Supporting Information for:

Asymmetric Supramolecular Primary Amine Catalysis in Aqueous Buffer: Connections of Selective Recognition and Asymmetric Catalysis

Shenshen Hu, Jiuyuan Li, Junfeng Xiang, Jie Pan, Sanzhong Luo,* Jin-Pei Cheng*
Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
luosz@iccas.ac.cn; chengjp@most.cn
General information -2
Representative procedure for the synthesis of catalysts -2
ESI-MS study 5
Kinetic study by RP-HPLC -6
The measurement of binding constants -9
General procedure for the deuteration of the aldol donors 11
General experimental procedure for aldol reaction under high concentration 12
Control reaction catalyzed by organocatalyst 13
Molecular Modeling 14
The size effect of substrates on catalytic behavior 15
References 16
2D NMR spectrum -17
NMR spectrum and MALDI-TOF for all the new catalysts 25
NMR spectrum for the aldol products- 32
HPLC conditions and spectrum for the aldol products 38
Crystal Data and structure refinement for CD-1 48

General Information: Commercial reagents were used as received, unless otherwise stated. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR were recorded on Bruker-DPX 300 spectrometer. TOCSY, COSY, ROCSY and HSQC were recorded on Bruker-DPX 600 spectrometer. Chemical shifts are reported in ppm from tetramethylsilane with the solvent resonance as the internal standard. The following abbreviations were used to designate chemical shift mutiplicities: $\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{q}=$ quartet, $\mathrm{h}=$ heptet, $\mathrm{m}=$ multiplet, $\mathrm{br}=$ broad. All first-order splitting patterns were assigned on the basis of the appearance of the multiplet. Splitting patterns that could not be easily interpreted are designated as multiplet (m) or broad (br). Mass spectra were obtained using electron ionization (EI) mass spectrometer and matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) mass spectrometry. Mono(O-6-tosyl)- β-cyclodextrin ${ }^{1}$, catalysts $\mathbf{7}^{2}, \mathbf{8}^{3}$ and $\mathbf{9}^{2}$ were prepared following the literature procedure. Catalyst $\mathbf{1 0}$ is the byproduct of when preparing the catalyst 9 .

Representative procedure for the synthesis of catalysts:

Synthesis of CD-1

Under argon atmosphere, mono(O-6-tosyl)- β-cyclodextrin ($2.0 \mathrm{~g}, 1.55 \mathrm{mmol}$) was suspended in dry DMF (2.0 mL); after warming to $80^{\circ} \mathrm{C}$, the mixture became homogeneous. (1S,2S)-cyclohexane-1,2-diamine ($1.0 \mathrm{~g}, 8.77 \mathrm{mmol}$) was added and the reaction mixture was stirred at $80^{\circ} \mathrm{C}$ for 24 h . The reaction was cooled to room temperature and 1 M NaOH aqueous solution $(2 \mathrm{~mL})$ was then added. The resulting yellow solution was added drop-wise to acetone (300 mL), the precipitate was filtered and washed successively with ethanol $(50 \mathrm{~mL})$ and acetone $(20 \mathrm{~mL} \times 2)$ to give the crude product. The obtained crude product was then dissolved in water (2 mL) and precipitated with acetone $(200 \mathrm{~mL})$. The precipitation was collected and the procedure was repeated. The purified product was dried under vacuum overnight to yield a light yellow powder ($1.6 \mathrm{~g}, 84 \%$). $[\alpha]_{\mathrm{D}}{ }^{25}=+107.6^{\circ}\left(\mathrm{c}=1.0, \mathrm{H}_{2} \mathrm{O}\right) ;{ }^{1} \mathrm{H}$ NMR $(600 \mathrm{MHz}$, $\left.\mathrm{D}_{2} \mathrm{O}\right): ~ \delta ~ 5.15-5.05(7 \mathrm{H}, \mathrm{m}), ~ 4.01-3.75(28 \mathrm{H}, \mathrm{m}), 3.64-3.43(14 \mathrm{H}, \mathrm{m}), 3.16-3.14(1 \mathrm{H}$, $m), 2.91-2.81(1 \mathrm{H}, \mathrm{m}), 2.43-2.50(1 \mathrm{H}, \mathrm{m}), 2.20-2.18(1 \mathrm{H}, \mathrm{m}), 2.06-1.91(2 \mathrm{H}, \mathrm{m})$,
1.75-1.60 ($2 \mathrm{H}, \mathrm{m}$), 1.26-1.12 ($4 \mathrm{H}, \mathrm{m}$) ppm; ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}$), $\delta 102.1$, $101.9,101.4,83.7,81.3,81.2,73.3,73.2,72.7,72.1,72.0,69.2,61.3,60.5,60.2$ (C8), 54.6 (C7), 46.2, 34.2 (C12), 30.0 (C9), 25.0 (C11), 24.8 (C10) ppm; MALDI-TOF m/z calcd for $\left[\mathrm{C}_{48} \mathrm{H}_{82} \mathrm{~N}_{2} \mathrm{O}_{34}\right]$ 1230.4, found $1231.3[\mathrm{M}+\mathrm{H}]^{+}, 1253.3[\mathrm{M}+\mathrm{Na}]^{+}$. MS (EI^{+}) calcd. for $\left[\mathrm{C}_{48} \mathrm{H}_{82} \mathrm{~N}_{2} \mathrm{O}_{34}\right]$ 1230.47.; found $[\mathrm{M}+\mathrm{H}]^{+}$, 1231.64. Anal. Calcd. for $\mathrm{C}_{48} \mathrm{H}_{82} \mathrm{~N}_{2} \mathrm{O}_{34}: \mathrm{C}, 46.83 ; \mathrm{H}, 6.71 ; \mathrm{N}, 2.28$. Found: C, 46.77; H, 6.89; N, 2.19.

