Supporting Information-I:

Synthesis of Dihydrofuroaporphine Derivatives: Identification of a Potent and Selective Serotonin 5-HT_{1A} Receptor Agonist

Zhili Liu,^{†,§} Hai Zhang,^{‡,§} Na Ye,[†] Jing Zhang,[†] QianQian Wu,[‡] Peihua Sun,[‡] Linyong

Li,[‡] Xuechu Zhen,^{‡,*} and Ao Zhang^{†,*}

Contents

1. Table 3. DA (D_1, D_2) and 5-HT _{1A} receptor binding	
affinity of the diastereomeric mixtures	
10c,10e,11e,12a,12c,13 and 24	2
2. Experimental Details	3
3. Copies of 1H and 13C NMR of all new compounds	16
4. Chiral HPLC analysis of aporphine 19	43
5. X-ray analysis of cis-19	44

[†]Synthetic Organic & Medicinal Chemistry Laboratory (SOMCL), SIMM

[‡]Neuropharmacological Laboratory, SIMM

[§]These two authors contributed equally to this work.

^{*}To whom correspondence should be addressed. For Ao Zhang, <u>aozhang@mail.shcnc.ac.cn</u>; Tel: 86-21-50806035; Fax: 86-21-50806035; For Xuechu Zhen, <u>xczhen@mail.shcnc.ac.cn</u>, Tel: 86-21-50806750; Fax: 86-21-50806750.

	$K_i \pm SEM (nM)$			
compa –	D ₁ ([³ H]SCH23390)	D ₂ ([³ H]Spiperone)	5-HT _{1A} ([³ H]8-OH-DPAT)	
buspirone	-	-	20.0±1.8 (24 ^b)	
1(8-OH-DPAT)	-	-	1.2 (3.1 ^c)	
10c	>10,000	>10,000	>10,000	
10e	>10,000	>10,000	11±2	
11e	>10,000	>10,000	>10,000	
12a	>10,000	>10,000	340±91	
12c	>10,000	>10,000	90±10	
13	>10,000	>10,000	626±197	
24	>10,000	>10,000	12.0±2.0	

Table 3. Binding affinity of aporphines for DA $(D_1,\,D_2)$ and 5-HT (5-HT_{1A}) receptors from HEK293 or CHO cells^a

^aValues are means of five to six experiments. Dash lines denote that no experiment was conducted.

^bData from ref 17; ^cData from ref 14.

Experimental Section

General Methods. ¹H NMR spectral data were recorded in CDCl₃ on Varian Mercury 300 NMR spectrometer and ¹³C NMR were recorded in CDCl₃ on Varian Mercury 400 NMR spectrometer. Low-resolution mass spectra (MS) and high-resolution mass spectra (HRMS) were recorded at an ionizing voltage of 70 eV on a Finnigan/MAT95 spectrometer. Elemental analyses were performed on a CE 1106 elemental analyzer. Optical rotations were determined with a JASCO DCP-1000 digital polarimeter and were the average of 3 measurements. Column chromatography was carried out on silica gel (200-300 mesh). All reactions were monitored using thin-layer chromatography (TLC) on silica gel plates. Yields were of purified compounds and were not optimized. Compounds $4a^{21,28}$, $4b^{21,28}$ and $4c^{35}$ were prepared according to corresponding literature procedures. HPLC analysis was conducted for all compounds listed in Table 1 on an Agilent 1100 series LC system (Agilent ChemStation Rev.A.10.02; ZORBAX Eclipse XDB-C8, 4.8 mm x150 mm, 5 µM, 1.0 mL/min, uv 254 nM, rt) with two solvent systems (MeCN/H₂O, and MeOH/H₂O). All the assayed compounds displayed a purity of 95%-99% in both solvent systems, and the diastereomeric mixtures of 10c, 10e, 11e, 12a, 12c, 13, 19 and 24 were inseparable and displayed one peak with >95% purity in both systems.

General Procedure for the preparation of ethers 10a-d. To a solution of 11-hydroxyaporphine 4a (1.0 mmol), K_2CO_3 (276 mg, 2.0 mmol) and a catalytic amount of KI (5 mg) in anhydrous DMF (10 mL) at 0 °C, an appropriate allyl bromide (1.0 mmol) was added. After stirred for 1h at 0 °C, the reaction mixture was warmed

to rt, and then diluted with Et_2O (30 mL) and H_2O (20 mL). The organic layer was separated, washed with brine, dried over anhydrous Na_2SO_4 , and evaporated. The residue was purified by silica gel chromatography (petroleum:ethyl acetate = 3:1, 1% Et_3N) to give a pure oily product.

11-Allyloxy-N-methylaporphine (**10a**): colorless liquid (310 mg, 97%); ¹H-NMR (300 MHz, CDC1₃) δ 8.16 (d, *J* = 7.8 Hz, 1H), 7.20 (m, 2H), 7.05 (d, *J* = 7.5 Hz, 1H), 6.91 (dd, *J* = 8.7, 7.8 Hz, 2H), 6.10 (m, 1H), 5.46 (dd, *J* = 17.4, 1.2 Hz, 1H), 5.28 (m, 1H), 4.61 (m, 2H), 3.37 (dd, *J* = 13.8, 3.0 Hz, 1H), 3.14 (m, 3H), 2.92 (m, 1H), 2.50 (m, 4H), 1.62 (m, 2H), 0.97 (t, *J* = 7.2 Hz, 3H); ¹³C-NMR (100 MHz, CDC1₃) δ 155.7, 138.6, 135.4, 133.4, 132.9, 131.6, 127.8, 127.4, 126.4, 125.7, 123.7, 121.0, 117.1, 112.1, 69.5, 59.6, 56.5, 49.0, 35.3, 29.3, 19.7, 12.1; EI (MS) 319 (M⁺); HRMS calcd for C₂₂H₂₅NO₂: 319.1936. Found: 319.1931.

11-(2-Methylallyloxy)-*N***-methylaporphine** (**10b**). Brown oil (306 mg, 92%); ¹H-NMR (300 MHz, CDC1₃) δ 8.16 (d, 1H, *J* = 8.1 Hz), 7.18 (m, 2H), 7.05 (d, 1H, *J* = 7.5 Hz), 6.91 (m, 2H), 5,14 (s, 1H), 4.98 (s, 1H), 4.55 (q, 2H, *J* = 12.6 Hz), 3.37 (d, 1H, *J* = 14.7 Hz), 3.18 (m, 3H), 2.91 (m, 1H), 2.76 (dd, 1H, *J* = 16.2, 3.9 Hz), 2.51 (m, 3H), 1.85 (s, 3H), 1.64 (m, 2H), 0.97 (t, 3H, *J* = 7.2 Hz); ¹³C-NMR (100 MHz, CDC1₃) δ 155.7, 140.8, 138.4, 135.3, 132.8, 131.5, 127.8, 127.4, 126.5, 125.6, 123.5, 120.9, 112.4, 111.7, 72.3, 59.5, 56.5, 49.0, 35.3, 29.3, 19.6, 19.5, 12.1; EI (MS) 333 (M⁺); HRMS calcd for C₂₃H₂₇NO₂: 333.2093. Found: 333.2090.

