative energy $\Delta E=E_{7-\mathrm{B}}+2 \times E_{\mathrm{DNP}}+2 \times E_{\text {Coul. }}-E_{7-\mathrm{A}} . E_{7-\mathrm{A}}, E_{7-\mathrm{B}}$, and E_{DNP} are SCF energies separately obtained from DFT calculations in gas phase. $E_{\text {Coul. }}$ is Coulombic interaction between DNP
 R_{1} and R_{2} denote radii of DNP^{-}and $-\mathrm{NBu}_{3}{ }^{+}$ions for the former and the latter, respectively. These values were estimated from calculated volumes assuming both entities are spheres.

Table S2. Atomic coordinates for model compounds 7-A and 7-B.

Number	X	Y	Z	Numb	X	Y	Z
6	4.4477890	0.7102650	-2.1489540	6	0.8514000	0.1000190	5.0466230
6	3.0919500	1.0813490	-2.0789580	6	2.0613350	-0.4802780	5.4941910
6	2.5558700	1.4914510	-0.8030710	6	2.7013910	-0.9308600	3.2209830
6	3.5010200	1.7337060	0.2534470	6	2.9726630	-0.9874210	4.5953180
6	4.8328340	1.3621780	0.1084800	7	3.6718270	-1.5424670	2.3695490
6	5.3277080	0.7996670	-1.0739140	8	3.4044800	-1.7163110	1.1690090
6	2.4239590	0.9701820	-3.4177380	8	4.7609180	-1.9217860	2.8572140
7	1.4199000	1.4755560	-4.0153250	7	2.3453100	-0.5645630	6.9162650
6	0.4410710	2.3479370	-3.3942950	8	3.4089140	-1.0853130	7.2695940
6	-0.9509880	2.0816870	-3.9927570	8	1.5034800	-0.1098330	7.6964250
7	-1.2457810	0.6561430	-4.0094030	6	-3.2032040	2.9400730	0.8864290
6	-2.1079140	0.1242070	-3.2417050	6	3.0911920	2.4648280	1.5028240
6	-3.0280750	0.7085220	-2.2205620	1	-0.3260750	0.6401230	3.3444020
6	-4.3928230	0.4669970	-2.4215090	1	0.1487100	0.4748850	5.7817880
6	-5.3656260	0.9419930	-1.5420920	1	3.8875530	-1.4440720	4.9446240
6	-4.9356430	1.7260360	-0.4591220	8	-0.4309420	-0.8520170	-0.7503320
6	-3.5939680	2.0071140	-0.2245690	6	0.2549780	-1.7814760	-1.2668120
6	-2.5919780	1.4345180	-1.0734390	6	1.6910810	-1.7297870	-1.3326630
6	6.7839210	0.3857130	-1.1975710	6	2.4441210	-2.6964430	-1.9284950
6	-6.8346440	0.6010810	-1.7373770	6	1.8260720	-3.8460250	-2.4804290
6	-7.2671700	-0.5679360	-0.8114720	6	-0.3340930	-2.9952440	-1.8293830
6	-6.5701690	-1.8907040	-1.1848640	6	0.4453550	-3.9843870	-2.4282540
6	-6.8157420	-2.9483460	-0.1100700	7	-1.7491060	-3.2708040	-1.7467330
7	-6.3282100	-4.3624720	-0.4516990	8	-2.5056610	-2.4305530	-1.2481900
6	-7.7147680	1.8567210	-1.5243390	8	-2.1655650	-4.3681230	-2.1715620
6	-9.1360360	1.7729210	-2.1186130	7	2.6258830	-4.8971790	-3.0300060
6	-9.8241160	3.1141850	-1.8818750	8	2.0838880	-5.8379310	-3.6142660
7	-11.2373810	3.2909490	-2.4671660	8	3.8738400	-4.8319710	-2.8735570