Synthesis of CD-2

The catalyst was prepared according to similar procedure as a light yellow powder in 86% yield. $[\alpha]_{\mathrm{D}}{ }^{25}=+114.0^{\circ}\left(\mathrm{c}=1.0, \mathrm{H}_{2} \mathrm{O}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right): \delta 5.14-5.06$ $(7 \mathrm{H}, \mathrm{m}), 3.93-3.73(28 \mathrm{H}, \mathrm{m}), 3.73-3.52(14 \mathrm{H}, \mathrm{m}), 3.30-3.22(1 \mathrm{H}, \mathrm{m}), 2.72-2.78(1 \mathrm{H}$, $\mathrm{m}), 2.48-2.54(1 \mathrm{H}, \mathrm{m}), 2.23-2.20(1 \mathrm{H}, \mathrm{m}), 2.02-1.88(2 \mathrm{H}, \mathrm{m}), 1.72-1.65(2 \mathrm{H}, \mathrm{m})$, 1.27-1.12 (4H, m) ppm; ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}$): $\delta 102.1,101.9,83.4,81.3,73.3$, 73.2, 72.1, 72.0, 71.7, 62.8, 60.3 (C8), 54.2 (C7), 46,9, 34.0 (C12), 30.5 (C9), 24.8 (C11), 24.6 (C10) ppm; MALDI-TOF m / z calcd for $\left[\mathrm{C}_{48} \mathrm{H}_{82} \mathrm{~N}_{2} \mathrm{O}_{34}\right]$ 1230.4, found $1231.3[\mathrm{M}+\mathrm{H}]^{+}, 1253.4[\mathrm{M}+\mathrm{Na}]^{+}$.; $\mathrm{MS}\left(\mathrm{EI}^{+}\right) \mathrm{m} / \mathrm{z}$ calcd. for $\left[\mathrm{C}_{48} \mathrm{H}_{82} \mathrm{~N}_{2} \mathrm{O}_{34}\right]$ 1230.47.; found $[\mathrm{M}+\mathrm{H}]^{+}$, 1231.62. Anal. Calcd. for $\mathrm{C}_{48} \mathrm{H}_{82} \mathrm{~N}_{2} \mathrm{O}_{34} \div 3 \mathrm{H}_{2} \mathrm{O}: \mathrm{C}, 44.86 ; \mathrm{H}, 6.90 ; \mathrm{N}$, 2.18. Found: C, 44.84; H, 7.01; N, 2.12.

Synthesis of CD-3

The catalyst was prepared from cis-1,2-diamniocycohexane according to the synthesis of CD-1 as a light yellow powder in 85% yield. The obtained product was a mixture of two inseparable diastereo isomers. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}$): $\delta 5.42-5.04(7 \mathrm{H}, \mathrm{m})$, 4.40-3.70 $(24 \mathrm{H}, \mathrm{m}), 3.70-2.95(13 \mathrm{H}, \mathrm{m}), 2.95-2.45(2 \mathrm{H}, \mathrm{m}), 2.43-2.09(1 \mathrm{H}, \mathrm{m})$, 2.07-0.69 (7H, m) ppm; ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{d}_{6}$-DMSO): $\delta 101.9,81.5,73.1,72.5$, 72.0, 60.2, 59.9, 46.4, 30.6 ppm , MALDI-TOF m / z calcd for $\left[\mathrm{C}_{48} \mathrm{H}_{82} \mathrm{~N}_{2} \mathrm{O}_{34}\right.$], found $1231.5[\mathrm{M}+\mathrm{H}]^{+}, 1253.5[\mathrm{M}+\mathrm{Na}]^{+} . \mathrm{MS}\left(\mathrm{EI}^{+}\right) \mathrm{m} / \mathrm{z}$ calcd. for $\left[\mathrm{C}_{48} \mathrm{H}_{82} \mathrm{~N}_{2} \mathrm{O}_{34}\right]$ 1230.47.; found $[\mathrm{M}+\mathrm{H}]^{+}$, 1231.77.

Synthesis of CD-4

Under argon atmosphere, a neat solution of mono(O-6-tosyl)- β-cyclodextrin (1.0 g , 0.77 mmol) and ethane-1,2-diamine (5 mL) was stirred at $60^{\circ} \mathrm{C}$ for 12 h . The reaction was cooled to room temperature and treated similarly according to the synthesis of CD-1 to give the desired product as a light yellow powder in 90% yield. $[\alpha]_{\mathrm{D}}{ }^{25}=+102.4^{\circ}\left(\mathrm{c}=1.0, \mathrm{H}_{2} \mathrm{O}\right) ;{ }^{1} \mathrm{H}$ NMR (300 MHz, $\left.\mathrm{D}_{2} \mathrm{O}\right): 4.98(7 \mathrm{H}, \mathrm{s}), 3.90-3.78$ $(27 \mathrm{H}, \mathrm{m}), 3.54-3.41(14 \mathrm{H}, \mathrm{m}), 3.38-3.35(1 \mathrm{H}, \mathrm{m}), 3.07-2.94(2 \mathrm{H}, \mathrm{m}), 2.78-2.64(4 \mathrm{H}$, m) ppm; ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}$): $\delta 101.8,101.6,83.4,81.2,80.9,73.1,73.0,72.1$, 71.8, 70.5, 60.3 (C8), 49.1, 49.0, 39.3 (C7) ppm. MALDI-TOF m/z calcd for $\left[\mathrm{C}_{44} \mathrm{H}_{76} \mathrm{~N}_{2} \mathrm{O}_{34}\right]$ 1176.4, found $1177.3[\mathrm{M}+\mathrm{H}]^{+}, 1199.4[\mathrm{M}+\mathrm{Na}]^{+} . \mathrm{MS}\left(\mathrm{EI}^{+}\right) \mathrm{m} / \mathrm{z}$ calcd. for $\left[\mathrm{C}_{44} \mathrm{H}_{76} \mathrm{~N}_{2} \mathrm{O}_{34}\right]$ 1176.43.; found $[\mathrm{M}+\mathrm{H}]^{+}, 1177.57$. Anal. Calcd. for $\mathrm{C}_{44} \mathrm{H}_{76} \mathrm{~N}_{2} \mathrm{O}_{34}$: C, 44.90; H, 6.51; N, 2.38. Found: C, 45.10; H, 6.52; N, 2.55