11-(1-Methylallyloxy)-*N***-methylaporphine (10c).** Brown oil (147 mg, 44%); ¹H-NMR (300 MHz, CDC1₃) δ 8.16 (d, 1H, *J* = 8.1 Hz), 7.18 (m, 2H), 7.05 (d, 1H, *J* = 7.5 Hz), 6.91 (m, 2H), 5.82 (m, 2H), 4.57 (m, 1H), 4.51 (m, 1H), 3.39 (d, 1H, J = 12.9 Hz), 3.18 (m, 3H), 2.91 (m, 1H), 2.76 (m, 1H), 2.53 (m, 3H), 1.75 (m, 3H), 1.66 (m, 2H), 0.98 (t, 3H, J = 7.2 Hz); ¹³C-NMR (100 MHz, CDC1₃) δ 155.7, 140.6, 138.4, 135.3, 132.7, 131.5, 127.7, 127.3, 126.4, 125.6, 123.4, 120.8, 112.4, 111.7, 72.3, 59.5, 56.5, 48.9, 35.2, 29.3, 19.6, 19.5, 12.0; EI (MS) 333 (M⁺); HRMS calcd for C₂₃H₂₇NO₂: 333.2093. Found: 333.2095.

11-(3,3-Bismethylallyloxy)-*N***-methylaporphine** (**10d**). Brown oil (177 mg, 51%); ¹H-NMR (300 MHz, CDC1₃) δ 8.16 (d, 1H, *J* = 8.1 Hz), 7.18 (m, 2H), 7.04 (d, 1H, *J* = 7.5 Hz), 6.91 (dd, 2H, *J* = 7.2, 2.1 Hz), 5.53 (m, 1H), 4.60 (m, 2H), 3.37 (dd, 1H, *J* = 12.3, 2.4 Hz), 3.14 (m, 3H), 2.91 (m, 1H), 2.76 (dd, 1H, *J* = 15.9, 5.4 Hz), 2.50 (m, 3H), 1.78 (s, 3H), 1.73(s, 3H), 1.64 (m, 2H), 0.97 (t, 3H, *J* = 7.5 Hz); ¹³C-NMR (100 MHz, CDC1₃) δ 155.9, 138.2, 137.0, 132.5, 131.6, 127.6, 127.3, 126.3, 125.8, 123.4, 120.7, 120.0, 112.0, 65.6, 59.5, 56.4, 48.9, 35.1, 29.1, 25.6, 19.4, 18.2, 12.0; EI (MS) 347 (M⁺); HRMS calcd for C₂₄H₂₉NO₂: 347.2249. Found: 347.2248.

Preparation of 11-(2-butenyloxy)-*N***-propylnoraporphine (10e).** A solution of **15b** (38 mg, 0.11 mmol), Lindar reagent (5 mg) and quinoline (40 μ L) in EtOH (10 mL) was stirred for 1 h at rt under H₂. The reaction mixture was filtered. The solvent was removed to yield quantitative crude product **10e** which was purified by silica gel chromatography (petroleum:ethyl acetate = 3:1) to yield a pure oily product (32.9 mg, 90%). ¹H-NMR (300 MHz, CDC1₃) δ 8.16 (d, 1H, *J* = 8.1 Hz), 7.19 (m, 2H), 7.05 (d, 1H, *J* = 7.5 Hz), 6.92 (m, 2H), 5.75 (m, 2H), 4.67 (m, 2H), 3.37 (dd, 1H, *J* = 3.0, 13.5 Hz), 3.15 (m, 3H), 2.93 (m, 1H), 2.76 (m, 1H), 2.50 (m, 3H), 1.74 (d, 3H, *J* = 5.4 Hz),

1.61 (m, 2H), 0.98 (t, 3H, J = 7.2 Hz); ¹³C-NMR (100 MHz, CDC1₃) δ 155.7, 138.4, 135.3, 132.8, 131.6, 129.6, 128.0, 127.4, 126.3, 125.9, 125.7, 123.5, 120.8, 111.9, 69.3, 59.6, 56.6, 49.0, 35.3, 29.4, 19.6, 17.8, 12.0; EI (MS) 333 (M⁺); HRMS calcd for C₂₃H₂₇NO₂: 333.2093. Found: 333.2091.

General Procedure for the preparation of aporphine derivatives 11a,b and 11e by Cope-rearrangement. A solution of 11-allyloxy-*N*-methylaporphines 10a,b or 10e (1.0 mmol) in *N*,*N*-diethylaniline (10 mL) was refluxed for 1.5 h under N₂. After cooling to rt, the reaction mixture was purified by silica gel chromatography (petroleum:ethyl acetate = 2:1) to yield the rearranged products.

10-Allyl-11-hydroxy-*N***-propylnoraporphine (11a).** Off-white solid (303 mg, 95%); ¹H-NMR (300 MHz, CDC1₃) δ 7.92 (d, 1H, *J* = 7.5 Hz), 7.22 (m, 1H), 7.07 (d, 1H, *J* = 7.5 Hz), 7.00 (d, 1H, *J* = 7.5 Hz), 6.84 (d, 1H, *J* = 7.5 Hz), 6.05 (m, 1H), 5.66 (brs, 1H), 5.18 (m, 2H), 3.46 (d, 2H, *J* = 6.3 Hz), 3.36 (dd, 1H, *J* = 13.8, 3.0 Hz), 3.14 (m, 3H), 2.91 (m, 1H), 2.77 (dd, 1H, *J* = 16.5, 4.2 Hz), 2.49 (m, 3H), 1.65 (m, 2H), 0.97 (t, 3H, *J* = 7.2 Hz); ¹³C-NMR (100 MHz, CDC1₃) δ 151.0, 136.6, 136.5, 135.9, 133.9, 131.6, 129.0, 127.6, 126.2, 125.2, 124.1, 121.7, 120.3, 116.5, 59.7, 56.4, 48.9, 35.4, 35.0, 29.3, 19.4, 12.1; MS (EI) 319 (M⁺); HRMS calcd for C₂₂H₂₅NO₂: 319.1936. Found: 319. 1933.

10-(2-Methylallyl)-11-hydroxy-*N***-propylnoraporphine (11b).** Brown solid (273 mg, 82%); ¹H-NMR (300 MHz, CDC1₃) δ 7.99 (d, 1H, *J* = 7.8 Hz), 7.22 (t, 1H, *J* = 7.8 Hz), 7.06 (d, 1H, *J* = 7.8 Hz), 6.98 (d, 1H, *J* = 7.8 Hz), 6.83 (d, 1H, *J* = 7.2 Hz), 4.93 (d, 2H, *J* = 8.1 Hz), 3.43 (d, 2H, *J* = 7.5 Hz), 3.36 (dd, 1H, *J* = 10.8, 2.1 Hz),

3.14 (m, 3H), 2.91 (m, 1H), 2.75 (dd, 1H, J = 16.8, 5.7 Hz), 2.49 (m, 3H), 1.77 (s, 3H), 1.62 (m, 2H), 0.97 (t, 3H, J = 7.2 Hz); ¹³C-NMR (100 MHz, CDC1₃) δ 151.7, 144.7, 136.8, 135.6, 133.5, 131.6, 129.5, 127.5, 126.1, 124.9, 124.3, 121.7, 120.2, 112.5, 59.7, 56.5, 49.0, 40.3, 35.0, 29.3, 22.0, 19.4, 12.9; EI (MS) 333 (M⁺); HRMS calcd for C₂₃H₂₇NO₂: 333.2093. Found: 333.2086.