6	6.9442650	-1.1150650	-1.5450300	1	2.1621770	-0.8774490	-0.8760980
6	6.4031670	-2.0386910	-0.4344600	1	3.5183060	-2.5843180	-1.9917260
6	6.4611010	-3.4947010	-0.8978080	1	-0.0320550	-4.8692510	-2.8254000
7	6.0026500	-4.5557380	0.1126730	8	-1.7194480	0.0199300	1.4133420
6	7.4897870	1.3110380	-2.2224420	6	-2.0134090	-1.1604120	1.7791780
6	9.0330240	1.3125840	-2.1665420	6	-1.0820060	-2.2669490	1.7805380
6	9.5411410	2.4017850	-3.1071560	6	-1.4282980	-3.5400530	2.1488200
7	11.0608560	2.6530920	-3.1322780	6	-2.7560870	-3.8309260	2.5368870
8	1.2715770	1.6996600	-0.6259880	6	-3.3481010	-1.5173530	2.2375990
8	-1.3118160	1.6640280	-0.8681990	6	-3.7002240	-2.8123490	2.5881570
27	-0.1523260	0.7769620	0.3564710	7	-4.4043980	-0.5325510	2.3642780
8	1.2481420	-0.2118840	1.4475350	8	-4.1238820	0.6105610	2.6968230
6	1.4906160	-0.3098660	2.6966410	8	-5.5791050	-0.9167330	2.1573050
6	0.5833290	0.1803580	3.7054890	7	-3.1391560	-5.1684160	2.8796680
8	-4.3482580	-5.4049680	3.0944440	1	9.0988070	3.3672700	-2.8453730
8	-2.2666210	-6.0409780	2.9302100	1	-2.6421380	2.4125630	1.6583790
1	-0.0721640	-2.0477530	1.4682160	1	-2.5564400	3.7322580	0.4972920
1	-0.6990580	-4.3419030	2.1405640	1	-4.0913770	3.3898030	1.3443530
1	-4.7021680	-3.0155020	2.9403360	1	2.8856360	3.5139030	1.2612880
8	-0.2592390	2.2165370	1.6507810	1	2.1862980	2.0603280	1.9493920
6	-0.0297870	3.4542040	1.9345700	1	3.8934080	2.4419430	2.2491240
6	-0.1630260	3.8152700	3.3208710	6	-11.7195760	4.6743010	-2.1093630
6	0.1316200	5.0623460	3.8204510	6	-12.1875260	2.2782810	-1.8864110
6	0.5956520	6.0591720	2.9477710	6	-7.1354700	-4.9471260	-1.5721960
6	0.3813930	4.5392340	1.0880060	6	-4.8686130	-4.3494300	-0.8457280
6	0.7245480	5.7873050	1.5900530	6	6.3615670	-5.9015640	-0.4559290
7	0.4498710	4.4732340	-0.3798920	6	4.5033010	-4.5157500	0.3022610
8	-0.6036600	4.3154770	-0.9863860	6	6.6668780	-4.3627830	1.4482050
8	1.5411550	4.7007730	-0.9076820	6	11.8015000	1.4115660	-3.5505180
7	0.9367830	7.3696860	3.4495920	6	11.5499590	3.1002100	-1.7793980
8	1.3552550	8.2152620	2.6475380	6	11.3350570	3.7469240	-4.1334100
8	0.7946820	7.5824100	4.6604290	1	-11.7425050	4.7715080	-1.0229030
1	-0.4989710	3.0275600	3.9858790	1	-12.7206560	4.8200390	-2.5189910
1	0.0247760	5.2865300	4.8751170	1	-11.0323870	5.4084010	-2.5326570
1	1.0761550	6.5618670	0.9201680	1	-12.1745340	2.3659220	-0.7987530
1	4.8093970	0.3431920	-3.1097200	1	-11.8736880	1.2785800	-2.1833440