Synthesis of CD-5

The catalyst was prepared according to the synthesis of CD-1 as a yellow powder in 83% yield. $[\alpha]_{\mathrm{D}}{ }^{25}=+111.8^{\circ}$ ($\mathrm{c}=1.0$, DMSO); ${ }^{1} \mathrm{H}$ NMR (300MHz, DMSO): δ 6.02-5.18 ($14 \mathrm{H}, \mathrm{br}$), 4.88-4.61 ($7 \mathrm{H}, \mathrm{m}$), 4.61-4.27 ($10 \mathrm{H}, \mathrm{br}$), 4.04-3.45 ($46 \mathrm{H}, \mathrm{m}$, overlap with HOD), 3.48-3.07 ($23 \mathrm{H}, \mathrm{m}$), 2.89-2.86 ($2 \mathrm{H}, \mathrm{m}$), 2.43-2.40 ($2 \mathrm{H}, \mathrm{br}$), 2.2 $(3 \mathrm{H}, \mathrm{s}), 2.05(3 \mathrm{H}, \mathrm{s}), 1.92(2 \mathrm{H}, \mathrm{m}), 1.68(2 \mathrm{H}, \mathrm{m}), 1.58(1 \mathrm{H}, \mathrm{m}), 1.12(3 \mathrm{H}, \mathrm{m}), 0.86$ ($1 \mathrm{H}, \mathrm{m}$) ppm; ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{d}_{6}$-DMSO): δ 103.1, 102.2, 101.9, 101.562, 84.7, $81.5,80.8,73.3,73.0,72.4,72.0,70.0,66.8,60.1,59.9,46.4,35.0,33.5$ (C12), 30.541, 25.1, 24.2, 21.7 ppm ; MALDI-TOF m / z calcd for $\left[\mathrm{C}_{50} \mathrm{H}_{86} \mathrm{~N}_{2} \mathrm{O}_{34}\right.$] 1258.5, found $[\mathrm{M}+\mathrm{H}]^{+}$, 1260.1. MS ($\left.\mathrm{EI}{ }^{+}\right) \mathrm{m} / \mathrm{z}$ calcd. for $\left[\mathrm{C}_{50} \mathrm{H}_{86} \mathrm{~N}_{2} \mathrm{O}_{34}\right]$ 1258.51.; found $[\mathrm{M}+\mathrm{H}]^{+}$, 1259.62.

Synthesis of CD-6

The catalyst was prepared according to the synthesis of CD-1 as a yellow powder in 98% yield. $[\alpha]_{\mathrm{D}}{ }^{25}=+99.4^{\circ}$ ($\mathrm{c}=1.0$, DMSO); ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{d}_{6}$-DMSO): δ 6.02-4.99 ($12 \mathrm{H}, \mathrm{br}$), 4.82-4.81 ($7 \mathrm{H}, \mathrm{m}$), 4.54-4.03 ($6 \mathrm{H}, \mathrm{br}$), 3.75-3.47 ($26 \mathrm{H}, \mathrm{m}$), 3.47-2.94 ($60 \mathrm{H}, \mathrm{m}$, overlap with HOD), 2.77-2.71 ($2 \mathrm{H}, \mathrm{m}$), 2.40-2.27 ($2 \mathrm{H}, \mathrm{m}$), 2.13 $(6 \mathrm{H}, \mathrm{s}), 1.95-1.92(2 \mathrm{H}, \mathrm{m}), 1.69(2 \mathrm{H}, \mathrm{m}), 1.63-1.58(1 \mathrm{H}, \mathrm{m}), 1.10(3 \mathrm{H}, \mathrm{m}), 0.86-0.83$
($1 \mathrm{H}, \mathrm{m}$) ppm; ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{d}_{6}$-DMSO): δ 102.3, 101.9, 101.7, 101.4, 84.6, 81.6, 81.4, 80.7, 73.4, 73.1, 72. 8, 72.5, 71.9, 71.2, 66.4, 59.9, 59.4, 58.0, 48.0, 31.3, 25.0, 24.1, 20.2 ppm ; MALDI-TOF m / z calcd for $\left[\mathrm{C}_{50} \mathrm{H}_{86} \mathrm{~N}_{2} \mathrm{O}_{34}\right]$ 1258.5, found $[\mathrm{M}+\mathrm{H}]^{+}$, 1259.9. $\mathrm{MS}\left(\mathrm{EI}^{+}\right) \mathrm{m} / \mathrm{z}$ calcd. for $\left[\mathrm{C}_{50} \mathrm{H}_{86} \mathrm{~N}_{2} \mathrm{O}_{34}\right]$ 1258.51.; found $[\mathrm{M}+\mathrm{H}]^{+}$, 1259.65.