10-(2-Butenyl)-11-hydroxy-*N***-propylnoraporphine (11e).** This compound was prepared from aporphine **10e** as pale solid (90%) following a similar procedure used for the preparation of compounds **11a,b**. ¹H-NMR (300 MHz, CDC1₃) δ 7.91 (d, 1H, *J* = 7.8 Hz), 7.25 (t, 1H, *J* = 7.5 Hz), 7.04 (m, 2H), 6.87 (dd, 1H, *J* = 2.7, 1.8 Hz), 6.05 (m, 1H), 5.92 (brs, 1H), 5.19 (m, 2H), 3.80 (m, 1H), 3.36 (dd, 1H, *J* = 9.3, 1.8 Hz), 3.15 (m, 3H), 2.91 (m, 1H), 2.78 (m, 1H), 2.54 (m, 3H), 1.62 (m, 2H), 1.43 (dd, 3H, *J* = 6.9, 3.0 Hz), 0.97 (t, 3H, *J* = 7.5 Hz); ¹³C-NMR (100 MHz, CDC1₃) δ 150.6, 142.6, 142.4, 136.4, 136.1, 134.1, 131.7, 127.6, 126.8, 126.3, 124.1, 121.8, 120.3, 114.3, 59.8, 56.5, 49.0, 37.6, 35.1, 29.4, 19.6, 19.0, 12.1; EI (MS) 333 (M⁺); HRMS calcd for C₂₃H₂₇NO₂: 333.2093. Found: 333.2097.

General Procedure for the synthesis of dihydrofuranoaporphines derivatives 12a-c. A solution of 11-hydroxy-10-substituted-aporphines 11a,b or 11e (0.10 mmol) in glacial acetic acid (6 mL) and concentrated HBr (2 mL) was refluxed for 3 h and then evaporated to dryness. The residue was cooled and treated with NH₄OH (5 mL). The solution was extracted with CH_2Cl_2 (4 × 20 mL). The combined organic layer was washed with brine, dried by Na_2SO_4 and evaporated. The residue was purified by silica gel chromatography (petroleum:ethyl acetate = 2:1) to give the title compounds. *N*-Propyl-2'-methyl-2',3'-dihydrofuro[*m*]noraporphine (12a). Pale yellow solid (28 mg, 88%); ¹H-NMR (300 MHz, CDC1₃) δ 8.09 (d, 1H, J = 8.7 Hz, H-1), 7.22 (t, 1H, J = 7.8 Hz, H-2), 7.02 (m, 2H, H-3, H-8), 6.76 (d, 1H, J = 7.2 Hz, H-9), 5.09 and 4.96 (m, 1H, 1:1, H-2'), 3.30 (m, 5H, H-7, H-3', H-6a), 2.82 (m, 3H, H-4, H-5α), 2.55 (m, 3H, H-5β, <u>CH₂CH₂CH₃CH₃), 1.62 (m, 2H, CH₂<u>CH₂CH₃), 1.60 and 1.44</u> (d, 3H, J = 6.3 Hz, 1:1, 2'-Me), 0.97 (t, 3H, J = 7.5 Hz, CH₂CH₂CH₃); ¹³C-NMR (100 MHz, CDC1₃) δ 156.3 (2), 135.9, 134.3, 133.0, 131.4 (2), 127.3, 126.6 (2), 126.1, 125.0 (2), 123.3 (2), 119.9, 117.5, 80.0 (2), 59.6 (2), 56.3, 49.2, 36.7 (2), 34.4, 29.2, 22.0 (2), 19.3, 12.0; EI (MS) 319 (M⁺); Anal. (C₂₂H₂₅NO·1/3H₂O) Calcd: C, 81.19; H, 7.95; N, 4.30; Found: C, 81.43; H, 7.82; N, 4.06.</u>

N-Propyl-2',2'-bismethyl-2',3'-dihydrofuro[*m*]noraporphine (12b). Yellow solid (31 mg, 93%); ¹H-NMR (300 MHz, CDC1₃) δ 8.15 (d, 1H, *J* = 7.8 Hz), 7.22 (d, 1H, *J* = 7.8 Hz), 7.02 (m, 2H), 6.77 (d, 1H, *J* = 7.2 Hz), 3.47 (dd, 1H, *J* = 14.1, 3.0 Hz), 3.17 (m, 3H), 3.05 (m, 2H), 2.96 (m, 1H), 2.78 (m, 1H), 2.63 (m, 1H), 2.50 (m, 2H), 1.62 (m, 5H), 1.48 (s, 3H), 0.99 (t, 3H, *J* = 7.5 Hz); ¹³C-NMR (100 MHz, CDC1₃) δ 155.7, 135.9, 134.3, 133.0, 131.6, 127.2, 126.7, 126.1, 125.0, 123.5, 119.6, 117.5, 86.9, 59.6, 56.4, 49.2, 42.4, 34.5, 29.3, 28.5, 28.3, 19.3, 12.0; EI (MS) 333 (M⁺); Anal. (C₂₃H₂₇NO·0.3H₂O) Calcd: C, 81.52; H, 8.21; N, 4.13; Found: C, 81.52; H, 8.13; N, 3.81.

N-**Propyl-2',3'-bismethyl-2',3'-dihydrofuro**[*m*]**noraporphine** (**12c**). Brown oil (27 mg, 82%); ¹H-NMR (300 MHz, CDC1₃) δ 8.16 and 8.09 (d, 1H, *J* = 7.8 Hz, 1:1), 7.25 (t, 1H, *J* = 7.8 Hz), 7.00 (m, 2H), 6.80 (d, 1H, *J* = 7.2 Hz), 5.06, 4.92, 4.54 and

4.38 (m, 1H, 1.5:1.7:1:1.3), 3.45 (m, 1H), 3.15 (m, 4H), 2.93 (m, 1H), 2.76 (m, 1H), 2.54 (m, 3H), 1.64 (m, 2H), 1.59 and 1.48 (m, 3H, 1:1), 1.34 and 1.21 (dd, 3H, J = 8.1, 6.9 Hz, 1:1), 0.98 (t, 3H, J = 7.5 Hz); ¹³C-NMR (100 MHz, CDC1₃) δ 155.6 (2), 135.9, 134.2, 133.0 (2), 132.3 (2), 131.5 (2), 127.3, 126.1, 125.1, 122.1 (2), 120.1, 117.6, 87.5 and 82.8 (4), 59.6 (2), 56.3, 49.2, 43.4 (2), 38.8 (2), 34.4, 29.2, 20.3 (2), 18.2 and 14.8 (4), 15.6 and 12.0 (2); EI (MS) 333 (M⁺); HRMS calcd for C₂₃H₂₇NO: 333.2093. Found: 333.2087.

8-(1-Buten-3-yl)-11-hydroxy-*N***-propylnoraporphine (13).** This compound was prepared as brown solid (59%) from ether **10c** following a similar procedure used for the preparation of compounds **11a,b**. ¹H-NMR (300 MHz, CDC1₃) δ 7.98 (d, 1H, *J* = 7.5 Hz), 7.25 (t, 1H, *J* = 7.8 Hz), 7.03 (m, 2H), 6.84 (dd, 1H, *J* = 7.5, 3.9 Hz), 6.11 (m, 1H), 5.22 (m, 2H), 3.77 (m, 1H), 3.60 (m, 1H), 3.32 (m, 2H), 3.11 (m, 2H), 2.72 (m, 4H), 1.71 (m, 2H), 1.41 (d, 3H, *J* = 7.2 Hz), 0.97 (t, 3H, *J* = 7.2 Hz); ¹³C-NMR (100 MHz, CDC1₃) δ 150.7, 142.3, 142.2, 135.1, 132.5, 131.8, 130.2, 127.5, 127.1, 126.7, 125.0, 121.4, 120.3, 114.6, 59.6, 48.4, 37.9, 37.6, 34.0, 27.9, 18.8, 18.7, 11.8; MS (EI) 333 (M⁺); Anal. (C₂₃H₂₇NO·1.2H₂O) Calcd: C, 77.80; H, 8.35; N, 3.94; Found: C, 78.02; H, 8.34; N, 3.64.

