Differential reactivity of purified bioactive coffee furans, cafestol and kahweol, with acidic nitrite: product characterization and factors controlling nitrosation versus ring opening pathways.

Maria De Lucia, Lucia Panzella, Dominique Melck, Italo Giudicianni, Andrea Motta, Alessandra Napolitano, * and Marco d'Ischia

NMR spectra

Spectra were acquired using 256 equally spaced evolution-time period t_1 values averaging 16 transients of 2048 points, with 6024 Hz of spectral width. Time-domain data matrices were all zero-filled to 4K in both dimensions, thus yielding a digital resolution of 2.94 Hz/pt. Prior to Fourier transformation, a Lorentz-to-Gauss window with different parameters was applied for both t_1 and t_2 dimensions for all the experiments. ROESY spectra were obtained with 200-ms mixing time, and the recycle time was set to 5 times the longest T1. TOCSY experiments were recorded with spinlock periods of 64 ms, achieved with the MLEV-17 pulse sequence. Linear prediction was applied to extend the data to twice their length in t_1 . The ¹H and ¹³C natural abundance HSQC and HMBC spectra were recorded at 300 K on the DRX-600 spectrometer, operating at 150.90 MHz for ¹³C. One hundred twenty eight equally spaced evolution time period t₁ values were acquired, averaging 48 transients of 2048 points and using GARP4 for decoupling. The final data matrix was zero-filled to 4096 in both dimensions, and apodized before Fourier transformation by a shifted cosine window function in t₂ and in t₁. Linear prediction was also applied to extend the data to twice their length in t_1 .

¹H NMR spectrum of kahweol in CD₃OD

¹³C NMR spectrum of kahweol in CD₃OD

COSY spectrum of kahweol in CD₃OD

TOCSY spectrum of kahweol in CD₃OD

ROESY spectrum of kahweol in CD₃OD

¹H, ¹³C HSQC spectrum of kahweol in CD₃OD

¹H, ¹³C HMBC spectrum of kahweol in CD₃OD

¹H NMR spectrum of compound **1** in acetone- d_6

¹³C NMR spectrum of compound **1** in acetone- d_6

COSY spectrum of compound 1 in acetone- d_6

TOCSY spectrum of compound 1 in acetone- d_6

ROESY spectrum of compound 1 in acetone- d_6

¹H, ¹³C HSQC spectrum of compound **1** in acetone- d_6

¹H, ¹³C HMBC spectrum of compound **1** in acetone- d_6

¹H NMR spectrum of compound **2** in CD₃OD

¹³C NMR spectrum of compound **2** in CD₃OD

¹H, ¹³C HSQC spectrum of compound **2** in CD₃OD

¹H, ¹³C HMBC spectrum of compound **2** in CD₃OD

HPLC elution profile and ESI+/MS spectrum of kahweol isolated from green coffee beans. Elution conditions are described in the Experimental Procedures.

Kahweol

HPLC elution profile and ESI+/MS spectrum of cafestol obtained from green coffee beans. Elution conditions are described in the Experimental Procedures.

Cafestol

HPLC elution profiles of the ethyl acetate extract from the reaction mixture of coffee with nitrite ions (2 mM) at pH 3 (blue trace: 0 min; red trace: 2 h). Elution conditions are described in the Experimental Procedures.