Synthesis of 10

The catalyst 10 was the byproduct when preparing catalyst $9 .^{2}[\alpha]_{\mathrm{D}}{ }^{20}=+41.0^{\circ}(\mathrm{c}=1.0$, $\mathrm{CH}_{3} \mathrm{OH}$). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 2.76-2.67(1 \mathrm{H}, \mathrm{m}), 2.48-2.41(1 \mathrm{H}, \mathrm{m})$, 2.39-2.30 $(1 \mathrm{H}, \mathrm{m}), 2.06-1.95(2 \mathrm{H}, \mathrm{m}), 1.88-1.83(1 \mathrm{H}, \mathrm{m}), 1.71-1.64(2 \mathrm{H}, \mathrm{m})$, 1.48-1.43 (3H, m). $1.25(20 \mathrm{H}, \mathrm{s}), 0.89-0.94(3 \mathrm{H}, \mathrm{t}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 877.3, 64.1, 55.3, 47.3, 36.3, 32.0, 31.5, 30.7, 29.7, 29.7, 29.4, 27.6, 25.4, 25.4, 22.8, 14.2. $\mathrm{MS}\left(\mathrm{EI}^{+}\right) \mathrm{m} / \mathrm{z}$ calcd. for $\left[\mathrm{C}_{16} \mathrm{H}_{34} \mathrm{~N}_{2}\right]$ 254.27; found $[\mathrm{M}+\mathrm{H}]^{+}, 255.45$.

ESI-MS study

To a stirred solution of $\mathbf{C D}-1(12.3 \mathrm{mg}, 0.01 \mathrm{mmol})$ in 1 M acetate buffer $(\mathrm{pH}=4.88$, $400 \mu \mathrm{~L})$ was added acetone $(100 \mu \mathrm{~L})$. The mixture was stirred for 10 min and 4-nitrobenzaldehyde was then added. The reaction mixture was stirred for 1 hr before the addition of NaBH_{4} and the mixture was stirred for another 1 h . An aliquot was taken and subjected to ESI-MS after dilution to homogeneity.

Kinetic study by RP-HPLC:

Kinetic studies of the reaction were conducted in acetate buffer (50 mM) with $5-10 \% \mathrm{v} / \mathrm{v}$ donor and $0.05-0.4 \mathrm{mM}$ aldehyde. Aldehydes were soluble within the condition used. The reaction was conveniently monitored by the analytical RP-HPLC in situ (Table 1)

Aldehydes were used as 40 mM stock solutions in acetone/water (1:1, v/v). Catalysts were used as 20 mM stock solutions in water. To a small vial containing acetate buffer ($890 \mu \mathrm{~L}$) was added $10 \mu \mathrm{~L}$ of stock solution of catalyst and $100 \mu \mathrm{~L}$ of
stock solution of aldehyde. The sample was stirred to ensure homogeneity. The final solution was obtained containing 4 mM aldehyde, 0.2 mM catalyst, $5 \% \mathrm{v} / \mathrm{v}$ acetone in acetate buffer (1 mL). The reaction was allowed to run under $25^{\circ} \mathrm{C}$. During intervals, the samples $(50 \mu \mathrm{~L})$ were taken and mixed with a standard solution containing the internal standard compound ($50 \mu \mathrm{~L}$). The obtained solution was then analyzed by RP-HPLC. The standard curves of product and internal standard was first determined. The concentration of product can be calculated by the ration of the aldol product and internal standard (see scheme S1). And the reaction initial rate can be determined by the slope of the linear correlation of [product] and reaction time (For an example, see Figure S1)

Table S1 RP-HPLC conditions for aldol reaction of aldehyde ${ }^{\text {a }}$

1. $\mathrm{R}=\mathrm{H}, \mathrm{R}^{1}=4-\mathrm{NO}_{2} \mathrm{Ph}$
2. $R=H, R^{1}=P h$
3. $R=H, R^{1}=4-\mathrm{MePh}$
4. $R=H, R^{1}=4-O M e P h$
5. $R=H, R^{1}=1$ - Naphth
6. $R=H, R^{1}=2-$ Naphth
7. $\mathrm{R}=\mathrm{H}, \mathrm{R}^{1}=4-\mathrm{PhPh}$
8. $R=H, R^{1}=$ Piperon
9. $\mathrm{R}=-\left(\mathrm{CH}_{2}\right)_{2^{-}}, \mathrm{R}^{1}=4-\mathrm{NO}_{2} \mathrm{Ph}$
10. $\mathrm{R}=-\left(\mathrm{CH}_{2}\right)_{2}-, \mathrm{R}^{1}=4-\mathrm{NO}_{2} \mathrm{Ph}$
11. $R=H, M e, R^{1}=4-\mathrm{NO}_{2} \mathrm{Ph}$

Entry	Internal standard	Flow $(\mathrm{mL} / \mathrm{min})$	t_{R} (aldehyde) (min)	t_{R} (aldol) (min)	t_{R} (internal standard) (min)
1	BnOH	0.8	11.36	6.70	6.18
2	phenol	0.8	10.07	6.17	7.07
3	BnOH	0.8	13.31	7.57	6.18
4	phenol	0.8	9.94	5.97	7.07
5	BnOH	1.2	15.62	7.90	4.38
6	BnOH	0.8	19.90	9.60	6.18
7	$2-n a p h t h o l$	1.5	23.23	10.44	8.68
8	phenol	0.8	9.00	5.87	7.07
9	BnOH	0.8	11.08	10.14	6.18
10	BnOH	0.8	11.08	$12.48 / 13.57$	6.18
11	BnOH	0.8	11.08	8.72	6.18

[^0]
Scheme S1. HPLC spectra for kinetic study

Figure S1. Correlation of time with concentration of product catalyzed by CD-1

Enzyme kinetic study of CD-1

The enzyme kinetic study CD-1 was operated just according to the general experimental procedure of kinetic study expect that different concentration of aldol acceptor. 4-nitrobenzaldehyde was used as $4,5,8,10,15,20 \mathrm{mM}$ stock solutions of water/actone (1/1).