8-(2-Methyl-2-buten-4-yl)-11-hydroxy-*N***-propylnoraporphine** (14). This compound was prepared as brown solid (31%) from ether **10d** following a similar procedure used for the preparation of compounds **11a,b**. ¹H-NMR (300 MHz, CDC1₃) δ 7.86 (d, 1H, *J* = 8.1 Hz), 7.21 (d, 1H, *J* = 7.5 Hz), 7.06 (d, 1H, *J* = 7.5 Hz), 6.97 (d, 1H, *J* = 8.1 Hz), 6.74 (d, 1H, *J* = 8.4 Hz), 5.18 (t, 1H, *J* = 6.6 Hz), 3.23 (m, 6H), 2.84

(m, 1H), 2.77 (dd, 1H, J = 16.2, 2.8 Hz), 2.47 (m, 2H), 2.23 (t, 1H, J = 14.4 Hz), 1.76 (s, 3H), 1.71 (s, 3H), 1.62 (m, 2H), 0.97 (t, 3H, J = 7.5 Hz); ¹³C-NMR (100 MHz, CDC1₃) δ 151.0, 136.3, 135.5, 133.4, 131.7, 131.6, 130.8, 129.2, 127.3, 126.2, 124.2, 123.4, 121.6, 114.8, 59.3, 56.5, 48.9, 32.5, 30.3, 29.0, 25.6, 19.3, 17.8, 12.1; MS (EI) 347 (M⁺); Anal. (C₂₄H₂₉NO·0.5H₂O) Calcd: C, 80.86; H, 8.48; N, 3.93; Found: C, 80.95; H, 8.45; N, 3.53.

11-Propargyloxy-*N***-propylnoraporphine (15a).** This compound was prepared as brown oil (90%) from phenol **4a** following a similar procedure used for the preparation of compounds **10a-d**. ¹H-NMR (300 MHz, CDC1₃) δ 8.10 (d, 1H, *J* = 7.5 Hz), 7.20 (m, 2H), 7.05 (t, 2H, *J* = 6.9 Hz), 6.97 (d, 1H, *J* = 7.5 Hz), 4.74 (m, 2H), 3.36 (dd, 1H, *J* = 13.5, 3.0 Hz), 3.14 (m, 3H), 2.91 (m, 1H), 2.76 (m, 1H), 2.50 (m, 4H), 1.61 (m, 2H), 0.97 (t, 3H, *J* = 7.5 Hz); ¹³C-NMR (100 MHz, CDC1₃) δ 154.6, 138.6, 132.8, 131.2, 127.7, 127.6, 126.3, 125.8, 123.9, 121.8, 112.5, 78.7, 75.5, 59.4, 56.4, 56.3, 48.9, 35.1, 29.2, 19.5, 12.1; EI (MS) 317 (M⁺); HRMS calcd for C₂₂H₂₃NO₂: 317.1780. Found: 317.1767.

11-(2-Butynyloxy)-*N***-propylnoraporphine (15b).** This compound was prepared as brown oil (98%) from phenol **4a** following a similar procedure used for the preparation of compounds **10a-d**. ¹H-NMR (300 MHz, CDC1₃) δ 8.12 (d, 1H, *J* = 7.8 Hz), 7.20 (m, 2H), 7.04 (m, 2H), 6.94 (d, 1H, *J* = 7.5 Hz), 4.70 (m, 2H), 3.36 (dd, 1H, *J* = 12.6, 1.2 Hz), 3.14 (m, 3H), 2.91 (m, 1H), 2.75 (m, 1H), 2.50 (m, 3H), 1.85 (t, 3H, *J* = 2.1 Hz), 1.61 (m, 2H), 0.96 (t, 3H, *J* = 7.5 Hz); ¹³C-NMR (100 MHz, CDC1₃) δ 154.8, 138.4, 135.2, 132.7, 131.3, 127.6, 127.4, 126.3, 125.8, 123.8, 121.3, 112.4,

83.5, 74.2, 59.5, 56.8, 56.4, 48.9, 35.2, 29.2, 19.5, 12.0, 3.7; EI (MS) 331 (M⁺); HRMS calcd for C₂₃H₂₅NO₂: 331.1936. Found: 331.1944.

General Procedure for the synthesis of furoaporphine derivatives 16a,b: A solution of 11-propargyloxyaporphine derivatives 15a or 15b (0.08 mmol) and CsF (20 mg, 0.13 mmol) in *N*,*N*-diethyl aniline (5 mL) was refluxed for 3h under N₂. After cooling to rt, the reaction mixture was purified by silica gel chromatography (petroleum:ethyl acetate = 5:1 to 1:1) to afford the title compounds.

N-Propyl-2'-methyl-furo[*m*]noraporphine (16a): brown oil (13 mg, 53%); ¹H-NMR (300 MHz, CDC1₃) δ 8.30 (d, 1H, *J* = 7.8 Hz), 7.32 (t, 2H, *J* = 7.5 Hz), 7.11 (dd, 2H, *J* = 7.8, 4.8 Hz), 6.39 (s, 1H), 3.56 (dd, 1H, *J* = 13.8, 4.2 Hz), 3.20 (m, 3H), 2.96 (m, 1H), 2.78 (m, 2H), 2.52 (s, 3H), 2.50 (m, 2H), 1.64 (m, 2H), 0.99 (t, 3H, *J* = 7.5 Hz); ¹³C-NMR (100 MHz, CDC1₃) δ 155.0, 151.4, 134.7, 133.5, 131.2, 130.8, 129.0, 127.8, 126.3, 125.1, 123.0, 118.7, 102.6, 59.6, 56.4. 49.2, 34.2, 29.3, 19.3, 14.2, 12.0; EI (MS) 317 (M⁺); HRMS calcd for C₂₂H₂₃NO: 317.1780. Found: 317.1773.

N-Propyl-2',3'-bismethyl-furo[*m*]noraporphine (16b). brown oil (16 mg, 60%); ¹H-NMR (300 MHz, CDC1₃) δ 8.31 (d, 1H, *J* = 7.5 Hz), 7.29 (m, 2H), 7.13 (d, 1H, *J* = 7.8 Hz), 7.09 (d, 1H, *J* = 7.5 Hz), 3.45 (dd, 1H, *J* = 10.5, 3.9 Hz), 3.21 (m, 3H), 2.97 (m, 1H), 2.80 (m, 2H), 2.52 (m, 2H), 2.44 (s, 3H), 2,17 (s, 3H), 1.64 (m, 2H), 0.98 (t, 3H, *J* = 7.5 Hz). ¹³C-NMR (100 MHz, CDC1₃) δ 150.5, 150.2, 131.0, 130.4, 127.8, 127.6, 126.4, 125.2, 122.5, 122.3, 117.3, 109.6, 59.6, 56.4, 49.2, 34.1, 29.6, 19.3, 12.0, 11.9, 7.9; EI (MS) 331 (M⁺); HRMS calcd for C₂₃H₂₅NO: 331.1936, Found: 331.1928. **11-Allyloxy-N-methylaporphine** (**17**). This compound was prepared from phenol **4b** as light brown oil (48%) following a similar procedure used for the preparation of compounds **10a-d**. ¹H-NMR (300 MHz, CDC1₃) δ 8.19 (d, 1H, *J* = 7.8 Hz), 7.20 (m, 2H), 7.06 (d, 1H, *J* = 7.5 Hz), 6.91 (m, 2H), 6.10 (m, 1H), 5.45 (dd, 1H, *J* = 17.4, 1.5 Hz), 5.27 (dd, 1H, *J* = 10.8, 1.5 Hz), 4.61 (m, 2H), 3.13 (m, 4H), 2.76 (dd, 1H, *J* = 16.2, 2.4 Hz), 2.55 (s, 3H), 2.53 (m, 2H); ¹³C-NMR (100 MHz, CDC1₃) δ 155.6, 138.1, 134.6, 133.2, 132.3, 131.3, 127.8, 127.4, 126.4, 125.8, 123.3, 121.0, 117.1, 111.8, 69.3, 62.0, 52.9, 43.9, 35.1, 29.1; EI (MS) 291 (M⁺); HRMS calcd for C₂₀H₂₁NO₂: 291.1623. Found: 291.1620.