1	5.5085240	1.5175620	0.9499350	1	-13.1909750	2.4807430	-2.2648960
1	3.0399800	0.3405050	-4.0777100	1	-8.1846280	-4.9873680	-1.2721430
1	0.7160850	3.3886810	-3.6188420	1	-6.7693560	-5.9544910	-1.7769880
1	0.3946990	2.2428060	-2.3146100	1	-7.0209580	-4.3309410	-2.4627620
1	-0.9591380	2.4027110	-5.0437990	1	-4.7417760	-3.8209270	-1.7855240
1	-1.6828640	2.6839350	-3.4351410	1	-4.5292810	-5.3797500	-0.9541740
1	-2.2658130	-0.9508940	-3.3922630	1	-4.2959550	-3.8389280	-0.0736920
1	-4.6931930	-0.1117500	-3.2960900	1	7.4461750	-5.9704100	-0.5612950
1	-5.6622120	2.1372250	0.2393960	1	5.8714310	-6.0076420	-1.4258710
1	7.2613810	0.5566630	-0.2202880	1	6.0051790	-6.6753990	0.2261340
1	-6.9690100	0.2757300	-2.7816310	1	4.0441860	-4.7253160	-0.6630200
1	-7.0112260	-0.3048580	0.2218720	1	4.2095870	-3.5305130	0.6657070
1	-8.3588790	-0.7167160	-0.8532190	1	4.2412020	-5.2848550	1.0320600
1	-6.9374130	-2.2198110	-2.1666170	1	6.2468290	-3.4752280	1.9256980
1	-5.4968790	-1.7028360	-1.2817850	1	7.7445560	-4.2643810	1.2998450
1	-6.3009120	-2.6548220	0.8087570	1	6.4573020	-5.2408060	2.0621260
1	-7.8831770	-3.0617680	0.1093330	1	11.4202110	1.0824250	-4.5186860
1	-7.7875540	2.0760150	-0.4515400	1	11.6474000	0.6326310	-2.8049960
1	-7.1958100	2.7086160	-1.9796740	1	12.8645260	1.6461280	-3.6285700
1	-9.0597700	1.5532750	-3.1903740	1	10.9902580	3.9869300	-1.4775690
1	-9.6960660	0.9566790	-1.6484410	1	12.6130320	3.3360230	-1.8516870
1	-9.9306840	3.3086680	-0.8108210	1	11.3959550	2.2996260	-1.0577150
1	-9.2338420	3.9266800	-2.3152070	1	10.7974910	4.6463610	-3.8298270
1	6.4136420	-1.3161690	-2.4852300	1	10.9896080	3.4223580	-5.1160860
1	8.0040680	-1.3567710	-1.7271880	1	12.4080810	3.9444100	-4.1605560
1	7.0091190	-1.8961280	0.4679000	6	-6.4993200	-5.2309470	0.7685860
1	5.3821620	-1.7458920	-0.1746020	1	-6.2593830	-6.2608010	0.4979210
1	5.8344190	-3.6557110	-1.7794620	1	-7.5366940	-5.1652740	1.1031250
1	7.4901880	-3.7739820	-1.1502130	1	-5.8182460	-4.9056350	1.5571790
1	7.1584290	1.0562210	-3.2376940	6	-11.2144850	3.1586860	-3.9675100
1	7.1350970	2.3307620	-2.0310590	1	-10.5013430	3.8779420	-4.3735730
1	9.3455650	1.5099230	-1.1338260	1	-12.2143840	3.3663190	-4.3524640
1	9.4278470	0.3313000	-2.4531890	1	-10.9155010	2.1467270	-4.2364750
1	9.2697090	2.1761700	-4.1425870				

7-B

Atomic	Coordinates (\AA)			Atomic	Coordinates (\AA)		
Number	X	Y	Z		X	Y	Z
6	-0.9230840	-2.7683720	0.5578710	7	7.3837360	4.2850840	0.9356300
6	-1.0807830	-2.6611040	-0.8658950	6	-7.0454390	1.7891170	-0.5318230
6	-2.0438980	-3.3702640	-1.5396190	6	-8.5141710	2.1819700	-0.2552050
6	-2.8603690	-4.2871530	-0.8386140	6	-8.7354250	3.6122140	-0.7542440
6	-1.6917600	-3.8093910	1.1977030	1	-8.0565910	4.3018770	-0.2446310
6	-2.6507800	-4.5341100	0.5187130	6	-7.2513220	-0.7709800	-0.7636830
7	-1.5694900	-4.0602960	2.6324270	6	-7.1782830	-2.1173420	-0.0121060
8	-2.5762000	-4.4689130	3.2216300	6	-7.4472750	-3.2869640	-0.9699800
8	-0.4816360	-3.8658090	3.1719260	7	-7.9192930	-4.5962520	-0.3216480
7	-3.9848150	-4.8840140	-1.4777410	8	-0.9192320	0.2619210	-0.3141560
8	-4.6168890	-5.7771120	-0.8673260	8	1.5599580	-0.5858150	-0.3642520

