Supporting Information II

for

Peloruside B, a New and Potent Antitumor Macrolide from the New Zealand Marine Sponge *Mycale hentscheli*: Isolation, Total Synthesis and Bioactivity

A. Jonathan Singh,[†] Chun-Xiao Xu,[‡] Xiaoming Xu,[‡] Lyndon M. West,[⊥] Anja Wilmes,[†] Ariane Chan,[†] Ernest Hamel,[≠] John H. Miller,[†] Peter T. Northcote^{*,†}, and Arun K. Ghosh^{*,‡}

 [†]Centre for Biodiscovery, Victoria University of Wellington, Wellington, New Zealand;
[‡]Departments of Chemistry and Medicinal Chemistry, Purdue University, West Lafayette, IN
47907; [#]Toxicology and Pharmacology Branch, Developmental Therapeutics Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, Frederick, National Institutes of Health, Frederick, MD; ¹Department of Chemistry & Biochemistry, Florida Atlantic University, Boca Raton, FL.

Contents

General experimental for <i>natural</i> peloruside B (2)	S28
1D and 2D NMR spectra of peloruside A (1)	S30
1D and 2D NMR spectra of <i>natural</i> peloruside B (2)	S35

Experimental for Natural Peloruside B

General: 600 MHz NMR spectra for both natural and synthetic peloruside B (2) were obtained using the same spectrometer equipped with a triple resonance HCN cryogenic probe, operating at 600 MHz or 150 MHz for ¹H and ¹³C nuclei respectively. Chemical shifts δ (ppm) were referenced to the residual solvent peak ($\delta_{\rm H}$ 7.26 ppm, $\delta_{\rm C}$ 77.16 ppm for CDCl₃). Catalytic amounts (1–2 µL) of d_5 -pyridine were added to each NMR sample performed in CDCl₃ to prevent compound degradation due to trace acidity associated with the solvent. High-resolution positive-ion mass spectra were recorded on a TOF electrospray mass spectrometer. Normal-phase column chromatography carried was out using 2,3-dihydroxypropoxypropyl-derivatized silica (DIOL). Reversed-phase column chromatography was achieved using HP20 or Amberchrom poly(styrene divinylbenzene) (PSDVB) chromatographic resin. HPLC was performed using a solvent delivery module equipped with 25 mL pump heads. Solvents used for flash normal- and reversed-phase column chromatography were of HPLC or analytical grade quality. All other solvents were purified by glass-distillation. Solvent mixtures are reported as % vol/vol unless otherwise stated. Specimens were stored at -20 °C until required

Isolation of Natural Peloruside B: *Mycale hentscheli*, (230 g, NIWA no. MNP 0026), collected at a depth of 23 m from Kapiti Island, New Zealand, was cut into small segments and extracted with MeOH (2×700 mL) for 24 h. The combined extracts were loaded on to HP20 PSDVB beads, washed with H₂O and eluted with i) 20% Me₂CO/H₂O, ii) 55% Me₂CO/H₂O, iii) 55% Me₂CO/H₂O, iii) 55% Me₂CO/0.2 M NH₄OH and iv) 55% Me₂CO/0.2 M NH₄OH adjusted to pH 4 with AcOH. Fraction ii) was concentrated to dryness to yield 82.0 mg of a viscous brown oil. The resulting oil was dissolved in MeOH, loaded onto Amberchrom PSDVB and eluted with increasing concentrated to dryness to yield mycalamide D (3 mg). The 56–60% MeOH/H₂O fractions were

concentrated to dryness to yield peloruside A (1) (1.1 mg), and concentration of the 68–72% MeOH/H₂O fractions gave mycalamide A (7.0 mg). The 54–56% MeOH/H₂O fractions were concentrated to dryness to yield 5.0 mg of brown oil. A portion of this oil (3.0 mg) was recycled twice on DIOL with increasing concentrations of MeCN in CH₂Cl₂ (1–10%), and 50% MeOH/CH₂Cl₂. The 10% MeCN/CH₂Cl₂ and 50% MeOH/CH₂Cl₂ fractions were concentrated to dryness to yield a pale yellow oil (1.5 mg). This oil was then purified using HPLC (DIOL, 5 μ m, 4 mm × 250 mm), with 20% i-PrOH/n-hexane as the mobile phase, collecting fractions at 1 min intervals to give 13.9 μ g of mycalamide D, 9.4 μ g of peloruside A (1) and 327 μ g of peloruside B (2).

Peloruside A (1): Colorless film; all other data as previously published.

Peloruside B (2): Colorless film; $[\alpha]_D^{25}$ could not be determined accurately because of very small quantity of natural sample and magnitude of rotation was very small; NMR data see Table 1; HRESIMS, $[M + Na]^+$, observed m/z 557.29356, calculated 557.29323 for C₂₆H₄₆O₁₁Na , $\Delta = 0.58$ ppm.

 1 H NMR spectrum of peloruside A (1) in CDCl₃ (600 MHz).

 13 C NMR spectrum of peloruside A (1) in CDCl₃ (600 MHz).

COSY NMR spectrum of peloruside A (1) in CDCl₃ (600 MHz).

 $HSQC_{ad}$ NMR spectrum of peloruside A (1) in CDCl₃ (600 MHz).

HMBC NMR spectrum of peloruside A (1) in CDCl₃ (600 MHz).

¹H NMR spectrum of *natural* peloruside B (2) in CDCl₃ (600 MHz).

¹³C NMR spectrum of *natural* peloruside B (2) in CDCl₃ (150 MHz).

COSY NMR spectrum of *natural* peloruside B (2) in CDCl₃ (600 MHz).

HSQC_{ad} NMR spectrum of *natural* peloruside B (2) in CDCl₃ (600 MHz).

HMBC NMR spectrum of *natural* peloruside B (2) in CDCl₃ (600 MHz).

2D TOCSY NMR spectrum of *natural* peloruside B (2) in CDCl₃ (600 MHz).

NOESY_{zq} NMR spectrum of *natural* peloruside B (2) in CDCl₃ (600 MHz).