10-Allyl-11-hydroxy-*N***-methylaporphine (18).** This compound was prepared as pale solid (88%) from ether **17** following a similar procedure used for the preparation of compounds **11a,b**. ¹H-NMR (300 MHz, CDC1₃) δ 7.95 (d, 1H, *J* = 7.5 Hz), 7.25 (m, 1H), 7.07 (d, 1H, *J* = 7.5 Hz), 7.00 (d, 1H, *J* = 7.8 Hz), 6.82 (d, 1H, *J* = 7.8 Hz), 6.05 (m, 1H), 5.17 (m, 2H), 3.46 (d, 2H, *J* = 6.0 Hz), 3.08 (m, 4H), 2.75 (d, 1H, *J* = 16.5 Hz), 2.57 (s, 3H), 2.52 (m, 2H); ¹³C-NMR (100 MHz, CDC1₃) δ 151.1, 136.5, 136.3, 135.0, 133.3, 131.4, 129.0, 127.5, 126.4, 125.2, 124.4, 121.7, 120.3, 116.5, 62.2, 52.8, 43.9, 35.4, 34.8, 28.9; EI (MS) 291 (M⁺); HRMS calcd for C₂₀H₂₁NO₂: 291.1623. Found: 291.1607.

N-Methyl-2'-methyl-2',3'-dihydrofuro[*m*]aporphine (19). This compound was prepared as yellow solid in 91% yield from phenol 18 following a similar procedure used for the preparation of compounds 12a-c. This compound was purified by preparative TLC with MeCN/TFA (0.05%) as the eluents. ¹H-NMR (300 MHz,

CDC1₃) δ 8.09 (dd, 1H, *J* = 8.1, 9.0 Hz), 7.23 (t, 1H, *J* = 7.8 Hz), 7.02 (t, 2H, *J* = 7.5 Hz), 6.76 (d, 1H, *J* = 7.5 Hz), 5.09 and 4.96 (m, 1H, 1:1), 3.20 (m, 5H), 2.78 (m, 4H), 2.51 (s, 3H), 1.59 and 1.44 (d, 3H, *J* = 6.3 Hz, 1:1); ¹³C-NMR (100 MHz, CDC1₃) δ 156.3 (2), 135.6, 133.6, 132.6, 131.3 (2), 127.3, 126.7 (2), 126.3, 125.1 (2), 123.3 (2), 119.9, 117.4, 80.0 (2), 62.2, 53.3, 43.9, 36.6 (2), 34.3, 29.0, 21.9 (2); EI (MS) 291 (M⁺). Anal. (C₂₀H₂₁NO.0.4TFA.1.5H₂O) Calcd: C, 68.63; H, 6.76; N, 3.85; Found: C, 68.81; H, 7.04; N, 3.44.

Chiral HPLC resolution of *N***-methyl-2'**,**3'-dihydrofuro**[*m*]**aporphine 19** (*cis/trans*-**19**). The chiral HPLC of *cis/trans*-**19** was carried out on a Chiracel OD column (25×0.46 cm, Daicel, Japan) under the following conditions: flow rate 1.0 ml/ min, hexane/isopropanol/diethylamine (99/1/0.1) as the eluent. The retention times

were 10.1 and 12.3 min.

trans-19: MS (EI) 291 (M⁺); ¹H-NMR (300 MHz, CDC1₃) δ 8.13 (d, 1H, *J* = 7.8 Hz), 7.26 (t, 1H, *J* = 7.8 Hz), 7.04 (t, 2H, *J* = 7.8 Hz), 6.76 (dd, 1H, *J* = 7.5, 0.9 Hz), 4.97 (m, 1H), 3.20 (m, 5H), 2.80 (m, 1H), 2.64 (m, 3H), 2.58 (s, 3H), 1.62 (d, 3H, *J* = 6.3 Hz); $[\alpha]_D^{20}$ –30° (*c* 0.071, EtOH, 20 °C).

cis-19: MS (EI) 291 (M⁺); ¹H-NMR (300 MHz, CDC1₃) δ 8.16 (d, 1H, *J* = 7.5 Hz), 7.24 (t, 1H, *J* = 7.8 Hz), 7.02 (t, 2H, *J* = 7.8 Hz), 6.76 (dd, 1H, *J* = 7.5, 1.2 Hz), 5.09 (m, 1H), 3.38 (m, 1H), 3.14 (m, 4H), 2.78 (m, 3H), 2.58 (s, 3H), 2.56 (m, 1H), 1.44 (d, 3H, *J* = 6.3 Hz); ¹³C-NMR (100 MHz, CDC1₃) δ 156.3, 135.6, 133.7, 132.6, 131.3, 127.3, 126.5, 126.3, 125.1, 123.4, 119.9, 117.4, 79.6, 62.2, 53.3, 44.0, 36.6, 34.4, 29.1, 22.0; [α]_D²⁰-109° (*c* 0.075, EtOH, 20 °C). **11-Propargyloxy-***N***-methylaporphine (20).** This compound was prepared from phenol **4b** as brown oil (85%) following a similar procedure used for the preparation of compounds **10a-d**. ¹H-NMR (300 MHz, CDC1₃) δ 8.13 (d, 1H, *J* = 8.1 Hz), 7.22 (m, 2H), 7.06 (dd, 2H, *J* = 9.3, 8.4 Hz), 6.96 (d, 1H, *J* = 7.2 Hz), 4.74 (m, 2H), 3.13 (m, 4H), 2.28 (m, 2H), 2.58 (s, 3H), 2.52 (m, 2H); ¹³C-NMR (100 MHz, CDC1₃) δ 154.5, 138.2, 134.7, 132.4, 130.9, 127.7, 127.5, 126.3, 125.9, 123.7, 121.8, 112.4, 78.6, 75.4, 61.9, 56.2, 52.9, 43.9, 35.0, 29.1; EI (MS) 289 (M⁺); HRMS calcd for C₂₀H₁₉NO₂: 289.1467. Found: 289.1448.