8	-4.3452180	-4.4624220	-2.5873300	27	0.3628640	-0.1458470	1.0255570
1	-0.4477240	-1.9447920	-1.3734590	6	2.8939210	-0.5595870	-2.7688660
1	-2.1969540	-3.2359890	-2.6043210	6	-2.3018380	0.4979270	-2.6868410
1	-3.2542880	-5.2549990	1.0529230	8	1.1707040	1.6349400	1.0592920
6	-4.3068710	0.2836990	1.1345500	6	0.8524660	2.7397720	0.4911660
6	-2.8883190	0.2708630	1.0937870	6	-0.5017740	3.1687260	0.2920140
6	-2.2068050	0.2925040	-0.1675000	6	-0.8225840	4.3403720	-0.3476280
6	-3.0042650	0.3889460	-1.3602890	6	0.1986250	5.1728230	-0.8459800
6	-4.3801840	0.3900970	-1.2566750	6	1.8585430	3.6661130	0.0119990
6	-5.0715800	0.3261320	-0.0180890	6	1.5259030	4.8436380	-0.6684910
6	-2.1597670	0.3056530	2.3369720	7	3.2597990	3.4364530	0.2272410
7	-0.8749280	0.2664640	2.4517110	8	4.0761130	4.0481810	-0.5001180
6	-0.1892290	0.3492550	3.7418040	8	3.6316380	2.6828010	1.1348020
6	0.9420180	-0.6863350	3.7198810	7	-0.1484110	6.4091760	-1.5344260
7	1.6086930	-0.5641870	2.4241290	8	0.7706240	7.1285990	-1.9273850
6	2.8705440	-0.7552230	2.2590380	8	-1.3482330	6.6570030	-1.6827240
6	3.5583020	-0.7336740	0.9972250	1	-1.2852970	2.5346090	0.6797070
6	4.9707380	-0.8088440	1.0061560	1	-1.8536820	4.6473690	-0.4757660
6	5.7154880	-0.7660510	-0.1591990	1	2.3031460	5.4986230	-1.0366560
6	5.0032820	-0.6825840	-1.3826570	1	-4.7930860	0.2696170	2.1096550
6	3.6243470	-0.6364390	-1.4549550	1	-4.9512250	0.4551560	-2.1818260
6	2.8510560	-0.6441290	-0.2439640	1	-2.7538210	0.3957800	3.2528020
6	-6.5956050	0.4028930	0.0113520	1	-0.8784930	0.1713720	4.5757500
6	7.2383770	-0.7462480	-0.1408380	1	0.2328440	1.3568500	3.8373070
6	7.8237470	-1.8664020	-1.0406700	1	0.5213360	-1.6948020	3.7935640
6	9.3100840	-2.2004480	-0.7833450	1	1.6441610	-0.5250030	4.5466040
6	9.7187070	-3.3694540	-1.6821510	1	3.4770260	-0.9550000	3.1486630
1	9.0772810	-4.2355870	-1.4956640	1	5.4750060	-0.8874810	1.9690880
6	7.7578600	0.6643730	-0.5355690	1	5.5567850	-0.6481220	-2.3203120
6	7.4737950	1.7218430	0.5555780	1	-6.9154200	0.3422920	1.0625610
6	7.3379340	3.1165030	-0.0597650	1	7.5622890	-0.9512250	0.8907650
85	7.2276550	-2.7719460	-0.8748530	6	-7.0760100	-4.9656010	0.8746450
86	7.6906680	-1.5988870	-2.0973960	6	-9.3567580	-4.4779790	0.1034170