The measurement of binding constants

Determination of k_{s} was conducted in 50 mM acetate buffer ($\mathrm{pH}=4.80$) with 2% glycol, 0.02 mM substrate as guest and $0.5-4 \mathrm{mM}$ catalyst as host. The substrates were used as 1 mM stock solution of glycol. Catalysts were used as 250 mM stock solution of 50 mM acetate buffer. To each 2.45 mL acetate buffer ($50 \mathrm{mM}, \mathrm{pH}=4.80$) was added $50 \mu \mathrm{~L}$ stock solution of substrate. The solution obtained contained 0.02 mM substrate and 2% glycol. $5 \mu \mathrm{~L}$ stock solution of catalyst was added to this solution each time and the fluorescence intensity was recorded after 5 min . Job's method was used to determine the the stoichiometry of host-guest complexion. In the spectra titration experiment, the excellent linear correlation of $1 / \Delta \mathrm{F}$ and $1 /[$ host] can proved as well (Figure S3a). Finally, the method of least squares was used following the equation 4 in scheme S 1 to calculate the binding constants between different naphthalene derivatives and cyclodextrin host. (Figure S3b)

$$
\begin{gather*}
\mathrm{H}+\mathrm{G}=\mathrm{H} \bullet \mathrm{G} \\
\Delta \mathrm{~F}=\mathrm{F}(\text { Guest system added with host })-\mathrm{F}(\mathrm{Guest} \text { system without host })=\mathrm{a}[\mathrm{H} \bullet \mathrm{G}] \tag{1}\\
K_{\mathrm{s}}=\frac{[\mathrm{H} \bullet \mathrm{G}]}{[\mathrm{H}][\mathrm{G}]}=\frac{\Delta \mathrm{F} / \mathrm{a}}{\left([\mathrm{H}]_{0}-\Delta \mathrm{F} / \mathrm{a}\right)\left([\mathrm{G}]_{0}-\Delta \mathrm{F} / \mathrm{a}\right)} \tag{2}\\
\frac{[\mathrm{G}][\mathrm{H}]_{\mathrm{i}}}{\Delta \mathrm{~F}_{\mathrm{i}}}=\frac{1}{K_{\mathrm{s}} \bullet \alpha}+\frac{[\mathrm{G}]}{\alpha} \tag{3}\\
\Delta \mathrm{F}=\frac{\mathrm{a}\left([\mathrm{H}]_{0}+[\mathrm{G}]_{0}+1 / K_{\mathrm{s}}\right) \pm \sqrt{\mathrm{a}^{2}\left([\mathrm{H}]_{0}+[\mathrm{G}]_{0}+1 / K_{\mathrm{s}}\right)^{2}-4 \mathrm{a}^{2}[\mathrm{H}]_{0}[\mathrm{G}]_{0}}}{2} \tag{4}
\end{gather*}
$$

Scheme S2 The different expression of Benesi-Hildebrand relation

Figure S2. The calculation of binding constants between 2-naphthaldehyde and CD-1 using (a) the method of linear regression; (b) the method of least squares.

Figure S3. The series of fluorescence spectra of (a) 0.02 mM of 1-naphthaldehyde aqueous solution at various concentrations of CD-1 (0 to 3.5 mM). (b) 0.02 mM of G6 aqueous solution at various concentration s of CD-1 (0 to 3.5 mM)

General procedure for the deuteration of the aldol donor

All deuteration reactions were conducted by using 0.02 M catalyst and 0.05 M sodium 2,2-dimethyl-2-silapentane-5-sulfonate (DSS) as internal standard in acetate buffer ($\mathrm{pH}=4.80$) prepared from $\mathrm{D}_{2} \mathrm{O}, \mathrm{CD}_{3} \mathrm{COOD}$ and $\mathrm{CD}_{3} \mathrm{COONa}$. The control reaction was measured in acetate buffer without catalyst. The concentration of acetone was varied as demanded.

The initial rate of hydrogen exchange was monitered during the first 24 h at time intervals of 4 h . Each sample was analyzed by 16 scans. The enzyme kinetic study was conducted following the measuring procedure of aldol reaction.

Figure S4 Time-resolved ${ }^{1} \mathrm{H}$ NMR monitoring of CD-1-catalyzed deuteration of actone. The signal of a-position hydrogen $(\delta=2.26)$ decreased with time

General experimental procedure for aldol reaction under high concentration

To a stirred solution of CD-1 $(12.3 \mathrm{mg}, 0.01 \mathrm{mmol})$ in 1 M acetate buffer $(\mathrm{pH}=4.80$, $400 \mu \mathrm{~L}$) was added acetone ($100 \mu \mathrm{~L}$) and 4-nitrobenzaldehyde ($15.2 \mathrm{mg}, 0.1 \mathrm{mmol}$). The resulting heterogeneous reaction was stirred at ambient temperature and monitored by TLC. After 24 h , the solution was extracted with ethyl acetate. The ethyl acetate was rotary evaporated and the crude product was purified by flash chromatography on silica gel to afford the desired product. All the aldol products are known compounds ${ }^{4-8}$.

Table S2 Aldol reaction under high concentration ${ }^{\text {a }}$

[^1]
Control Reaction catalyzed by organocatalyst

Control reactions catalyzed by organocatalyst ent-8 were carried out under neat condition. In the control reaction, the phenomenon of substrate recognition was not observed (Table S3).