N-Methyl-2'-methyl-furo[*m*]aporphine (21). This compound was prepared as brown oil (29%) from ether 20 following a similar procedure used for the preparation of compounds 16a,b. ¹H-NMR (300 MHz, CDC1₃) δ 8.33 (d, 1H, *J* = 8.1 Hz), 7.33 (m, 2H), 7.11 (d, 2H, *J* = 7.8 Hz), 6.39 (d, 1H, *J* = 1.2 Hz), 3.29 (m, 3H), 3.10 (m, 1H), 2.78 (t, 1H, *J* = 14.7 Hz), 2.57 (s, 3H), 2.55 (m, 2H), 2.52 (s, 3H); ¹³C-NMR (100 MHz, CDC1₃) δ 155.0, 151.4, 133.9, 133.1, 130.8, 130.6, 129.0, 127.9, 126.5, 125.2, 123.0, 118.8, 118.5, 102.6, 62.2, 53.2, 44.0, 34.1, 29.1, 14.2; EI (MS) 289 (M⁺); HRMS calcd for C₂₀H₁₉NO: 289.1467. Found: 289.1441.

2-Methoxy-11-allyloxy-*N***-methylaporphine (22).** This compound was prepared from phenol **4c** as brown oil (34%) following a similar procedure used for the preparation of compounds **10a-d**. ¹H-NMR (300 MHz, CDC1₃) δ 7.85 (d, 1H, *J* = 2.4 Hz), 7.17 (t, 1H, *J* = 7.5 Hz), 6.91 (d, 1H, *J* = 2.1 Hz), 6.89 (d, 1H, *J* = 3.6 Hz), 6.62 (d, 1H, *J* = 2.7 Hz), 6.11 (m, 1H), 5.47 (dd, 1H, *J* = 1.5, 17.1 Hz), 5.29 (dd, 1H, *J* = 1.2, 10.5 Hz), 4.61 (m, 2H), 3.81 (s, 3H), 3.10 (m, 4H), 2.75 (m, 1H), 2.54 (s, 3H),

2.51 (m, 2H); ¹³C-NMR (100 MHz, CDC1₃) δ 157.5, 155.6, 138.5, 133.5, 133.2, 132.4, 127.9, 127.3, 123.3, 121.1, 117.6, 112.6, 112.4, 111.9, 69.5, 61.7, 55.2, 53.1, 43.9, 35.5, 29.3; EI (MS) 321 (M⁺); HRMS calcd for C₂₁H₂₃NO₂: 321.1729. Found: 321.1716.

2-Methoxy-10-allyl-11-hydroxy-*N***-methylaporphine (23).** This compound was prepared as brown solid (59%) from ehter **22** following a similar procedure used for the preparation of compounds **11a,b**. pale solid (47%); ¹H-NMR (300 MHz, CDC1₃) δ 7.58 (d, 1H, *J* = 2.4 Hz), 6.99 (d, 1H, *J* = 7.5 Hz), 6.82 (d, 1H, *J* = 7.5 Hz), 6.60 (d, 1H, *J* = 2.1 Hz), 6.05 (m, 1H), 5.19 (m, 2H), 3.81 (s, 3H), 3.45 (d, 2H, *J* = 6.3 Hz), 3.19 (m, 1H), 3.05 (m, 3H), 2.71 (d, 1H, *J* = 16.5 Hz), 2.52 (s, 3H), 2.50 (m, 2H); ¹³C-NMR (100 MHz, CDC1₃) δ 157.9, 151.1, 136.6, 136.4, 134.5, 132.6, 129.1, 127.6, 125.1, 121.4, 120.4, 116.6, 111.9, 111.1, 61.9, 55.2, 53.0, 43.9, 35.4, 35.2, 29.3; EI (MS) 321 (M⁺); HRMS calcd for C₂₁H₂₃NO₂: 321.1729. Found: 321.1713.

N-Methyl-2-hydroxy-2'-methyl-2',3'-dihydrofuro[*m*]aporphine (24). This compound was prepared as yellow solid (76%) from phenol 23 following a similar procedure used for the preparation of compounds **12a-c**. ¹H-NMR (300 MHz, CD₃OD) δ 7.79 (dd, 1H, *J* = 5.7 Hz, 2.4 Hz), 7.08 (m, 1H), 6.84 (d, 1H, *J* = 6.6 Hz), 6.58 (d, 1H, *J* = 1.2 Hz), 5.15 (m, 1H), 4.24 (m, 1H), 3.78 (m, 1H), 4.45 (m, 1H), 3.43 (m, 3H), 3.16 (s, 3H), 3.05 (m, 1H), 2.84 (m, 2H), 1.58 and 1.40 (d, 3H, *J* = 6.0 Hz, 1:1); ¹³C-NMR (100 MHz, CD₃OD) δ 159.0, 158.1, 134.8, 133.6 (2), 132.5, 130.0 (2), 126.1, 122.1, 119.9, 117.8 (2), 115.7, 114.9, 82.2 (2), 64.2, 54.4, 42.4, 37.9 (2), 33.2, 27.7, 22.6; EI (MS) 307 (M⁺); HRMS calcd for C₂₀H₂₁NO₂: 307.1572. Found: 307.1561.

170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 ppm

The crystal structure of compound *cis*-19

Table 1. Crystal data and structure refinement for cd2971.

Identification code	cd2971
Empirical formula	C20 H21 N O
Formula weight	291.38
Temperature	293(2) K
Wavelength	0.71073 A
Crystal system, space group	Orthorhombic, $P2(1)2(1)2(1)$
Unit cell dimensions	a = 7.983(3) A alpha = 90 deg. b = 12.721(4) A beta = 90 deg. c = 15.432(5) A gamma = 90 deg.
Volume	1567.0(8) A^3
Z, Calculated density	4, 1.235 Mg/m^3
Absorption coefficient	0.075 mm^-1
F(000)	624
Crystal size	0.411 x 0.369 x 0.237 mm
Theta range for data collection	2.07 to 26.00 deg.
Limiting indices	-9<=h<=9, -15<=k<=11, -19<=l<=15
Reflections collected / unique	8585 / 1782 [R(int) = 0.0817]
Completeness to theta = 26.00	100.0 %
Absorption correction	Empirical
Max. and min. transmission	1.0000 and 0.7523
Refinement method	Full-matrix least-squares on F^2
Data / restraints / parameters	1782 / 0 / 201

Goodness-of-fit on F^2	1.060
Final R indices [I>2sigma(I)]	R1 = 0.0427, wR2 = 0.0995
R indices (all data)	R1 = 0.0520, wR2 = 0.1039
Absolute structure parameter	10(10)
Largest diff. peak and hole	0.151 and -0.122 e.A^-3

	х	У	Z	U(eq)	
N(1)	6575(3)	3253(2)	4090(1)	61(1)	
O(1)	7758(2)	2415(1)	-30(1)	59(1)	
C (1)	8412(3)	1769(2)	-740(2)	60(1)	
C(2)	8478(4)	659(2)	-376(2)	69(1)	
C(3)	8601(3)	865(2)	579(2)	56(1)	
C(4)	8128(3)	1896(2)	721(1)	48(1)	
C(5)	8022(3)	2339(2)	1547(1)	47(1)	
C(6)	8414(3)	1668(2)	2243(2)	52(1)	
C(7)	8918(3)	641(2)	2097(2)	62(1)	
C(8)	9016(3)	236(2)	1267(2)	67(1)	
C(9)	7606(2)	3455(2)	1726(1)	44(1)	
C(10)	7827(3)	4243(2)	1115(2)	53(1)	
C(11)	7442(3)	5269(2)	1301(2)	59(1)	
C(12)	6816(3)	5522(2)	2107(2)	60(1)	
C(13)	6600(3)	4762(2)	2736(1)	54(1)	
C(14)	7010(3)	3731(2)	2551(1)	47(1)	
C(15)	5952(4)	5046(2)	3623(2)	70(1)	
C(16)	5321(4)	4086(2)	4093(2)	72(1)	
C(17)	6805(3)	2852(2)	3212(2)	52(1)	
C(18)	8309(3)	2123(2)	3139(2)	58(1)	
C(19)	6059(4)	2407(3)	4678(2)	82(1)	
C(20)	7318(4)	1924(2)	-1521(2)	74(1)	

Table 2. Atomic coordinates (x 10⁴) and equivalent isotropic displacement parameters (A² x 10³) for cd2971.U(eq) is defined as one third of the trace of the orthogonalized Uij tensor.