87	9.9343450	-1.3226360	-0.9841550	1	12.3514730	-5.4185790	-2.4276090
88	9.4358590	-2.4610400	0.2742510	1	10.6155460	-5.8174260	-2.2846470
89	9.6173510	-3.0970040	-2.7366790	1	11.1671200	-4.6575260	-3.5283290
90	11.1553950	-3.8950390	-1.5369320	1	13.1614030	-3.2519560	-1.8196370
91	8.8368570	0.6486590	-0.7431650	1	11.9599730	-2.4323060	-2.8565730
92	7.2665760	0.9534980	-1.4736920	1	12.0794720	-2.0194520	-1.1199790
93	6.5341080	1.4709120	1.0567580	1	12.4010710	-4.8553510	-0.1074340
94	8.2732880	1.6817700	1.3061940	1	11.3351780	-3.5967260	0.5688570
95	8.1333580	3.3248320	-0.7822360	1	10.6547160	-5.1782600	0.0860740
96	6.3692550	3.2020980	-0.5581620	1	7.0141640	6.3805330	0.8854900
97	-6.3923100	2.5438560	-0.0773440	1	7.5205800	5.6713680	-0.6745630
98	-6.8565010	1.8332810	-1.6127340	1	5.8618740	5.3777970	-0.0598760
99	-9.1949980	1.4874680	-0.7594940	1	6.3920310	4.9497080	2.6887830
100	-8.7069170	2.1123220	0.8219410	1	5.4959770	3.7119630	1.7368160
101	-8.5365800	3.6780500	-1.8278950	1	6.9056170	3.2431880	2.7306930
102	-10.1359620	4.2148100	-0.5665720	1	8.7768630	5.3349010	2.1453760
103	-8.3076810	-0.5535690	-0.9752200	1	9.1561940	3.6099570	1.9049730
104	-6.7580440	-0.8642770	-1.7393610	1	9.4198890	4.7768500	0.5755720
105	-6.1870830	-2.2301930	0.4397140	1	-11.1026750	6.0652110	-1.0000020
106	-7.9054260	-2.0954170	0.8096950	1	-9.3722010	6.2061910	-0.5774520
107	-8.2327210	-3.0343030	-1.6889390	1	-9.8527330	5.5790250	-2.1810300
108	-6.5454190	-3.5363690	-1.5360680	1	-12.1380160	3.9180540	-1.2156850
109	2.2475870	-1.4340660	-2.9118110	1	-10.8890760	3.3657340	-2.3667030
110	2.2362790	0.3164310	-2.8013160	1	-11.2346000	2.4158310	-0.8903930
111	3.5925050	-0.5068660	-3.6098460	1	-11.4676750	4.7891160	0.9875570
112	-1.6672630	-0.3749590	-2.8746660	1	-10.5872360	3.2696570	1.2939820
113	-3.0185280	0.5893000	-3.5087910	1	-9.7378670	4.8379710	1.4295350
114	-1.6355300	1.3680260	-2.7042040	1	-8.2177810	-6.6120750	-0.9384410
115	11.3353720	-5.0313140	-2.5172480	1	-8.3696920	-5.3988050	-2.2425770
116	12.1607480	-2.8183780	-1.8557480	1	-6.7447760	-5.8310090	-1.5970180
117	11.4023750	-4.4174250	-0.1439670	1	-7.4334100	-5.9229050	1.2578090
118	6.9064680	5.5254060	0.2158890	1	-6.0397450	-5.0666800	0.5521310