Table S3 Control reaction catalyzed by organocatalyst

a. Isolated yield. ${ }^{\text {b. }}$ syn/anti determined by NMR. ${ }^{\text {c. }}$ ee determined by HPLC

Molecular Modeling

The molecular modeling calculation was performed just following the literature. ${ }^{9}$ The CVFF force field in insightII 2005/discover package (Accelrys Inc.) was used. A water sphere of diamether was set to $5 \AA$ and relatively permittivity of 78 was used. The cut-off distances for van der Waals and electrostatic interactions were set to 100 \AA. The diamine groups were protonated and the pH value was set to 5.0 .

Figure S5 Energy minimum conformations of (a) CD-1 and (b) CD-2 in acidic buffer solution.
(a)

(b)

Figure S6 (a) The correlation between size effect ${ }^{10}$ of substrate and stereoselectivity in CD-2 catalyzed system. (b) The correlation between size effect ${ }^{10}$ of substrate and catalytic rate differences between CD-1 and CD-2

Reference

1. Petter, R. C.; Salek, J. S., Sikorski C. T. Kumaravel, G. Lin F. T. J. Am. Chem. Soc. 1990, 112, 3860-3868
2. Mithcell, J. M.; Finney, N. S. Tetrahedron Lett. 2000, 41, 8431
3. Shi, M., Zhang, W. Tetrahedron: Asymmetry. 2003, 14, 3407.
4. Samanta, S.; Liu, J.; Dodda, R.; Zhao, C. G. Org. Lett. 2005, 7, 5321.
5. Gu, L. Q.; Yu, M. L.; Wu, X. Y.; Zhang, Y. Z.; Zhao, G. Adv. Synth. Catal. 2006, 348, 2223.
6. Chen, J. R,; Lu, H. H.; Li, X. Y.; Chen, L.; Wan, J.; Xiao, W. J. Org. Lett. 2005, 7, 4543.
7. Wu, Y. Y.; Zhang, Y. Z.; Yu, M. L.; Zhao, G. S.; Wang, W. Org. Lett. 2006, 8, 4417
8. Mase, N.; Tanaka, F.; Barbas, C. F. III. Angew. Chem. Int. Ed. 2004, 43, 2420.
9. Park, K. K.; Kim, Y. S.; Lee. S. Y.; Song. H. E.; Park. J. W. J. Chem. Soc., Perkin Trans. 2, 2001, 2114.
10. The size effect of substrate is measured by upsilon steric parameter according to Charton, M.; Motoc, I., Ed.; Steric Effects in Drug Design; Springer; Berlin / Heidelberg, 1983. p68-75

2D NMR spectrum of CD-1 in pure water

(a)

(b)

Figure S7. (a) HMQC of CD-1; (b) COSY of CD-1; (c) ROCSY of CD-1; (c) TOCSY of CD-1, mixing time $=70 \mathrm{~ms}$; (d) TOCSY of CD-1, mixing time $=170 \mathrm{~ms}$

H-H COSY spectra of CD-1, CD-2, 8 in acetate buffer ($\mathrm{pH}=4.80$)

(a)

Figure S8 H-H COSY spectra of (a) CD-1 (0.02 M) in acetate buffer ($\mathrm{pH}=4.80$); (b) CD-2 (0.02 M) in acetate buffer ($\mathrm{pH}=4.80$); (c) $8(0.02 \mathrm{M})$ in acetate buffer $(\mathrm{pH}=4.80)$

Full ROESY spectrum of CD-1 and CD-2 under different conditions

(c)

(d)

Figure S9 The full ROESY spectrum of (a) CD-1 (0.02 M) in $\mathrm{D}_{2} \mathrm{O}$; (b) CD-1 (0.02 M) in acetate buffer ($\mathrm{pH}=4.80$); (c) CD-2 (0.02 M) in $\mathrm{D}_{2} \mathrm{O}$; (d) CD-2 (0.02 M) in acetate
buffer ($\mathrm{pH}=4.80$); (e) CD-1 (0.02 M) and 2-naphthoic acid (0.02 M) in acetate buffer ($\mathrm{pH}=4.80$, containing 2% d6-acetone); (f) CD-1 $(0.02 \mathrm{M}$) and p-nitrobenzoic acid (0.02 M) in acetate buffer $(\mathrm{pH}=4.80$, containing 2% d6-acetone).

Figure S10 The DOSY spectrum of CD-1 ($\mathrm{D}_{2} \mathrm{O}, \mathrm{T}=298 \mathrm{~K}, 600 \mathrm{~Hz}$) under $2 \mathrm{mM}(\mathbf{a})$ and 20 mM (b), showing the same diffusion coefficient.

NMR spectrum and MALDI-TOF for all the new catalysts

를

CD-1

$\stackrel{1}{2}$

$$
\begin{aligned}
& \text { (1)| | | }
\end{aligned}
$$

CD-1

E

CD-2

ppm	140	120	100	80	60	40	20

E

CD-3

镸
CD-4

E

CD-4

NMR spectrum for the aldol products

(1) ${ }^{\text {Ho }}$

鱆鰏票

HPLC condition for all aldol product:

The enantiometric excess was determined by HPLC with an AS-H column at 240 nm (2-propanol: Hexane=30/70), $25^{\circ} \mathrm{C}$, $0.5 \mathrm{~mL} / \mathrm{min} . \mathrm{t}_{\mathrm{R}}=23.50$ (major); $\mathrm{t}_{\mathrm{R}}=27.73$ (minor)