N(1)-C(16)	1.458(4)
N(1)-C(17)	1.460(3)
N(1)-C(19)	1.467(3)
O(1)-C(4)	1.366(3)
O(1)-C(1)	1.467(3)
C(1)-C(20)	1.501(4)
C(1)-C(2)	1.521(4)
C(1)-H(1)	0.9800
C(2)-C(3)	1.500(4)
C(2)-H(2A)	0.9700
C(2)-H(2B)	0.9700
C(3)-C(8)	1.369(3)
C(3)-C(4)	1.382(3)
C(4)-C(5)	1.396(3)
C(5)-C(6)	1.407(3)
C(5)-C(9)	1.484(3)
C(6)-C(7)	1.385(3)
C(6)-C(18)	1.501(3)
C(7)-C(8)	1.385(4)
C(7)-H(7)	0.9300
C(8)-H(8)	0.9300
C(9)-C(10)	1.387(3)
C(9)-C(14)	1.405(3)
C(10)-C(11)	1.370(3)
C(10)-H(10)	0.9300
C(11)-C(12)	1.379(4)
C(11)-H(11)	0.9300
C(12)-C(13)	1.381(3)
C(12)-H(12)	0.9300
C(13)-C(14)	1.381(3)
C(13)-C(15)	1.507(3)
C(14)-C(17)	1.521(3)
C(15)-C(16)	1.506(4)
C(15)-H(15A)	0.9700
C(15)-H(15B)	0.9700
C(16)-H(16A)	0.9700
C(16)-H(16B)	0.9700
C(17)-C(18)	1.521(3)
C(17)-H(17)	0.9800
C(18)-H(18A)	0.9700

Table 3. Bond lengths [A] and angles [deg] for cd2971.

C(18)-H(18B)	0.9700
C(19)-H(19A)	0.9600
C(19)-H(19B)	0.9600
C(19)-H(19C)	0.9600
C(20)-H(20A)	0.9600
C(20)-H(20B)	0.9600
C(20)-H(20C)	0.9600
C(16)-N(1)-C(17)	110.04(19)
C(16)-N(1)-C(19)	109.8(2)
C(17)-N(1)-C(19)	110.7(2)
C(4)-O(1)-C(1)	106.64(17)
O(1)-C(1)-C(20)	108.6(2)
O(1)-C(1)-C(2)	104.83(19)
C(20)-C(1)-C(2)	116.0(2)
O(1)-C(1)-H(1)	109.0
C(20)-C(1)-H(1)	109.0
C(2)-C(1)-H(1)	109.0
C(3)-C(2)-C(1)	101.74(19)
C(3)-C(2)-H(2A)	111.4
C(1)-C(2)-H(2A)	111.4
C(3)-C(2)-H(2B)	111.4
C(1)-C(2)-H(2B)	111.4
H(2A)-C(2)-H(2B)	109.3
C(8)-C(3)-C(4)	119.9(2)
C(8)-C(3)-C(2)	132.4(2)
C(4)-C(3)-C(2)	107.7(2)
O(1)-C(4)-C(3)	112.5(2)
O(1)-C(4)-C(5)	124.48(19)
C(3)-C(4)-C(5)	123.0(2)
C(4)-C(5)-C(6)	116.0(2)
C(4)-C(5)-C(9)	124.71(19)
C(6)-C(5)-C(9)	119.25(19)
C(7)-C(6)-C(5)	120.9(2)
C(7)-C(6)-C(18)	122.0(2)
C(5)-C(6)-C(18)	117.1(2)
C(8)-C(7)-C(6)	121.2(2)
C(8)-C(7)-H(7)	119.4
C(6)-C(7)-H(7)	119.4
C(3)-C(8)-C(7)	119.0(2)
C(3)-C(8)-H(8)	120.5
C(7)-C(8)-H(8)	120.5
C(10)-C(9)-C(14)	118.6(2)
C(10)-C(9)-C(5)	122.5(2)

C(14)-C(9)-C(5)	118.90(19)
C(11)-C(10)-C(9)	121.2(2)
C(11)-C(10)-H(10)	119.4
C(9)-C(10)-H(10)	119.4
C(10)-C(11)-C(12)	119.5(2)
C(10)-C(11)-H(11)	120.3
C(12)-C(11)-H(11)	120.3
C(11)-C(12)-C(13)	121.1(2)
C(11)-C(12)-H(12)	119.5
C(13)-C(12)-H(12)	119.5
C(12)-C(13)-C(14)	119.3(2)
C(12)-C(13)-C(15)	120.9(2)
C(14)-C(13)-C(15)	119.7(2)
C(13)-C(14)-C(9)	120.3(2)
C(13)-C(14)-C(17)	122.3(2)
C(9)-C(14)-C(17)	117.41(19)
C(16)-C(15)-C(13)	111.0(2)
C(16)-C(15)-H(15A)	109.4
C(13)-C(15)-H(15A)	109.4
C(16)-C(15)-H(15B)	109.4
C(13)-C(15)-H(15B)	109.4
H(15A)-C(15)-H(15B)	108.0
N(1)-C(16)-C(15)	111.0(2)
N(1)-C(16)-H(16A)	109.4
C(15)-C(16)-H(16A)	109.4
N(1)-C(16)-H(16B)	109.4
C(15)-C(16)-H(16B)	109.4
H(16A)-C(16)-H(16B)	108.0
N(1)-C(17)-C(18)	112.4(2)
N(1)-C(17)-C(14)	112.25(18)
C(18)-C(17)-C(14)	108.30(19)
N(1)-C(17)-H(17)	107.9
C(18)-C(17)-H(17)	107.9
C(14)-C(17)-H(17)	107.9
C(6)-C(18)-C(17)	110.31(19)
C(6)-C(18)-H(18A)	109.6
C(17)-C(18)-H(18A)	109.6
C(6)-C(18)-H(18B)	109.6
C(17)-C(18)-H(18B)	109.6
H(18A)-C(18)-H(18B)	108.1
N(1)-C(19)-H(19A)	109.5
N(1)-C(19)-H(19B)	109.5
H(19A)-C(19)-H(19B)	109.5
N(1)-C(19)-H(19C)	109.5

H(19A)-C(19)-H(19C)	109.5
H(19B)-C(19)-H(19C)	109.5
C(1)-C(20)-H(20A)	109.5
C(1)-C(20)-H(20B)	109.5
H(20A)-C(20)-H(20B)	109.5
C(1)-C(20)-H(20C)	109.5
H(20A)-C(20)-H(20C)	109.5
H(20B)-C(20)-H(20C)	109.5

Symmetry transformations used to generate equivalent atoms:

Table 4.	Anisotropic displacement parameters (A ² x 10 ³) for cd2971.
The aniso	tropic displacement factor exponent takes the form:
-2 pi^2 [l	n^2 a*^2 U11 + + 2 h k a* b* U12]