119	6.4717290	4.0274530	2.1105490	1	-7.1833840	-4.1984330	1.6406080
120	8.7858940	4.5155310	1.4246160	1	-9.6646720	-5.4173270	0.5649920
121	-10.1138880	5.6205460	-1.1225680	1	-9.4584700	-3.6666830	0.8245790
122	-11.1736110	3.4172620	-1.3143820	1	-9.9719780	-4.2811670	-0.7761170
123	-10.5073260	4.2796570	0.8937960	8	-0.1944960	-1.9866000	1.2603620
124	-7.8017600	-5.6947620	-1.3587650				

Cyclic voltammetry (CV) measurement. Except for the experiments using a Pt microdisk electrode (dia. $100 \mu \mathrm{~m}$), all the electrochemical measurements were performed using a BAS 100B electrochemical analyzer at room temperature in an Ar atmosphere glove box. CVs performed in DMSO and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution contained 0.5 mM cobalt complex and 0.1 M tetrabutylammonium tetrafluoroborate $\left(\mathrm{TBABF}_{4}\right)$, respectively, with scan rates of $0.1 \mathrm{~V} / \mathrm{s}$ for Pt disk or $5 \mathrm{mV} / \mathrm{s}$ for Pt microdisk, also respectively. A Pt disk (dia. 1.6 mm or $100 \mu \mathrm{~m}$) and Pt wire were used as working and counter electrodes. The reference electrode used was $\mathrm{Ag} \mid \mathrm{AgNO}_{3}(0.1 \mathrm{M})$, and all potential values were calibrated vs. the ferrocene/ferrocenium $\left(\mathrm{Fc} \mid \mathrm{Fc}^{+}\right)$redox couple. The potential values shown in this text were calibrated again to the saturated calomel electrode (SCE) using $\mathrm{Fc} \mid \mathrm{Fc}^{+}$redox potential, unless otherwise specified.
$\mathbf{C O}_{2}$ (propylene oxide) copolymerization (small scale). The bomb reactor (50 mL) containing the catalyst [4.5 mg for $[\mathrm{PO}] /[\mathrm{Cat}]=100000$ and $\mathbf{1 5}$ (entry 10 in Table 1)] was assembled inside a glove box. After bringing out the bomb reactor from the box, propylene oxide ($10 \mathrm{~g}, 170 \mathrm{mmol}$) was transfered through the schlenk line into the bomb reactor. The CO_{2} gas was pressurized to 15 bar, then it was immersed in an $80^{\circ} \mathrm{C}$ oil bath. The pressure increased according to the increase of the solution temperature, reaching ~ 23 bar around ~ 50 minutes. After reaching its maximum, the pressure remained steady for a time. However, as polymerization started, a pressure drop was observed. Polymerization was performed for 1 hour after initiation, during which 3-4 bar pressure drop was observed. The reactor was cooled to room temperature by immersion in an ice bath. After the release of CO_{2} gas, the reactor was opened and an aliquot was taken and dissolved in $\mathrm{CDCl}_{3} .{ }^{1} \mathrm{H}$ NMR analysis of the solution allowed the selectivity and carbonate linkage to be calculated. The viscous solution was diluted with 20 mL of methylene chloride and the viscous solution was filtered over a short pad of silica gel to give a colorless
solution. Volatiles were removed using a rotary evaporator to give a white residue. The polymer lump removed from the flask and then broken manually into pieces. After being placed in a hood overnight to evaporate any residual PO, the polymer pieces were completely dried in an oven at approximately $150^{\circ} \mathrm{C}$ for 30 minutes. The yield was 2.70 g for entry 9 in Table 1, which correspond to PO conversion of 15%. PO conversion of $\sim 15 \%$ is almost maximum attainable in this copolymerization. Due to the high molecular weight of the formed polymer, polymerization solution of $\sim 15 \%$ conversion is very viscous and stirring with magnetic bar is ceased at this point. ${ }^{9}$