The enantiometric excess was determined by HPLC with an OJ-H column at 240 nm (2-propanol: Hexane=20/40), $25^{\circ} \mathrm{C}$, $0.8 \mathrm{~mL} / \mathrm{min} . \mathrm{t}_{\mathrm{R}}=18.37$ (major); $\mathrm{t}_{\mathrm{R}}=20.42$ (minor)

The enantiometric excess was determined by HPLC with an OJ-H column at 254 nm (2-propanol: Hexane $=30 / 70$), $25^{\circ} \mathrm{C}$, $0.8 \mathrm{~mL} / \mathrm{min} . \mathrm{t}_{\mathrm{R}}=10.00$ (major); $\mathrm{t}_{\mathrm{R}}=12.67$ (minor)

The enantiometric excess was determined by HPLC with an AS-H column at 240 nm (2-propanol: Hexane=20/80), $25^{\circ} \mathrm{C}$, $0.5 \mathrm{~mL} / \mathrm{min} . \mathrm{t}_{\mathrm{R}}=12.18$ (major); $\mathrm{t}_{\mathrm{R}}=14.54$ (minor)

[^2]

The enantiometric excess was determined by HPLC with an AS-H column at 254 nm (2-propanol: Hexane=15/85), $25^{\circ} \mathrm{C}$, $0.8 \mathrm{~mL} / \mathrm{min} . \mathrm{t}_{\mathrm{R}}=13.31$ (minor); $\mathrm{t}_{\mathrm{R}}=14.13$ (major)

The enantiometric excess was determined by HPLC with an AS-H column at 254 nm (2-propanol: Hexane $=15 / 85$), $25^{\circ} \mathrm{C}$, $0.8 \mathrm{~mL} / \mathrm{min} . \mathrm{t}_{\mathrm{R}}=36.30$ (major); $\mathrm{t}_{\mathrm{R}}=38.41$ (minor)

The enantiometric excess was determined by HPLC with an AS-H column at 254 nm (2-propanol: Hexane=10/90), $25^{\circ} \mathrm{C}$, $0.8 \mathrm{~mL} / \mathrm{min} . \mathrm{t}_{\mathrm{R}}=18.58$ (major); $\mathrm{t}_{\mathrm{R}}=22.33$ (minor)

The enantiometric excess was determined by HPLC with an AD-H column at 254 nm (2-propanol: Hexane $=20 / 80$), $25^{\circ} \mathrm{C}$, $0.8 \mathrm{~mL} / \mathrm{min} . \mathrm{t}_{\mathrm{R}}=17.89$ (major); $\mathrm{t}_{\mathrm{R}}=21.78$ (minor)

The enantiometric excess was determined by HPLC with an OJ-H column at 254 nm (2-propanol: Hexane=10/90), $25^{\circ} \mathrm{C}$, $0.8 \mathrm{~mL} / \mathrm{min} . \mathrm{t}_{\mathrm{R}}=35.57$ (major); $\mathrm{t}_{\mathrm{R}}=51.57$ (minor)

The enantiometric excess was determined by HPLC with an AD-H column at 254 nm (2-propanol: Hexane $=5 / 95$), $25^{\circ} \mathrm{C}$, $0.8 \mathrm{~mL} / \mathrm{min} . \mathrm{t}_{\mathrm{R}}=41.23$ (major); $\mathrm{t}_{\mathrm{R}}=62.37$ (minor) The enantiometric excess was determined by HPLC with an AD-H column at 254 nm (2-propanol: Hexane $=5 / 95$), $25^{\circ} \mathrm{C}$, $0.8 \mathrm{~mL} / \mathrm{min} . \mathrm{t}_{\mathrm{R}}=35.38$ (minor); $\mathrm{t}_{\mathrm{R}}=38.31$ (major)

The enantiometric excess was determined by HPLC with an $\mathrm{AD}-\mathrm{H}$ column at 254 nm (2-propanol: Hexane $=5 / 95$), $25^{\circ} \mathrm{C}$, $0.8 \mathrm{~mL} / \mathrm{min} . \mathrm{t}_{\mathrm{R}}=17.44$ (major); $\mathrm{t}_{\mathrm{R}}=19.35$ (minor)

The enantiometric excess was determined by HPLC with an $\mathrm{AD}-\mathrm{H}$ column at 254 nm (2-propanol: Hexane $=5 / 95$), $25^{\circ} \mathrm{C}$, $0.8 \mathrm{~mL} / \mathrm{min} . \mathrm{t}_{\mathrm{R}}=14.47$ (major); $\mathrm{t}_{\mathrm{R}}=16.52$ (minor)

The enantiometric excess was determined by HPLC with an $\mathrm{AD}-\mathrm{H}$ column at 254 nm (2-propanol: Hexane $=5 / 95$), $25^{\circ} \mathrm{C}$, $0.8 \mathrm{~mL} / \mathrm{min} . \mathrm{t}_{\mathrm{R}}=21.22$ (major); $\mathrm{t}_{\mathrm{R}}=24.25$ (minor)

The enantiometric excess was determined by HPLC with an $\mathrm{AD}-\mathrm{H}$ column at 254 nm (2-propanol: Hexane $=5 / 95$), $25^{\circ} \mathrm{C}$, $0.8 \mathrm{~mL} / \mathrm{min} . \mathrm{t}_{\mathrm{R}}=33.33$ (major); $\mathrm{t}_{\mathrm{R}}=38.16$ (minor)

The enantiometric excess was determined by HPLC with an $\mathrm{AD}-\mathrm{H}$ column at 254 nm (2-propanol: Hexane $=5 / 95$), $25^{\circ} \mathrm{C}$, $0.8 \mathrm{~mL} / \mathrm{min} . \mathrm{t}_{\mathrm{R}}=35.48$ (major); $\mathrm{t}_{\mathrm{R}}=39.40$ (minor)