	U11	U22	U33	U	23	U13	U12
N(1)	67(1)	66(1)	49(1)	-1(1)	2(1)	-9(1)	
O(1)	67(1)	58(1)	51(1)	-3(1)	5(1)	10(1)	
C(1)	56(1)	65(2)	59(2)	-12(1)	15(1)	0(1)	
C(2)	67(2)	62(2)	79(2)	-17(1)	12(1)	8(2)	
C(3)	48(1)	50(1)	71(2)	-7(1)	6(1)	6(1)	
C(4)	41(1)	49(1)	55(1)	2(1)	2(1)	4(1)	
C(5)	40(1)	44(1)	57(1)	3(1)	-1(1)	0(1)	
C(6)	48(1)	48(1)	61(1)	5(1)	-8(1)	0(1)	
C(7)	60(1)	51(1)	75(2)	12(1)	-8(1)	7(1)	
C(8)	65(2)	46(1)	90(2)	-2(1)	-3(1)	14(1)	
C(9)	38(1)	46(1)	48(1)	0(1)	-8(1)	-1(1)	
C(10)	55(1)	52(1)	52(1)	3(1)	-5(1)	3(1)	
C(11)	70(2)	46(1)	61(2)	6(1)	-13(1)	3(1)	
C(12)	70(2)	43(1)	68(2)	-7(1)	-19(1)	8(1)	
C(13)	50(1)	55(1)	56(1)	-10(1)	-12(1)	5(1)	
C(14)	38(1)	51(1)	51(1)	-3(1)	-10(1)	-4(1)	
C(15)	75(2)	69(2)	66(2)	-16(1)	-3(1)	6(2)	
C(16)	66(2)	89(2)	62(2)	-17(2)	7(1)	1(2)	
C(17)	51(1)	54(1)	53(1)	0(1)	-8(1)	-9(1)	
C(18)	63(1)	56(1)	56(1)	10(1)	-8(1)	0(1)	
C(19)	93(2)	88(2)	65(2)	1(2)	13(2)	-19(2)	
C(20)	81(2)	80(2)	62(2)	-11(1)	7(1)	-6(2)	

	X	У	Z	U(eq)	
H(1)	9552	1999	-879	72	
H(2A)	7472	267	-517	83	
H(2B)	9449	280	-587	83	
H(7)	9197	217	2566	74	
H(8)	9358	-455	1176	80	
H(10)	8243	4073	570	64	
H(11)	7603	5790	887	71	
H(12)	6534	6216	2229	72	
H(15A)	6842	5369	3958	84	
H(15B)	5050	5552	3567	84	
H(16A)	5048	4271	4686	87	
H(16B)	4307	3835	3815	87	
H(17)	5803	2450	3056	63	
H(18A)	9326	2511	3265	70	
H(18B)	8208	1560	3559	70	
H(19A)	6921	1882	4703	123	
H(19B)	5040	2095	4469	123	
H(19C)	5876	2690	5247	123	
H(20A)	7223	2661	-1645	111	
H(20B)	6226	1638	-1408	111	
H(20C)	7805	1570	-2010	111	

Table 5. Hydrogen coordinates ($x \ 10^{4}$) and isotropic displacement parameters (A² $x \ 10^{3}$) for cd2971.

C(4)-O(1)-C(1)-C(20)	149.1(2)
C(4)-O(1)-C(1)-C(2)	24.4(2)
O(1)-C(1)-C(2)-C(3)	-24.5(3)
C(20)-C(1)-C(2)-C(3)	-144.3(2)
C(1)-C(2)-C(3)-C(8)	-165.7(3)
C(1)-C(2)-C(3)-C(4)	16.7(3)
C(1)-O(1)-C(4)-C(3)	-14.4(3)
C(1)-O(1)-C(4)-C(5)	166.6(2)
C(8)-C(3)-C(4)-O(1)	179.9(2)
C(2)-C(3)-C(4)-O(1)	-2.1(3)
C(8)-C(3)-C(4)-C(5)	-1.0(4)
C(2)-C(3)-C(4)-C(5)	176.9(2)
O(1)-C(4)-C(5)-C(6)	178.3(2)
C(3)-C(4)-C(5)-C(6)	-0.6(3)
O(1)-C(4)-C(5)-C(9)	-4.4(3)
C(3)-C(4)-C(5)-C(9)	176.7(2)
C(4)-C(5)-C(6)-C(7)	1.8(3)
C(9)-C(5)-C(6)-C(7)	-175.6(2)
C(4)-C(5)-C(6)-C(18)	-180.0(2)
C(9)-C(5)-C(6)-C(18)	2.6(3)
C(5)-C(6)-C(7)-C(8)	-1.6(4)
C(18)-C(6)-C(7)-C(8)	-179.7(2)
C(4)-C(3)-C(8)-C(7)	1.3(4)
C(2)-C(3)-C(8)-C(7)	-176.0(3)
C(6)-C(7)-C(8)-C(3)	-0.1(4)
C(4)-C(5)-C(9)-C(10)	-22.3(3)
C(6)-C(5)-C(9)-C(10)	154.9(2)
C(4)-C(5)-C(9)-C(14)	159.5(2)
C(6)-C(5)-C(9)-C(14)	-23.3(3)
C(14)-C(9)-C(10)-C(11)	-1.3(3)
C(5)-C(9)-C(10)-C(11)	-179.5(2)
C(9)-C(10)-C(11)-C(12)	-0.4(4)
C(10)-C(11)-C(12)-C(13)	1.3(4)
C(11)-C(12)-C(13)-C(14)	-0.4(3)
C(11)-C(12)-C(13)-C(15)	178.6(2)
C(12)-C(13)-C(14)-C(9)	-1.3(3)
C(15)-C(13)-C(14)-C(9)	179.6(2)
C(12)-C(13)-C(14)-C(17)	-180.0(2)
C(15)-C(13)-C(14)-C(17)	1.0(3)
C(10)-C(9)-C(14)-C(13)	2.2(3)

Table 6. Torsion angles [deg] for cd2971.

C(5)-C(9)-C(14)-C(13)	-179.55(19)
C(10)-C(9)-C(14)-C(17)	-179.1(2)
C(5)-C(9)-C(14)-C(17)	-0.8(3)
C(12)-C(13)-C(15)-C(16)	162.3(2)
C(14)-C(13)-C(15)-C(16)	-18.6(3)
C(17)-N(1)-C(16)-C(15)	-68.0(3)
C(19)-N(1)-C(16)-C(15)	169.9(2)
C(13)-C(15)-C(16)-N(1)	51.7(3)
C(16)-N(1)-C(17)-C(18)	169.8(2)
C(19)-N(1)-C(17)-C(18)	-68.7(3)
C(16)-N(1)-C(17)-C(14)	47.4(3)
C(19)-N(1)-C(17)-C(14)	168.9(2)
C(13)-C(14)-C(17)-N(1)	-15.1(3)
C(9)-C(14)-C(17)-N(1)	166.2(2)
C(13)-C(14)-C(17)-C(18)	-139.8(2)
C(9)-C(14)-C(17)-C(18)	41.5(2)
C(7)-C(6)-C(18)-C(17)	-142.7(2)
C(5)-C(6)-C(18)-C(17)	39.1(3)
N(1)-C(17)-C(18)-C(6)	175.64(19)
C(14)-C(17)-C(18)-C(6)	-59.8(2)

Symmetry transformations used to generate equivalent atoms:

Table 7. Hydrogen bonds for cd2971 [A and deg.].

D-H...A

d(D-H)

d(H...A)

d(D...A) <(DHA)