The temperature inside the bomb reactor was measured using a thermocouple. It took ~ 50 minutes for the solution temperature to reach $\sim 70^{\circ} \mathrm{C}$. Therefore, 50 minutes was subtracted from the measured induction time since polymerization did not start under $70^{\circ} \mathrm{C}$.
$\mathrm{CO}_{2} /$ (propylene oxide) copolymerization (70 g scale). A bomb reactor (500 mL scale) equipped with a mechanical stirrer was evacuated at $150^{\circ} \mathrm{C}$ for 12 hours. After the reactor was cooled to room temperature, $\mathrm{PO}(220 \mathrm{~g})$ was charged using a cannula. A solution of $15(0.090 \mathrm{~g}, 0.035 \mathrm{mmol})$ in PO ($\sim 10 \mathrm{~g}$, making total $\mathrm{PO}=230 \mathrm{~g}$) was added using a syringe. CO_{2} gas was charged to 15 bar, and the solution was heated to $75^{\circ} \mathrm{C}$. After heating the solution to $\sim 70^{\circ} \mathrm{C}$ for 1 hour, a pressure drop was observed. The initial stirring rate was $\sim 420 \mathrm{rpm}$, but when the stirring power was not changed during polymerization, it decreased gradually. We terminated the polymerization when the stirring rate had dropped to $\sim 270 \mathrm{rpm}(1 \mathrm{~h})$; running the polymerization beyond that point slighly increased TON, but it detrimentally sacrificed the selectivity and TOF. When the stirring rate reached $\sim 270 \mathrm{rpm}$, the reactor was immersed in an ice bath to cool it to below $35^{\circ} \mathrm{C}$. After the CO_{2} pressure was released, the reactor was opened. A very thick viscous polymerization solution was obtained (See a picture below). An aliquot was taken for NMR analysis. The thick viscous solution was diluted with PO (200 g). The light yellow solution was filtered through a short pad of silica gel (12 g) previously wetted with PO (40 mL). PO was removed from the colorless filtrate by vacuum-transfer to a reservoir containing CaH_{2}. After several days of drying over CaH_{2}, the recovered PO was used for polymerization. The polymer strongly adhered to glass surfaces, making detachment difficult. However, it was easily detachable by wetting
with diethyl ether, in which the copolymer is insoluble. The polymer lump was removed from the flask and then broken manually into pieces. The polymer pieces were placed in a hood overnight to evaporate residual PO and then they were completely dried in an oven $\left(\sim 150^{\circ} \mathrm{C}\right)$ for 30 minutes. 70 g of polymer was isolated for entry 10 in Table 1.

$<$ The ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY NMR spectrum of 7 in THF- d_{6} at $0^{\circ} \mathrm{C}>$

$<$ The variable temperature ${ }^{15} \mathrm{~N}$ NMR spectra of 7 in THF- $\mathrm{d}_{6}>$

$<$ The ${ }^{19}$ F NMR spectrum of 7 in dmso- d_{6} at room temperature>

X = 2,4-dinitrophenolate

$-49.50-50.0 \quad-50.5 \quad-51.0$
$<$ The variable temperature ${ }^{1} \mathrm{H}$ NMR spectra of $\mathbf{8}$ in THF- $\mathrm{d}_{8}>$

$<$ The ${ }^{19}$ F NMR spectrum of $\mathbf{8}$ in $\mathrm{dmso}^{-\mathrm{d}_{6}}$ at room temperature>

$<$ The variable temperature ${ }^{15} \mathrm{~N}$ NMR spectra of $\mathbf{8}$ in dmso- $\mathrm{d}_{6}>$

$<$ The variable temperature ${ }^{15} \mathrm{~N}$ NMR spectra of $\mathbf{8}$ in THF- $\mathrm{d}_{6}>$

$40^{\circ} \mathrm{C}$ $25^{\circ} \mathrm{C}$
$0^{\circ} \mathrm{C}$

<The ${ }^{1}$ H NMR spectra of $\mathbf{3}>$
 H dmso- $\mathrm{d}_{8} 80^{\circ} \mathrm{C}$

 dmso- $\mathrm{d}_{8} 40^{\circ} \mathrm{C}$

 dmso-d8 $20^{\circ} \mathrm{C}$

$<$ The ${ }^{13} \mathrm{C}$ NMR spectra of $\mathbf{3}$ in $\mathrm{dmso}^{-\mathrm{d}_{6}}$ and its signal assignment>

$$
\text { X }=2,4 \text {-dinitrophenolate }
$$

$<$ The ${ }^{1} \mathrm{H}$ NMR spectrum of 4 in dmso $-\mathrm{d}_{6}$ at $20^{\circ} \mathrm{C}$ and its signal assignment>

$<$ The ${ }^{13} \mathrm{C}$ NMR spectrum of 4 in dmso- $_{6}$ at $20^{\circ} \mathrm{C}$ and its signal assignment>

$$
*=X
$$

$<$ The ${ }^{1} \mathrm{H}$ NMR spectra of $9>$

$<$ The ${ }^{1} \mathrm{H}$ NMR spectra of $\mathbf{1 0}>$

$<$ The ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{1 1}$ in dmso- d_{6} at $20^{\circ} \mathrm{C}>$