The enantiometric excess was determined by HPLC with an $\mathrm{AD}-\mathrm{H}$ column at 254 nm (2-propanol: Hexane $=5 / 95$), $25^{\circ} \mathrm{C}$, $0.8 \mathrm{~mL} / \mathrm{min} . \mathrm{t}_{\mathrm{R}}=33.29$ (minor); $\mathrm{t}_{\mathrm{R}}=35.00$ (major)

The enantiometric excess was determined by HPLC with an AS-H column at 254 nm (2-propanol: Hexane $=3 / 7$), $25^{\circ} \mathrm{C}$, $0.8 \mathrm{~mL} / \mathrm{min} . \mathrm{t}_{\mathrm{R}}=18.95$ (major); $\mathrm{t}_{\mathrm{R}}=22.61$ (minor)

Representative HPLC traces for aldol products

Determination of absolutely configuration

Table S4. Crystal data and structure refinement for CD-1.

Identification code	mx3
Empirical formula	C48 H97 N2 O41.50
Formula weight	1366.28
Temperature	173(2) K
Wavelength	0.71073 A
Crystal system, space group	Triclinic, P1
Unit cell dimensions	$\begin{array}{cc} \mathrm{a}=9.9461(19) \mathrm{A} & \text { alpha }=106.355(3) \mathrm{deg} . \\ \mathrm{b}=12.038(2) \mathrm{A} & \text { beta }=103.637(3) \mathrm{deg} . \\ \mathrm{c}=14.418(3) \mathrm{A} & \text { gamma }=91.494(2) \mathrm{deg} . \end{array}$
Volume	1601.8(6) A^3
Z, Calculated density	$1,1.416 \mathrm{Mg} / \mathrm{m}^{\wedge} 3$
Absorption coefficient	$0.125 \mathrm{~mm}^{\wedge}-1$
F(000)	731
Crystal size	$0.17 \times 0.12 \times 0.06 \mathrm{~mm}$
Theta range for data collection	1.77 to 27.47 deg .
Limiting indices	$-12<=\mathrm{h}<=12,-15<=\mathrm{k}<=15,-18<=1<=18$
Reflections collected / unique	$29033 / 7328[\mathrm{R}(\mathrm{int})=0.0538]$
Completeness to theta $=27.47$	99.9 \%
Absorption correction	Numerical
Max. and min. transmission	0.9925 and 0.9791
Refinement method	Full-matrix least-squares on $\mathrm{F}^{\wedge} 2$
Data / restraints / parameters	7328 / 3 / 840
Goodness-of-fit on $\mathrm{F}^{\wedge} 2$	1.091
Final R indices [$1>2 \operatorname{sigma}(\mathrm{I})$]	$\mathrm{R} 1=0.0504, \mathrm{wR} 2=0.1282$
Absolute structure parameter	-0.2(7)
Extinction coefficient	$0.0133(16)$
Largest diff. peak and hole	0.443 and -0.234 e. ${ }^{\wedge}$ - 3

[^0]: ${ }^{\text {a }}$. detection by 210 nm , elution solvent $\mathrm{H}_{2} \mathrm{O} / \mathrm{CH}_{3} \mathrm{CN}=50 / 50$, column: Diamonsil $5 \mathrm{u} \mathrm{C} 18250 \times 4.6$
 mm

[^1]: ${ }^{\text {a. }}$ Conditions: $25^{\circ} \mathrm{C}$, entry $1-14$, donor $100 \mu \mathrm{~L}$; entry $15-29$, donor $20 \mu \mathrm{~L}$. ${ }^{\text {b. Isolated }}$ yield. ${ }^{\text {c. }}$ syn/anti determined by NMR. ${ }^{\text {d. }}$ ee determined by HPLC. N. R. no reaction observed.

[^2]: The enantiometric excess was determined by HPLC with an AS-H column at 240 nm (2-propanol: Hexane=20/80), $25^{\circ} \mathrm{C}$, $0.5 \mathrm{~mL} / \mathrm{min} . \mathrm{t}_{\mathrm{R}}=22.60$ (major); $\mathrm{t}_{\mathrm{R}}=41.57$ (minor)

 The enantiometric excess was determined by HPLC with an AS-H column at 254 nm (2-propanol: Hexane $=10 / 90$), $25^{\circ} \mathrm{C}$, $0.8 \mathrm{~mL} / \mathrm{min} . \mathrm{t}_{\mathrm{R}}=22.36$ (major); $\mathrm{t}_{\mathrm{R}}=28.51$ (minor) The enantiometric excess was determined by HPLC with an AS-H column at 254 nm (2-propanol: Hexane $=10 / 90$), $25^{\circ} \mathrm{C}$, $0.8 \mathrm{~mL} / \mathrm{min} . \mathrm{t}_{\mathrm{R}}=16.41$ (major); $\mathrm{t}_{\mathrm{R}}=19.42$ (minor)

 The enantiometric excess was determined by HPLC with an AS-H column at 254 nm (2-propanol: Hexane=10/90), $25^{\circ} \mathrm{C}$, $0.8 \mathrm{~mL} / \mathrm{min} . \mathrm{t}_{\mathrm{R}}=15.19$ (major); $\mathrm{t}_{\mathrm{R}}=19.30$ (minor)

 The enantiometric excess was determined by HPLC with an AS-H column at 254 nm (2-propanol: Hexane $=10 / 90$), $25^{\circ} \mathrm{C}$, $0.8 \mathrm{~mL} / \mathrm{min} . \mathrm{t}_{\mathrm{R}}=25.85$ (major); $\mathrm{t}_{\mathrm{R}}=28.42$ (minor)