$<$ The ${ }^{1} \mathrm{H}$ NMR spectra of $\mathbf{1 5}>$

$\left[\mathrm{Bu}_{4} \mathrm{~N}\right]^{+}[\mathrm{DNP} . . . \mathrm{H} . . . \mathrm{DNP}]^{-}$ THF-d 8

$\mathrm{CD}_{2} \mathrm{Cl}_{2}$

<Cyclic voltammograms of 3 and 4 in DMSO ((A): At a platinum disk electrode with negative direction; $v=0.1 \mathrm{~V} / \mathrm{s}$; the scale bar, $5 \mu \mathrm{~A}$. (B): Magnified CVs, the scale bar $0.4 \mu \mathrm{~A}$. (C) Steady-state voltammograms at a platinum micro-disk electrode (dia. $100 \mu \mathrm{~m}$); $v=5 \mathrm{mV} / \mathrm{s}$; the scale bar, 0.4 nA)>

3 (in DMSO at $20^{\circ} \mathrm{C}$)

4(in DMSO at $20^{\circ} \mathrm{C}$)

(A)

E $/ \mathrm{V}$ vs SCE

$<$ Cyclic voltammograms of 12 and 13 in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ((A): At a platinum disk electrode with negative direction; $v=0.1 \mathrm{~V} / \mathrm{s}$; the scale bar, $5 \mu \mathrm{~A}$. (B): Magnified CVs, the scale bar $0.4 \mu \mathrm{~A}$)>

<Cyclic voltammograms of 12 and $\mathbf{1 3}$ in DMSO ((A): At a platinum disk electrode with negative direction; $v=0.1 \mathrm{~V} / \mathrm{s}$; the scale bar, $5 \mu \mathrm{~A}$. (B): Magnified CVs, the scale bar $0.4 \mu \mathrm{~A}$. (C) Steady-state voltammograms at a platinum micro-disk electrode (dia. $100 \mu \mathrm{~m}$); $v=5 \mathrm{mV} / \mathrm{s}$; the scale bar, 0.4 nA)>

13 (in DMSO)

${ }^{1}$ W. L. F. Armarego, D. D. Perrin, Purification of Laboratory Chemicals 4th Ed, ButterworthHeinemann: Singapore, 1996; p 209.
${ }^{2}$ S, S.; Min, J. K.; Seong, J. E.; Na, S. J.; Lee, B. Y. Angew. Chem. Int. Ed. 2008, 47, 7306.
${ }^{3}$ Min, J.; Seong, J. E.; Na, S. J.; Cyriac, A.; Lee, B. Y. Bull. Kor. Chem. Soc. 2009, 30, 745.
${ }^{4}$ Meyers, A. I.; Licini, G. Tetrahedron Lett. 1989, 30, 4049.
${ }^{5}$ Hirel, C.; Vostrikova, K. E.; Pecaut, J.; Ovcharenko, V. I.; Rey, P. Chem. Eur. J. 2001, 7, 2007.
${ }^{6}$ Gaussian 03, Revision D.02, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery, Jr., T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda,
O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez, and J. A. Pople, Gaussian, Inc., Wallingford CT, 2004.
${ }^{7}$ (a) Lee, C.; Yang, W.; Parr, R. G. Phys. Rev. B 1988, 37, 785. (b) Becke, A. D. Chem. Phys. 1993, 98, 5648. (c) Stephens, P. J.; Devlin, F. J.; Chabalowski, C. F.; M. J. Frisch, J. Phys. Chem. 1994, 98, 11623.
${ }^{8}$ (a) Wadt, W. R.; Hay, P. J.; J. Chem. Phys. 1985, 82, 270. (b) Hay, P. J.; Wadt, W. R. 1985, 82, 299.
${ }^{9}$ Noh, E. K.; Na, S. J.; S, S.; Kim, S.-W.; Lee, B. Y. J. Am. Chem. Soc. 2007, 129, 8082.

